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We combine a general formulation of microswimmer equations of motion with a numerical bead-
shell model to calculate the hydrodynamic interactions with the fluid, from which the swimming
speed, power, and efficiency are extracted. From this framework, a generalized Scallop theorem
emerges. The applicability to arbitrary shapes allows for the optimization of the efficiency with
respect to the swimmer geometry. We apply this scheme to “three-body swimmers” of various shapes
and find that the efficiency is characterized by the single-body friction coefficient in the long-arm
regime, while in the short-arm regime the minimal approachable distance becomes the determining
factor. Next, we apply this scheme to a biologically inspired set of swimmers that propel using a
rotating helical flagellum. Interestingly, we find two distinct optimal shapes, one of which is funda-
mentally different from the shapes observed in nature (e.g., bacteria). Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4976647]

I. INTRODUCTION

For many organisms, motility is of vital importance to
survive since it enables them to search for food or escape
from predators. Motility of microorganisms in a fluid takes
the form of swimming, where they can often orient them-
selves toward sources of nutrition, light, or the direction of
gravity.1,2 Nature displays a large variety of ways in which
microorganisms achieve locomotion. Some organisms pro-
pel using rotating helical shaped flagella, such as Escherichia
coli,3–5 use flexible flagella that beat in wave-like patterns,
such as sperm cells,6,7 or utilize a large number of cooper-
atively beating cilia on their surface to propel.1 Also, loco-
motion of synthetic swimmers or robots is a well-studied
subject, with possible applications in efficient drug delivery
in the body.8,9 Theoretically, many designs were proposed.
Purcell10 proved that a swimmer with a single internal degree
of freedom cannot achieve net propulsion and proposed the
next-simplest design: the “three-link swimmer,”11 which has
also been experimentally realized.12 Golestanian et al.13,14

proposed another simple swimmer with two degrees of free-
dom: the “three-bead swimmer,” which was studied and gen-
eralized extensively.15–20 Another strategy towards synthetic
microswimmers is to imitate biological swimmers, where
examples include swimmers with flagella that perform beat-
ing or rotating strokes21–25 or make use of helical structures for
propulsion.26–32

In many designs of artificial swimmers, the propulsion
is driven by an internally stored, and therefore limited, fuel
supply. Therefore, when optimizing the swimmer design, one
should take into account the swimming efficiency rather than
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the swimming velocity. The efficiency is defined as the ratio
between the propulsion power and the total dissipated power,
such that higher efficiencies are associated with swimmers
that move faster at the same fuel consumption. In this article,
we combine a general formulation of low-Reynolds number
swimmer equations of motion with a numerical method based
on a bead-shell model33,34 to numerically determine the grand
resistance tensor of many-component swimmers, from which
we extract the swimming velocity, power, and efficiency. The
advantage of this method is that it is applicable to any collection
of connected rigid objects, while it is also computationally rel-
atively cheap and allows for calculation of the shape-dependent
power and efficiency.

II. MODEL AND METHOD
A. Equations of motion

We consider a swimmer consisting of N parts of a fixed
shape, immersed in a quiescent incompressible Newtonian
bulk fluid of viscosity η, without any external body force. For
instance, swimmers composed of a rigid head and a rigid tail,
such as shown in Fig. 1, are described by N = 2. We let X

FIG. 1. E. coli-inspired swimmers (a)–(e) with a cell body of length L and
diameter D connected to a rigid flagellum of length ` and radius ρ of helical
shape with radius r and pitch p.
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denote the 6N-vector with components Xi = (Ri,Θi) denoting
the positions Ri and orientation angles Θi with respect to a
fixed reference frame of component i = 1, . . . , N and Ẋ the
corresponding (angular) velocities. The swimmer components
are connected by mechanical actuators or motors that impose
their relative co-ordinates xi ≡Xi−XN and velocities ẋi, where
we choose the N th part as a reference. This motion induces
a fluid flow u and pressure field p that give rise to a viscous
(friction) force field on the surface of the swimmer, which in
turn gives rise to a net displacement of the swimmer. In the
low Reynolds number regime, the hydrodynamics is described
by the Stokes equation1

−∇p + η∇2u = 0, ∇ · u = 0 , (1)

supplemented with no-slip boundary conditions on the surface
of each swimmer part and vanishing u at infinity. Due to the
linearity of the Stokes equation, one derives that the forces Fi

and torques T i acting on the ith swimmer part, denoted by the
6-vector Fi = (Fi, T i), relate linearly to the particle (angular)
velocities,35,36

