Supporting Information with Micro-electrophoresis of silica rods using confocal microscopy

Henriëtte E. Bakker,* Thijs H. Besseling, Judith E. G. J. Wijnhoven, Peter H. Helfferich, Alfons van Blaaderen,* and Arnout Imhof*

Department of Physics, Utrecht University, Utrecht

E-mail: h.e.bakker1@uu.nl; a.vanblaaderen@uu.nl; a.imhof@uu.nl

^{*}To whom correspondence should be addressed

Supporting Figures

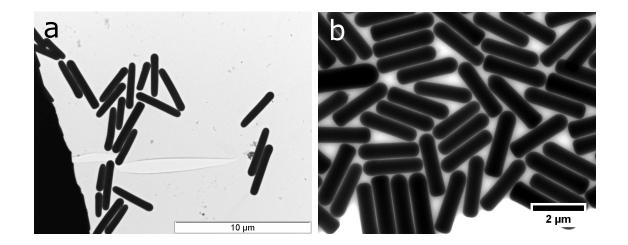


Figure S1: TEM images of particles used. (a) R2 rods, with $L = 3.6 \ \mu m$ ($\delta_L \simeq 18\%$), $D = 0.59 \ \mu m$ ($\delta_D \simeq 10\%$), L/D = 6.1 (b) SR29 rods, with $L = 2.3 \ \mu m (\delta_L \simeq 6\%)$, $D = 0.60 \ \mu m$ ($\delta_D \simeq 6.5\%$), L/D = 3.8.

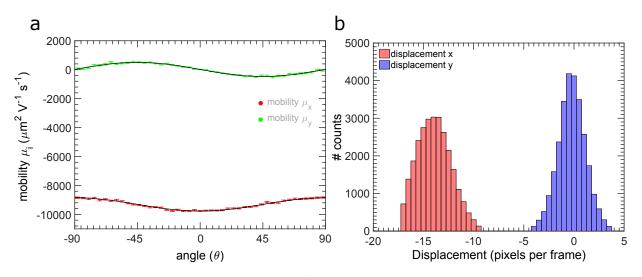


Figure S2: Electrophoresis measurement of R2 silica rods dispersed in DMSO-water, with 0.067 mM LiCl added, $\kappa a = 5.5$. (a) Orientation dependent mobility in *x*-direction (red symbols), parallel to electric field, and *y*-direction (green symbols), perpendicular to applied electric field. For clarity raw data is binned in 4° wide bins, the error bars indicate the standard error on the binned data points. The solid lines are a fit through the raw data using equation 10 (μ_x) and equation 11 (μ_y). (b) Histogram of the displacements of the rods in *x* and *y* direction. An anisotropy of $\mu_{\perp}/\mu_{\parallel} = 0.906 \pm 0.004$ was found and $\zeta = -70$ mV, E = 1.45 V mm⁻¹, $\Delta t = 0.377$ s. The error in $\mu_{\perp}/\mu_{\parallel}$ is the estimated standard error obtained from the covariance matrix of the fitted parameters.

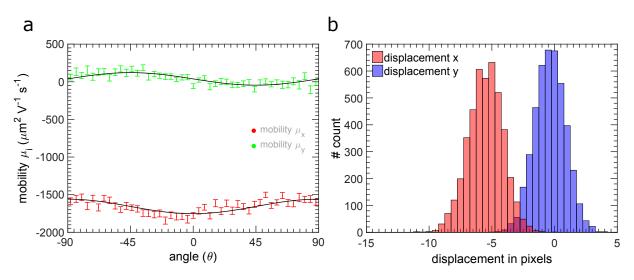


Figure S3: Electrophoresis measurement of SR29 silica rods dispersed in CHC, without salt added, $\kappa a = 0.04$. (a) Orientation dependent mobility in *x*-direction (red symbols), parallel to electric field, and *y*-direction (green symbols), perpendicular to applied electric field. For clarity raw data is binned in 4° wide bins, the error bars indicate the standard error on the binned data points. The solid lines are a fit through the raw data using equation 10 (μ_x) and equation 11 (μ_y). (b) Histogram of the displacements of the rods in *x* and *y* direction. An anisotropy in mobility of $\mu_{\perp}/\mu_{\parallel} = 0.89 \pm 0.02$ was found and $\zeta = -41$ mV, E = 3.1 V mm⁻¹, $\Delta t = 0.374$ s. The error in $\mu_{\perp}/\mu_{\parallel}$ is the estimated standard error obtained from the covariance matrix of the fitted parameters.

