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Serpentinization-fueled systems in the cool, hydrated forearc
mantle of subduction zones may provide an environment that
supports deep chemolithoautotrophic life. Here, we examine ser-
pentinite clasts expelled from mud volcanoes above the Izu–Bonin–
Mariana subduction zone forearc (Pacific Ocean) that contain com-
plex organic matter and nanosized Ni–Fe alloys. Using time-of-flight
secondary ion mass spectrometry and Raman spectroscopy, we de-
termined that the organic matter consists of a mixture of aliphatic
and aromatic compounds and functional groups such as amides.
Although an abiotic or subduction slab-derived fluid origin cannot
be excluded, the similarities between the molecular signatures iden-
tified in the clasts and those of bacteria-derived biopolymers from
other serpentinizing systems hint at the possibility of deepmicrobial
life within the forearc. To test this hypothesis, we coupled the cur-
rently known temperature limit for life, 122 °C, with a heat conduc-
tion model that predicts a potential depth limit for life within the
forearc at ∼10,000 m below the seafloor. This is deeper than the
122 °C isotherm in known oceanic serpentinizing regions and an
order of magnitude deeper than the downhole temperature at
the serpentinized Atlantis Massif oceanic core complex, Mid-
Atlantic Ridge. We suggest that the organic-rich serpentinites may
be indicators for microbial life deep within or below the mud vol-
cano. Thus, the hydrated forearc mantle may represent one of
Earth’s largest hidden microbial ecosystems. These types of pro-
tected ecosystems may have allowed the deep biosphere to thrive,
despite violent phases during Earth’s history such as the late heavy
bombardment and global mass extinctions.
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Microbial life may be sustained within the lithosphere by
mineral-mediated chemical reactions that provide usable en-

ergy resources (1). For example, redox-coupled reactions during
serpentinization, the formation of serpentine [(Mg,Fe)3Si2O5(OH)4]
through mantle olivine [(Mg,Fe)2SiO4] hydration, generate sub-
stantial amounts of H2 (2). Although serpentinization leads to ex-
treme pH conditions and limited nutrient and electron acceptor
availability (1), microgenomic studies of serpentinization-fueled hy-
drothermal deep-sea vents and continental fluid seeps show evi-
dence for microbial H2 and CH4 utilization (1, 3–5). Furthermore,
micrometer-sized organic matter has been detected in dredged
seafloor serpentinites (6) and in subseafloor mixing zones between
seawater and serpentinization-derived fluid (7). The former study
suggests that serpentinization-fueled microbial communities may use
solid electron acceptors, particularly ferric iron from magnetite
(Fe2O3) or other Fe(III)-bearing minerals, such as andradite garnets
[Ca3Fe(III)2Si3O12] (8). However, the architecture of potentially
habitable domains within Earth’s hydrated mantle rocks remains
largely unknown. Understanding the possible relationship between
mineral reactions and biological activity requires identification of in
situ signatures of the deep biosphere that allow us to plunge beneath
the Earth’s surface to assess its extent and how mineral reactions
may support or even form life. Serpentinite clasts recovered from the

South Chamorro mud volcano [13°47′N, 146°00′E; Ocean Drilling
Program (ODP) Leg 195] above the Izu–Bonin–Mariana (IBM)
subduction zone (9) (Fig. 1) can potentially provide just such a
window into the deep biosphere. The mud volcanoes source their
serpentine from >20-km depth via deep-reaching forearc faults,
where serpentinite gouges mix with slab-derived fluids before
buoyantly rising toward the seafloor (10).

