Supporting Information for Adsorption Study of a Water Molecule on Vacancy-Defected Nonpolar CdS Surfaces

S.S. Gupta and M.A. van Huis *

E-mail: M.A.vanHuis@uu.nl

 $^{^{*}\}mathrm{To}$ whom correspondence should be addressed

1. Local DOS of S-atoms neighboring the V_{Cd} in bulk CdS

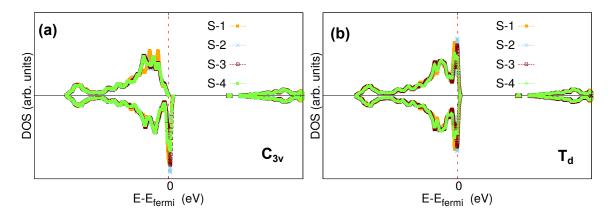


Figure S1: (a) and (b) are the spin-resolved LDOS of anions neighboring the V_{Cd} site in bulk CdS for the C_{3v} and T_d configurations, respectively. The atom S-1 in both the figures is the site along which the V_{Cd} -S bond is parallel to c-axis.

Figure S1 shows how the change in local geometry causes a change in the electronic states in the valence band, resulting into two types of magnetic states. From Fig.S1 (a), the difference in the electronic states of S-1 in comparison to other three S-sites validates the C_{3v} local point symmetry of the defect; whereas, for the T_d case in Fig.S1 (b), all the neighboring atoms have equivalent electronic structure.