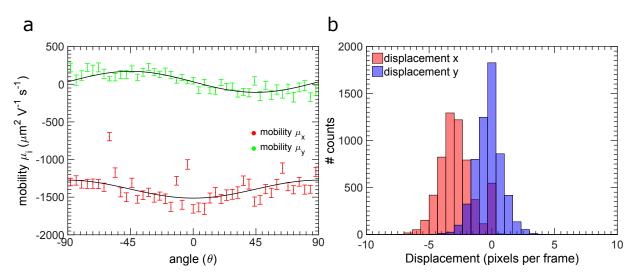


Figure S4: Electrophoresis measurement of SR29 silica rods dispersed in CHC, with TBAC added (~ 0.026 µM), $\kappa a = 0.14$. (a) Orientation dependent mobility in *x*-direction (red symbols), parallel to electric field, and *y*-direction (green symbols), perpendicular to applied electric field. For clarity raw data is binned in 4° wide bins, the error bars indicate the standard error on the binned data points. The solid lines are a fit through the raw data using equation 10 (μ_x) and equation 11 (μ_y). (b) Histogram of the displacements of the rods in *x* and *y* direction. An anisotropy in mobility of $\mu_{\perp}/\mu_{\parallel} = 0.86 \pm 0.05$ was found and $\zeta = -35 \text{ mV}$, $E = 3.35 \text{ V} \text{ mm}^{-1}$, $\Delta t = 0.191 \text{ s}$. The error in $\mu_{\perp}/\mu_{\parallel}$ is the estimated standard error obtained from the covariance matrix of the fitted parameters.

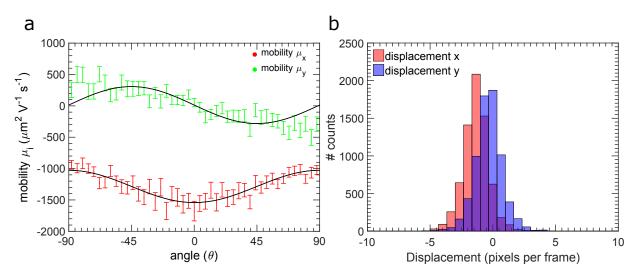


Figure S5: Electrophoresis measurement of SR29 silica rods dispersed in CHC, with TBAC added (~ 0.26 µM), $\kappa a = 0.92$. (a) Orientation dependent mobility in *x*-direction (red symbols), parallel to electric field, and *y*-direction (green symbols), perpendicular to applied electric field. For clarity raw data is binned in 4° wide bins, the error bars indicate the standard error on the binned data points. The solid lines are a fit through the raw data using equation 10 (μ_x) and equation 11 (μ_y). (b) Histogram of the displacements of the rods in *x* and *y* direction. An anisotropy in mobility of $\mu_{\perp}/\mu_{\parallel} = 0.67 \pm 0.03$ was found and $\zeta = -36 \text{ mV}$, $E = 3.7 \text{ V} \text{ mm}^{-1}$, $\Delta t = 0.069 \text{ s}$. The error in $\mu_{\perp}/\mu_{\parallel}$ is the estimated standard error obtained from the covariance matrix of the fitted parameters.