IBM Subduction Zone and Serpentinite Mud Volcanism
The IBM subduction zone is a convergent plate margin ranging over
∼2,800 km from near Tokyo (Japan) to south of Guam (Mariana
Islands; Fig. 1). The IBM is located along the eastern margin of the
Philippine Sea Plate in the Western Pacific Ocean and formed due
to the subduction of the Pacific Plate under the Philippine Sea Plate
(11). The southern boundary is marked by the intersection of the
IBM trench with the Palau–Kyushu Ridge at 11°N. The northern
boundary is at 35°20′N close to southern Honshu, Japan (12). The
eastern boundary extends along a deep-sea trench and ranges in
depth from 3 km at the Ogasawara Plateau (trench entrance) to
∼11-km depth within the Challenger Deep—the deepest site in the
world. The Mariana forearc is pervasively faulted by tectonic activity
and only minor sediment accretion occurs along the margin (9, 13).
As the Pacific Plate descends, oceanic upper mantle, oceanic crust,
overlaying sediment, and water are transported into the forearc
mantle. Some of this material is transferred from the subducting slab
into the overlying mantle and oceanic plate, where large quanti-
ties of fluids rise through faults and fractures, carrying dissolved
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constituents from the subducting slab. These fluids can either vent as
cold springs onto the seafloor (14) or hydrate and serpentinize the
mantle wedge. The latter is supported by deep-sea drilling and
geophysical measurements showing that at least part of the Mariana
forearc mantle wedge is hydrated (15, 16). Within the deep-reaching
forearc faults, serpentinite fault gouges mix with the rising slab-
derived fluids. This mud–rock mixture buoyantly rises in conduits
along fault planes until it extrudes onto the seafloor to form various
kilometer-scale seamounts, that is, mud volcanoes, predominantly
composed of serpentinite, situated on the outer forearc of the
Mariana margin (e.g., ref. 17) (Fig. 1B). The mud volcanoes are
located in a trench-parallel zone ∼30–100 km arcward of the trench
axis and reach up to 50 km in diameter and over 2 km in height (17,
18). Unconsolidated flows of clay- to silt-sized serpentinite mud
enclose up to boulder-sized rock clasts of variably serpentinized
mantle peridotite and subordinately blueschist-facies fragments (18).
The samples studied here are recovered from drill cores taken from
the South Chamorro serpentine mud volcano (13°47′N, 146°00′E;
Fig. 1B) drilled during ODP Leg 195 (19). The seamount is a partly
collapsed, roughly conical structure ∼2-km high and ∼20-km wide
with active serpentine/blueschist mud volcanism. The subducting slab
beneath the serpentinite mud volcano is at ∼20-km depth (14, 18).

Serpentinite Clasts from the South Chamorro Mud Volcano
We studied 46 clasts recovered at depths of 14.80 (1200E-004-
02WR-130-140), 28.70 (1200E-007H-02WR-130-140), and 110.07 m
below seafloor (mbsf) (1200A-013R-02W-40877). All clasts show a

serpentinite mesh texture, where lizardite veins assemble as a mesh
framework encompassing central mesh cores (Fig. 2 A and B). Mesh
cores are typically composed of chrysotile, or occasionally a mixture
of lizardite and chrysotile. In some instances, lizardite fully over-
grows the mesh core region (SI Raman Spectroscopy). Time-of-flight
secondary ion mass spectrometry (ToF-SIMS) detected aliphatic ion
species and ionic units within the mesh cores from a clast retrieved
from 14.80 mbsf (Fig. 2 C–E). These ion clusters have previously
been used as indicators for the presence of the amino acids me-
thionine, C5H11NO2S, and threonine, C4H9NO3 (20), but could
arise from other organic molecules with a similar mass. Confocal
micro-Raman spectroscopy corroborates the ToF-SIMS findings
showing the presence of amide functional groups within the or-
ganic material as well as aliphatic and aromatic functional groups
(Fig. 2F). Hyperspectral Raman imaging (Methods and SI Raman
Spectroscopy) reveals the almost exclusive accumulation of such
structural components of organic compounds within the mesh
cores (Fig. 2G), in agreement with the ToF-SIMS results (Fig. 2
C–E). Clasts retrieved from greater depth within the ODP Leg
195 core (110.07 mbsf) display nearly identical Raman spectra
indicative of organic material (Fig. 2F). However, the additional
N(C–C) stretching mode is absent, likely reflecting varying degrees
of maturity.
Brucite and magnetite associated with lizardite within the clasts

constrains the serpentinization temperature to below 300 °C (21).
We also identified nanosized (50–350 nm) awaruite (Ni2–3Fe)
grains embedded within and in the vicinity of the mesh cores (Fig.
3 A–C; SI Opaque Mineral Grain Analysis). The ToF-SIMS mea-
surements further reveal elevated concentrations of various redox
active metal ions (Mn, Ni, Cr, Fe; Fig. 3D) encompassing the
organic-rich mesh cores shown in Fig. 2. Nanotomography, ac-
quired by focused ion beam scanning electron microscopy (FIB-
SEM), shows that the mesh cores are areas of elevated porosity
(Fig. 4A). Based on the segmented nanotomography volume
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Fig. 2. Organic matter within mesh-textured serpentinite clasts. (A and B)
Backscattered electron images of a clast cross-section from 28.70 mbsf
(1200E-007H-02WR-130-140). Dashed square in A depicts magnified area in
B. (C–E) ToF-SIMS maps of a core–rim region in a clast from 14.80 mbsf
(1200E-004-02WR-130-140) showing that the mesh core is enriched in (C2H3)