Fi(X, Ẋ) = −η Rij(x) Ẋj, (2)

where the repeated indices imply summation over the swimmer
parts and the 6N × 6N tensor R denotes the grand resistance
tensor, which we will calculate below. Due to translational and
rotational invariance, this tensor depends only on the relative
coordinates x and furthermore on the shape of the different
swimmer parts. In the absence of external forces (such as
gravity or externally applied magnetic fields), the total force∑N

i=1 Fi and torque
∑N

i=1 T i + ri × Fi on this swimmer must
vanish. Once R(x) is known, the 6 constraints of the force-free
condition, together with the 6N � 6 constraints ẋi imposed by
the motors, provide enough constraints to solve Eq. (2) for Ẋj,
which for the cases of interest below gives37

ẊN = −
*.
,

N∑
k,l=1

Rkl
+/
-

−1

*
,

N∑
i=1

Rij ẋj
+
-
≡ Vj(x) · ẋj (3)

from which F follows from inserting this expression into
Eq. (2). The 6N-vector field V expresses the linear coupling of
the motor-imposed velocities ẋj to the motion of our arbitrar-
ily chosen reference part. To calculate the displacement ∆ per
stroke, it is sufficient to consider the displacement ∫

T
0 dt ẊN of

component N, since the internal coordinates x vary cyclically
during a stroke of period T. Hence,

∆ =

∫ T

0
dt ẋj ·Vj(x(t)) =

∮
∂Σ

dxj ·Vj =

∫
Σ

d(dxj ·Vj), (4)

where ∂Σ is a closed path enclosing an area Σ in the (6N
� 6)-dimensional internal coordinate space that describes the
swimming stroke. Note that Σ cannot be defined if there is only
a single degree of freedom that is rotational and describes a
2π rotation; in this case, the displacement should be calculated
by the contour integral. In the second equality, we used ẋjdt
= dxj and in the last equality we used the (generalized) Stokes
theorem, where the operator d on the right hand side denotes
the so-called exterior derivative: d(dxj ·Vj)= ∂kVj dxk ∧dxj.38

Eq. (4) is a general formulation of the Scallop theorem:10 a
reciprocal stroke is one that does not enclose any area, such that

the displacement vanishes. We define the average swimming
velocity

〈U〉 = ∆/T (5)

and a generalized swimming or Lighthill efficiency14,39,40 as

ηL =
〈Ẋi〉〈Rij〉〈Ẋj〉

〈ẊiRijẊj〉
=
〈U〉 · η〈<〉 · 〈U〉

〈P〉
, (6)

where 〈·〉 denotes the time average over one period, and

〈P〉 =
−1
T

∫ T

0
dt Fi · Ẋi, (7)

〈<〉 ≡
1
T

∫ T

0
dt

N∑
i,j=1

Rij (8)

denote the time-averaged dissipated power and the effective
6 × 6 rigid body resistance tensor, respectively.

B. Numerical methods

For a swimmer of a certain geometry, we determine the
grand resistance tensor R(x) using a bead-shell model.34 In
the conventional implementation of this model, the surface of
a rigid particle (N = 1) is covered by M� 1 spheres, whose
radius a is small compared to the size R of the particle. These
spheres are distributed (quasi-)homogeneously on the surface,
which we achieve here using a simulated-annealing method.
In this method, the spheres are given a repulsive interaction
and are stochastically moved on the surface according to the
Metropolis algorithm. The temperature that appears in the
Boltzmann factors dictates the acceptance and rejection and
is slowly lowered to find a near-homogeneous distribution of
the spheres on the surface.

When given a finite common velocity V , the induced
flow field causes pair interactions between the little spheres,
given by the Rotne-Prager mobility tensor41,42 µRP

kl as
V =Vk =

∑M
l=1 µ

RP
kl Fl, with Vk and Fk the velocity of, and

force on, the sphere k, respectively, and

µRP
kl =

1
8πηrkl

*
,


1 +
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r2
kl



rklrkl

r2
kl

+
-

, (9)

with rkl = rk − rl. The forces on each sphere can then be calcu-
lated by 3M × 3M matrix inversion, Fk =

∑M
l=1 ((µRP)

−1
)klV l,

from which the total force F and torque T on the rigid object
follow as the sum of the individual forces and torques around a
chosen reference point rO (i.e., center of mass): F=