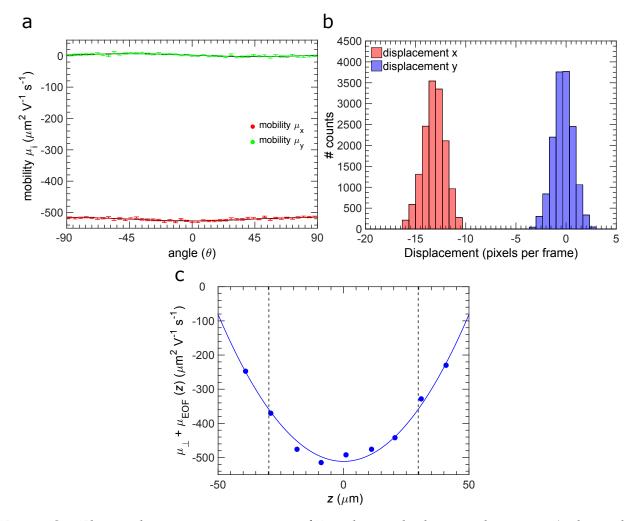


Figure S6: Electrophoresis measurement of R2 silica rods dispersed in 85 wt% glycerol in water, with LiCl added, $\kappa a = 24.5$. (a) Orientation dependent mobility in *x*-direction (red symbols), parallel to electric field, and *y*-direction (green symbols), perpendicular to applied electric field. For clarity raw data is binned in 4° wide bins, the error bars indicate the standard error on the binned data points. The solid lines are a fit through the raw data using equation 10 (μ_x) and equation 11 (μ_y). (b) Histogram of the displacements of the rods in *x* and *y* direction. (c) Measured electrophoretic mobility profile of rods aligned with the long axis perpendicular to the electric field $\mu_{\perp} + \mu_{EOF}$ (blue circles), the dashed vertical lines indicate the stationary planes, where we determine μ_{perp} . The center of the capillary is located at $z = 0 \,\mu m$. The solid blue line indicate a parabolicfit through the data. An anisotropy in mobility of $\mu_{\perp}/\mu_{\parallel} = 0.98 \pm 0.03$ was found and $\zeta = -68 \,\text{mV}, E = 3.125 \,\text{V}\,\text{mm}^{-1}, \Delta t = 0.863 \,\text{s}$. The error in $\mu_{\perp}/\mu_{\parallel}$ is the estimated standard error obtained from the covariance matrix of the fitted parameters.

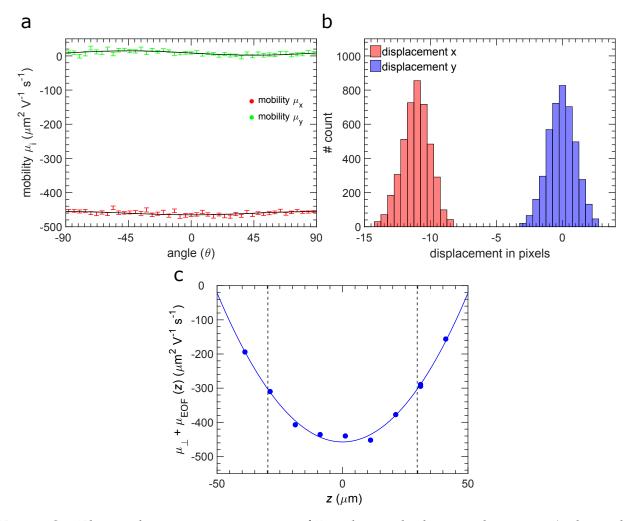


Figure S7: Electrophoresis measurement of R2 silica rods dispersed in 85 wt% glycerol in water, without salt added, $\kappa a = 9.2$. (a) Orientation dependent mobility in *x*-direction (red symbols), parallel to electric field, and *y*-direction (green symbols), perpendicular to applied electric field. For clarity raw data is binned in 4° wide bins, the error bars indicate the standard error on the binned data points. The solid lines are a fit through the raw data using equation 10 (μ_x) and equation 11 (μ_y). (b) Histogram of the displacements of the rods in *x* and *y* direction. (c) Measured electric field $\mu_{\perp} + \mu_{EOF}$ (blue circles), the dashed vertical lines indicate the stationary planes, where we determine μ_{perp} . The center of the capillary is located at $z = 0 \,\mu$ m. The solid blue line indicate a parabolic-fit through the data. An anisotropy in mobility of $\mu_{\perp}/\mu_{\parallel} = 0.97 \pm 0.02$ was found and $\zeta = -57 \,\text{mV}$, $E = 3 \,\text{V}\,\text{mm}^{-1}$, $\Delta t = 0.863 \,\text{s}$. The error in $\mu_{\perp}/\mu_{\parallel}$ is the estimated standard error obtained from the covariance matrix of the fitted parameters.