+,
(C2H5S)

+, and (C4H5O)+. (F) Raman spectra obtained from an area in B (dashed
rectangle) and a clast from 110.07 mbsf (1200A-013R-02W-40877) show or-
ganic molecules. (G) Hyperspectral Raman imaging (dashed rectangle in B)
reveals organic material in the mesh cores and no organics within the rims,
consistent with C–E.
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shown in Fig. 4A, the visible median pore size is ∼25 nm. How-
ever, considerably larger pore structures, exceeding several mi-
crometers, can be found in other mesh cores (Fig. 3A). Pore
formation is likely the result of several factors such as imperfect
packing of randomly orientated serpentine grains as typically ob-
served in serpentinite mesh cores (22), chrysotile nanopores (22,
23), prolonged exposure to upwelling subduction zone fluids in-
ducing mineral dissolution, and/or decompression cracking during
upward migration along faults or within the mud volcano conduit.
Mesh rims are typically characterized by fewer, micrometer-sized
pores (Fig. 4 B and C) as well as mesopores (i.e., 2–50 nm) in the
vicinity of mesh cores and around awaruite grain clusters (Fig.
3C). The anisotropic pore alignment (Fig. 4A) and complex pore
contrast (Fig. 4B) indicate that the mesh cores contain a partially
connected pore network. The intricate relationship between the
serpentine and organic matter (Fig. 2), however, suggests that the
detected pore sizes are substantially underestimated as the organic
material within the pores obscures the true pore size that is likely
orders of magnitude larger.
Although we cannot unambiguously assign the source of the

organic matter, several steps can be taken toward better con-
straining its potential origin. Upon contact with seawater, the
high pH (∼12.6) pore fluids with high alkalinity (100 mmol/kg)
within the muds found at the South Chamorro mud volcano
should trigger immediate carbonate precipitation (24). The ab-
sence of any carbonate within the clast-bearing mud layers from
28.70 and 110.07 mbsf thus suggests that, although the clasts
were erupted onto the seafloor, they were never exposed to
seawater and thus seawater-derived organic matter. Additionally,
organic matter was only identified in the internal regions of
the serpentinite clasts after cross-sectional opening of the clasts
(Fig. 2A). Therefore, it seems unlikely that the organic matter
was introduced during shipboard sampling, storage, or sample
preparation (Methods). Other potential sources would be organic
matter derived from subducted pelagic sediments or in situ
production within the forearc system via abiotic or biological
processes. Isotope studies suggest influx of fluids derived from a
mixture of subducted pelagic sediments and altered oceanic crust
into the forearc mantle facilitating serpentinization (25). How-
ever, their sources remain controversial (26–28), and the nature
of the organic material that is potentially carried with these fluids
is largely unknown. Abiotic routes have been demonstrated to
produce hydrocarbons and amino acids under hydrothermal
conditions akin to serpentinization (29), but it is unclear whether
these processes can produce the organic complexity observed in

the serpentinite clasts. Intriguingly, similar Raman spectra to
those reported here have been documented in other serpentin-
ites and correlate with spectra taken from bacteria (6) and the
presence of bacterial lipid biomarkers (7). Moreover, the ac-
quired Raman spectra (Fig. 2F) show bands in similar positions
to those attributed to functional modes typically found in
bacteria-derived biopolymers, including proteins, lipids, and
nucleic acids (30, 31), indicating that the organics may have a
biological source.

Depth Limit for Microbial Life Within Subduction Zone
Forearcs
To test whether microbial life is a feasible source of the organic
matter observed, we need to establish an estimate for the depth
limit for life within the Mariana forearc. As microbial organisms
can survive temperatures as high as 122 °C (32) and pressures into
the gigapascal range (33), we estimated the potential depth limit
for microbial life in this region using a one-dimensional steady-
state heat conduction model (34) (SI Estimation of the Maximum
Depth for the Current Temperature Limit for Life). In this calcula-
tion, heat is transferred in one direction without consideration of
minor advective heat flow through the ascending mud or heat
generated through the exothermic serpentinization reaction. Both
of these processes are expected to only play a minor role. Partic-
ularly heat through serpentinization has been shown to be nearly
negligible (35). Assuming no variations in temperature or heat
flow, the basic equation of conductive heat transfer theory is a
statement of conservation of energy and can be written as follows:

T =T0 +
q0
k

y−
ρH
2k

y2, [1]

where T and T0 are the temperature at depth and at the ocean
floor, y is the depth in meters below seafloor, q0 is the surface
heat flow (0.03 W·m−2), k is the thermal rock conductivity
(2.9 W·m−1·K−1), ρ is the density (2,900 kg·m−3, partially serpen-
tinized peridotite), and H is the current mean mantle heat gen-
eration rate due to radioactive decay (7.42 × 10−12 W·kg−1) (34).
At relatively shallow forearc depths, H will only play a minor
role. Rearranging the equation above to solve for y at a given
temperature (i.e., the known temperature limit for life at 122 °C)
results in the following:

y± =
qo ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T0 Hkρ− 2HkρT + qo2

p

Hρ
, [2]

where y+ is a nonphysical solution and thus disregarded. Surface
heat flow values of the Mariana forearc were taken from mea-
surements acquired during the Deep Sea Drilling Project Leg 60
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(36). Thermal conductivity values of serpentinites are based on
measurements taken during ODP 209 (37) and an average value
of 2.9 W·m−1·K−1 is used. Using these values, the maximum depth
for the 122 °C isotherm varies between ∼8,000 and 15,000 mbsf
(Fig. 5C). These depth estimates are based on surface heat flow
values of 0.03–0.04W·m−2 that agree with the observed depression
of isotherms in most forearc mantle wedges, even those of rela-
tively hot origin such as the Cascadia subduction zone (38, 39).
Moreover, our thermal calculations are in agreement with more
complex geodynamic models (40, 41), confirming that the 122 °C
isotherm is reached at ∼10,000 mbsf in forearcs. Hence, current
serpentinization-fueled microbial life within subduction zone fore-
arcs could be supported down to these depths and corresponding
pressure (∼0.34 GPa; Fig. 5). In contrast, habitable zones in the
vicinity of oceanic spreading centers are limited to the first hun-
dred meters to few kilometers below the seafloor. The exact loca-
tion of the 122 °C isotherm will likely vary in depth at and around
the spreading center as a result of the ridge architecture, heat flux,
and hydrothermal circulation (42, 43). The downhole temperature
within the International Ocean Drilling Program (IODP) Hole
U1309D at Atlantis Massif oceanic core complex (Mid-Atlantic
Ridge) places the 122 °C upper temperature limit for microbial
life at ∼1,000 mbsf (44). This is one order of magnitude less than
compared with our estimated limit of life in the Mariana subduc-
tion zone forearc. As the serpentinite mud originates directly
from the forearc mantle wedge (>20-km depth), the model indi-
cates the potential for a biosphere deep within the forearc. This
makes theMariana serpentinite clasts a natural laboratory of prime
interest when searching for habitable zones of life deep within the
lithosphere.

Sustaining Microbial Life Within Subduction Zone Forearcs
To sustain deep microbial life within a solid rock framework
requires energy resources that can either migrate or be produced

close to areas suitable for colonization. There is little to no
chemical benefit for microbes to interact directly with serpentine
minerals; thus, other life-supporting energy-generating pathways
need to be present. Microgenomic studies show evidence for
microbial H2 and CH4 utilization in serpentinizing systems with
known microbial colonization. Indeed, several studies (e.g., ref.
5) indicate that Archaea found up to 20 mbsf within the South
Chamorro mud volcano are fueled by deeply derived CH4-
enriched fluids. Experiments suggest that H2 produced during
low-temperature serpentinization (<200 °C) (45) could react
with a carbon source to form CH4 on catalytic mineral surfaces.
Investigations of naturally occurring abiogenic CH4 indicate that
abiotic hydrocarbon synthesis can potentially take place at tem-
peratures as low as ∼120 °C (46). However, there are contrasting
experimental results concerning the formation and synthesis ki-
netics of CH4 production at (very) low temperatures (47–49). In
hydrothermal experiments, awaruite has been identified as a
possible CH4 production catalyst (50). The awaruite grains ob-
served here are nanosized (Fig. 3C) and, therefore, have a high
surface area-to-volume ratio, which should enhance their cata-
lytic activity (51). Thus, nanosized alloys could have facilitated
CH4 production over geologically relevant timescales below the
upper temperature limit for life (122 °C). In near-surface ser-
pentinizing systems, hydrothermal fluids can mix with, for ex-
ample, seawater, resulting in disequilibria that may provide the
energy and substrates needed to support chemolithoautotrophic
life (7). In contrast, a slowly ascending serpentinite mud along
deep-reaching forearc faults may allow the system to remain
much closer to equilibrium, regulating the activities of H2, CH4,
CO2, and the Fe(II)/Fe(III) ratio in the solids and fluids limiting
energy sources. Nielsen et al. (25), however, documented the
occurrence of rodingite within the Mariana serpentinite mud
volcanoes derived from in situ alteration within the forearc
mantle. These rocks suggest hydrothermal interactions between

