Neural network based order parameters for classification of binary
hard-sphere crystal structures: Supplemental Information

Emanuele Boattini', Michel Ram!, Frank Smallenburg?, and Laura Filion!

1Soft Condensed Matter, Debye Institute of Nanomaterials Science, Utrecht University,
Princetonplein 5, 3584 CC Utrecht, The Netherlands 2Laboratoire de Physique des Solides,
CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 91405 Orsay, France

1. Python Code and Neural Network Parameters

To ensure that the neural networks we developed here are accessible to a wide range of
researchers, we have also provided python code for the SANN trained networks. The
code is available in the SI, and contains the following:

e a file “README.txt” which explains how to use the code
e a sample configuration file “conf045.xyz” for testing the code
e the main code consist of “SANN_NN.py” and “particles.py”

Additionally, for those who might want to code their own neural network, we have
included a text file which lists the parameters (weights and biases) associated with the
SANN networks in the file “parameters.txt”.

2. Single-layer Neural Networks

In the following, we describe in more detail the implementation of the single-layer
neural networks used in this work.

In the most general terms, an artificial neural network can be described as an
algorithm that takes an input vector of data and generates a corresponding output.
For the networks used here, the input is a vector of averaged bond order parameters
associated with a specific particle, and the output tells us in which crystalline (or
liquid) environment the particle is most likely to be.

Let us indicate the input vector of particle n as x™ = («7,...,2)), where ] are d
bond order parameters, and suppose we want the network to be able to distinguish
between ¢ different local environments. Such a network will produce ¢ outputs (as
many as the classes we wish to distinguish) by doing some mathematical operations
on the input. The procedure to go from the input to the output is explained in the
following.



2.1. Output of a single layer neural network

The first step is to take ¢ different linear combinations of the input

N
aZ:Zwkix?—Fbk, withk=1,...,¢, (1)
i=1

where the coefficients wy; and by are usually called weights and biases, respectively.
Then, the final outputs are obtained by applying a so-called activation function to the
linear combinations a;!

N
yi = o (Z wiiaf + m) = 6 (ap). (2)
=1

where ¢ is the activation function and the y;' are the outputs.

Many choices for the activation function are available. In order to interpret the final
outputs y;' as the probabilities that the input vector x™ belongs to the specific class
k, we use the Softmax activation function [1]

"
ek

n
D SRS ¥

The action of this function is to map the outputs y;' onto numbers between 0 and 1
and guarantees that they sum up to 1 (3, yi = 1), and hence they can be interpreted
as probabilities. Every input vector x" is eventually assigned to the class k& with the
highest probability y;’.

2.2. Training the network

To train the network, one typically starts with an initial guess for weights and biases,
which are then optimized iteratively during the training process. In this study, we use
the normalized initialization proposed by Xavier in Ref. [2], which consists in setting
the initial values of the biases to zero, while the weights are initialized randomly from
a normal distribution with mean zero and variance Var{w] = 2/(d+ ¢), where d is the
dimension of the input vector and c¢ is the number of outputs.

The network is trained using a training data set, which is a set of input vectors
(particle environments) corresponding to a known output (crystal structure). During
the training, the network is fed these input vectors while weights and biases are ad-
justed iteratively in order to minimize the difference between the desired output and
the actual output that the algorithm produces. To this end, we need to define an error
function (or cost function), which quantifies the difference between the desired output
and the output produced by the network, and which is minimized when these outputs
are equal.

In our case, we use the cross-entropy error function [1], which is defined as follows

C

E{ti} vk} = =)t} nyp, (4)

k=1



where {t}} and {y}} are the desired outputs and the outputs produced by the network,
respectively, for the nth input vector. This function is minimized iteratively during the
training process with a gradient descent algorithm [1]. With this algorithm, weights
and biases at every iteration are adjusted by moving a small distance in the direction
in which E decreases most rapidly, i.e. in the direction of —V F. By iterating this
process, we generate a sequence of weights, which at iteration ¢ + 1 are calculated as
follows

OF
t+1 ¢
Wy = Wi —

()

€ )
3wki n

where € is a positive number called learning rate, which controls the step size at
which the algorithm moves towards the minimum of the error function. Under suitable
conditions, the sequence of weights generated with Eq. 5 will eventually converge to
a point at which F is minimized. The choice of the value of € is critical, since if it is
too small the reduction in error will be very slow, while, if it is too large, divergent
oscillations can result. Moreover, since the learning rate is constant, when the gradients
get smaller, the weight updates will also be smaller. This may cause the algorithm
to become trapped in local minima of the error function. In order to speed up the
minimization process and avoid being trapped in these local minima, a momentum
term can be added to the gradient descent formula [1]:

t+1 oF

Wy = Wiy —

=+ :UAwltci ) (6)
—

momentum term

€
kai t

where (€ [0,1]) is called the momentum parameter and Aw!, is the variation of the
weight at iteration t. Inclusion of such a term effectively adds inertia to the motion
through weight space and smooths out eventual divergent oscillations, typically leading
to a significant improvement in the performance of gradient descent. The optimal
choice of the learning rate, ¢, and the momentum parameter, u, strongly depends on
the specific problem and is usually found by trial and error. In this work, we used
= 0.9 and € in the rage [0.05,0.5].

Another way to assist the network in learning is by doing weight updates with
multiple examples at the same time. This method is called batch-gradient descent and
is the one we use for minimizing the error function.

References

[1] C. M. Bishop, Neural networks for pattern recognition (Oxford University Press, Oxford,
UK, 1995).

[2] X. Glorot and Y. Bengio, in Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics (2010), pp. 249-256.