Supporting Tables

Table S1: Results on the accuracy of the estimated mobility μ for the particles, three different methods compared. Showing δ , the half-width of the 95% confidence interval for μ , so the 95% confidence interval is ($\mu - \delta, \mu + \delta$). The bottom section of the table depicts the average δ for the three different methods and the corresponding calculated estimated standard deviation σ . Data on the spheres are taken from Van der Linden *et al.*¹

R2 rods: Figure 2a	Field strength E	mobility μ	$\pm \delta$
measured perpendicular to gravity	$ m Vmm^{-1}$	$\mu m^2 V^{-1} s^{-1}$	$\mu m^2 V^{-1} s^{-1}$
<i>xyz</i> crosscorrelation	3	-241.0	4.4
<i>xyz</i> crosscorrelation	4	-242.7	2.4
<i>xyt</i> crosscorrelation	3	-245.9	4.4
<i>xyt</i> crosscorrelation	2	-232.6	7.6
<i>xyt</i> particle tracking	3	-253.7	4.7
<i>xyt</i> particle tracking	2	-248.0	19.8
R2 rods: Figure 2b	Field strength E	mobility μ	$\pm \delta$
measured parallel to gravity	$ m Vmm^{-1}$	$\mu m^2 V^{-1} s^{-1}$	$\mu m^2 V^{-1} s^{-1}$
<i>xyz</i> crosscorrelation	3	-242.6	5.7
<i>xyt</i> crosscorrelation	3	-255.4	2.6
<i>xyt</i> particle tracking	3	-271.1	6.9
970 nm silica spheres ¹	Field strength E	mobility µ	$\pm \delta$
measured perpendicular to gravity	$V \mathrm{mm}^{-1}$	$\mu m^2 V^{-1} s^{-1}$	$\mu m^2 V^{-1} s^{-1}$
<i>xyz</i> crosscorrelation	3	-291.6	1.9
<i>xyt</i> crosscorrelation	3	-288.8	39.6
<i>xyt</i> particle tracking	3	-288.8	39.2
970 nm silica spheres ¹	Field strength E	mobility µ	$\pm \delta$
measured parallel to gravity	$V \mathrm{mm}^{-1}$	$\mu m^2 V^{-1} s^{-1}$	$\mu m^2 V^{-1} s^{-1}$
<i>xyz</i> crosscorrelation	3	-293.0	3.7
<i>xyt</i> crosscorrelation	3	-289.0	5.9
<i>xyt</i> particle tracking	3	-284.2	11.0
930 nm silica spheres ¹	Field strength E	mobility µ	$\pm \delta$
measured perpendicular gravity	$V \mathrm{mm}^{-1}$	$\mu m^2 V^{-1} s^{-1}$	$\mu m^2 V^{-1} s^{-1}$
<i>xyz</i> crosscorrelation	3	-213.8	2.0
<i>xyz</i> crosscorrelation	5	-209.0	1.1
<i>xyt</i> crosscorrelation	3	-205.4	7.1
<i>xyt</i> particle tracking	3	-205.8	8.1
Measurement	average δ	σ	
Measurement method	average δ μ m ² V ⁻¹ s ⁻¹	σ μ m ² V ⁻¹ s ⁻¹	
method xyz crosscorrelation xyt crosscorrelation	$\mu m^2 V^{-1} s^{-1}$	$\mu m^2 V^{-1} s^{-1}$	
method xyz crosscorrelation	$\frac{\mu m^2 V^{-1} s^{-1}}{3.0}$	$\frac{\mu m^2 V^{-1} s^{-1}}{0.8}$	

References

(1) van der Linden, M. N.; Helfferich, K. M., P. H.; Wijnhoven, J. E. G. J.; Bakker, H. E.; van Blaaderen, A. in preparation.