Fig. 5. Conceptual model of a deep biosphere environment within the IBM subduction zone forearc with limit for serpentinization-fueled microbial life
estimated at 10,000 mbsf based on the known upper temperature limit for life (122 °C) (34) and our heat conduction model. A shows a cross-sectional sketch
of the IBM forearc. Fluid release from the subducting plate results in partial forearc mantle serpentinization. Tectonic activity causes mud–rock mixture to rise
buoyantly in conduits along fault planes until it protrudes onto the seafloor to form massive serpentinite mud volcanoes (up to 50-km diameter and >2 km
above the surrounding seafloor). The sketch in B displays a conceptual serpentinization evolution model and the depth range for possible subsurface mi-
crobial colonization. C and D show results of the one-dimensional heat conduction model (SI Estimation of the Maximum Depth for the Current Temperature
Limit for Life), where C shows the maximum depth as a function of surface heat flow at constant thermal conductivity (partially serpentinized peridotite)
below which microbial life is theoretically possible. D displays the influence of surface heat flow and thermal conductivity, at an average depth of
12,000 mbsf, on the upper temperature limit for life.
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mafic and ultramafic units and together with simultaneous ser-
pentinization may be the source of fluids that can produce
disequilibrium environments.
An additional source of externally derived fluids could come

directly from the subducting slab and would thus be in disequi-
librium with the overriding forearc wedge. These fluids are most
likely different in composition compared with serpentinizing sys-
tems at midocean ridges or passive margins. Kelemen and Man-
ning (52) recently reevaluated the global carbon flux through
subduction zones and estimated that several million tons of carbon
per year could be released from subducting slabs into the over-
riding forearc wedge. Therefore, these fluids could provide the
carbon source needed for abiotic hydrocarbon synthesis or even
directly contribute organic molecules to the forearc and thus the
serpentinite clasts. If the organic matter reported here was
sourced from the subduction slab alone, we would expect the same
level of maturation and thus evidence for the same functional
groups. However, we observe the absence of specific Raman bands
[N(C–C)] in clasts from different depths (Fig. 2F). Various studies
have shown that subduction zone dehydration reactions across a
range of temperatures (200–600 °C) and pressures release nitro-
gen that is able to enter the overriding forearc directly or travel
with the expelled fluids upward through the subduction zone
channel (53–55). Moreover, recent thermodynamic calculations of
the nitrogen speciation in aqueous fluids under upper mantle
conditions suggest that the oxidized mantle wedge of subduction
zones favors nitrogen over ammonium (NH4

+), promoting out-
gassing rather than mineral trapping of nitrogen (56). Thus, the
actions of mud volcanoes as conduits for slab-derived fluids may
provide missing resources that would otherwise be limiting factors
for life in the forearc mantle or contribute nitrogen to the abio-
genic synthesis of more complex organic compounds. To rigor-
ously evaluate the energy sources for microbial life within the
subduction zone forearc, better constraints are needed for the
fluid influxes from the subduction zone and how these slab-
derived fluids interact with the forearc. Increasing sophisticated
fluid speciation models coupled to fluid–rock interaction simula-
tions and experiments at high pressures and temperatures (56, 57)
will provide critical insights into this problem.

Implications
Although the origin of the organic matter cannot be unequivocally
identified, we suggest, based on the similarities with molecular
signatures of bacteria-derived biopolymers, that the organic mat-
ter may represent remnants of microbial life within or even below
the mud volcanoes. Our simple model supports this hypothesis,
showing that the temperature window for life could extend deep
into the forearc. Hence, the identification of complex organic
matter recovered from depths of up to 110.07 mbsf may be evi-
dence for life in an oceanic serpentinite-hosted rock formation
from depths likely far exceeding the drill core depth, where
serpentinite-supported life has not yet been documented. Thus
far, evidence for microbial communities within the Mariana mud
volcanoes has only been indirectly detected in fluid samples no
deeper than 20 mbsf (5, 24). There are a variety of examples in-
dicating that microbial life can colonize shallow serpentinization-
fueled environments and use abiogenically produced H2 and CH4
(1, 3–5), but microbial life within the deep subsurface, for exam-
ple, deep within the Mariana forearc, with no connection to the
Earth’s surface, may have little resemblance with presently known
serpentinization-fueled ecosystems.
In any case, if life is present in the subduction zone forearc, it

has far-reaching implications as recent studies suggest that en-
vironments resembling those both within and below the Mariana
serpentinite mud volcanoes were already present on the early
Earth (58, 59). Thus, even if modern-type subduction was not
fully established in the Hadean and Archean, Mariana forearc-
like deep subsurface environments may have allowed early forms

of life to thrive, despite violent phases such as the so-called Late
Heavy Bombardment, a period of intensive meteorite bom-
bardment around 3.9 Ga (60). Even if only a small amount of the
global forearc mantle hosts microbial life, fluctuations in the
total subduction zone length (61) could have significant conse-
quences for the deep carbon budget. During these fluctuations,
fluid flow through subduction zone forearc regions, visible in the
form of serpentinite mud volcanism, are a crucial connection
between the deep biosphere and surface world, influencing
geochemical fluxes throughout Earth’s history. Only if we keep
exploring the windows into the deep subsurface, such as the
serpentinite clasts presented here, will we be able to establish
a full budget of Earth’s deep carbon and the potential for a
subsurface biosphere.

Methods
Sample Preparation. Drilling during ODP Leg 195 was executed with the support
of inorganic drilling mud (mainly sepiolite) and seawater. Immediately after the
core was recovered, a 6-in. length of whole-round core was cut and refrigerated.
Samples (diameter, 4.25 cm) were removed from the whole-round core using a
piston core sampler. These subcoreswere loaded into aManheim squeezer for the
analysis of physical properties (62). The applied axial pressure (6.3 MPa) under
drained conditions is insufficient to cause pore collapse within individual clasts.
From the “squeeze cakes,” 1/4 rounds were extracted for further onshore analysis
and stored in a nonsterile fashion. Serpentinite clasts, hundreds of micrometers to
a few millimeters in size, were extracted from these mud-pellets rounds by dis-
solution in distilled water and hand picking under a binocular microscope. Clasts
were mounted in 1-in. round sections using epoxy resin and polished to expose
the internal structures. The samples were not subjected to a vacuum impregna-
tion step to avoid the penetration of epoxy into open spaces. For Raman spec-
troscopic details of the epoxy, see SI Raman Spectroscopy. To avoid laboratory
contamination before microstructural and microchemical investigations, the
samples were treated with 5% sodium hypochlorite and repolished using a di-
amond paste and concentrated ethanol to expose fresh sample surfaces. Sub-
sequently, samples were again treated with 5% sodium hypochlorite.

ToF-SIMS. Element distribution maps were obtained using an ION-TOF ToF-
SIMS IV instrument at the Smithsonian Institution’s National Museum of
Natural History (Washington, DC). The 25-kV 69Ga+ primary ion column was
operated in a low-current bunched mode with a cycle time of 45 μs, allowing
for a mass resolution (full width half-maximum) of 4,600 at nominal mass
61 u (C2H5S)

+. To remove surface contamination, an area four times larger
than the analytical field of view was sputter-cleaned with a 3-keV Ar+ ion
beam before the actual measurement.

FIB-SEM and Transmission Electron Microscopy. Scanning electron microscopy
(SEM) investigations on Pt-coated specimens were carried out in a JEOL JCM-
6000. A FEI Nova Nanolab FIB-SEM was used to acquire nanotomography
volumes (voxel size, 2.5 × 2.5 × 10 nm) and to extract electron transparent
foils for transmission electron microscopy (TEM). FIB-SEM nanotomography
was carried out at an acceleration voltage of 2 kV and a beam current of
0.21 nA. The nanotomography volumes were visualized and analyzed using
Avizo 9. TEM investigations were executed in a FEI Tecnai 20F operated at
200 kV equipped with a high-angle annular dark field (HAADF) detector and
an energy-dispersive X-ray (EDX) spectroscopy system.

Raman Spectroscopy. Raman spectra of organic matter were collected using a
near-infrared (784/785 nm) laser of a Horiba Scientific LabRam HR800 and a
Kaiser HoloLab Series 5000. Hyperspectral Raman mapping of the organic
matter distribution was executed with a lateral resolution of ∼1 μm and a
spectral resolution of 2.3 cm−1. Analysis of the “fingerprinting” serpentine
OH bands was performed using a 532-nm laser of a WITec alpha 300R.
Further information about instrument settings and Raman spectra analysis is
found in SI Raman Spectroscopy.
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