∑M
k=1 Fk

and T =
∑M

k=1 Fk × (rk − rO). In this work, the matrix inver-
sion is done using an LU factorization routine of the LAPACK
package.43 Subsequently, we determine the resistance tensor
R for an increasing number (typically 1000–3000) of spheres
of decreasing size, while keeping the total bead surface 4πa2M
constant and equal to the surface area of the body of interest.
Next, a quadratic function of a is fitted to the results for each
component of R, after which the limit M→∞ is determined
by the intersect at a/R = 0. By taking the limit with this specific
surface coverage, we retrieve the boundary integral formula-
tion of the Stokes equation,44,45 guaranteeing accurate results
for R. Note that the contribution of the torques on the individ-
ual beads to the total torque can be neglected, as it vanishes
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in the limit a→ 0. Therefore, we only consider the forces Fk

and not the torques Tk on the beads, from which we achieve
a decrease in computation time (3M × 3M versus 6M × 6M
matrix inversion).

In Fig. 2 we show a few illustrative results of this extrap-
olation. First, we show the results for the translational friction
coefficient ξt (red dots) and rotational friction coefficient ξr

(red circles) for a sphere of radius R, as obtained from the
bead-shell computation as a function of relative bead size a/R.
These quantities express the translational and rotational fric-
tion of a rigid body, in units of 6πηR and 8πηR3, respectively,
which are the analytically known results for a sphere of radius
R. Precise definitions of ξt and ξr are given in Sec. III A. The
quadratic fits are indicated by the dashed (translation) and full
(rotation) red line in Fig. 2, while the best-fit values of the
coefficients are also indicated. The small-a limit can be com-
pared to the exact theoretical value of 1 and therefore serves
as an estimate of the accuracy of this model. We observe that
the error is of order 10�4. The green curves in Fig. 2 show
ξt and ξr for the tetrahedron of volume 4π

3 R3, with numerical
values on the right vertical axis, where the full triangles and
dashed line correspond to translation and the open triangles
and full line correspond to rotation. Again, the values of the fit
coefficients can be seen in the legend, the small-a limit being
the result of interest.

We extend this bead-shell model to allow for non-rigid
objects with internal degrees of freedom (N > 1). The swim-
mer surface is again covered with a large number of spheres M,
distributed over the N different components. Next, we impose
a non-zero relative velocity between the components and solve
for the hydrodynamic force on each of the components, con-
structing the full tensor R in this way. In principle, one needs
to do this calculation for a (large) number of internal con-
figurations x along the path ∂Σ in the 6N � 6 dimensional
configuration space in order to evaluate Eq. (4) numerically.

The main advantage of this bead-shell method is that
it allows for accurate results with relatively short computa-
tional time: the calculation of the 6× 6 resistance tensor of a
sphere with a relative precision of order 10�4 with respect

FIG. 2. Friction coefficients ξt , ξt as a function of the relative bead size a/R,
for translational (red dots) and rotation(red circles) of a sphere, and the cor-
responding quadratic fits (dashed and full red line, respectively). The values
of the fit coefficients are shown in the legend, and the final calculated friction
coefficient is determined by setting a/R = 0. In green we show similar results
for the tetrahedron.

to the exact results takes only a few minutes on a desktop
computer. The calculation time for any other rigid body is
similar. In contrast, a full three-dimensional finite element
calculation would take considerably longer when the shape
under consideration does not allow for simplifications due to
symmetry. Specifically for determining the (swimmer) resis-
tance tensor, the bead-shell method benefits from the fact that
for a single surface-covering configuration of spheres, after
the many-sphere Rotne-Prager mobility tensor is LU factor-
ized, each component of the resistance tensor is calculated
very quickly by iterating over the different degrees of freedom
(rigid body or internal). For a finite-element method, on the
other hand, this would amount to calculating the full veloc-
ity profile for a different set of boundary conditions which is
therefore computationally much more costly.

III. RESULTS
A. Rigid bodies: Platonic solids

For N = 1,R is the resistance tensor of a single rigid body.
As a proof of the concept, we use the bead-shell model to
calculate R for each of the five platonic solids, which possess
sufficient symmetry for the resistance tensor to be isotropic,
characterized by the two dimensionless friction coefficients ξt

and ξr for translation and rotation, defined by

ηR = (6πηRξt)13 ⊕ (8πηR3ξ3
r )13, (10)

where 13 is the three-dimensional unit matrix and R
= (3V/4π)1/3 is the effective radius in terms of the particle
volume V, such that ξt = ξr = 1 for a sphere. In Table I we list
ξt and ξr and observe that ξr > ξt > 1 for all the five platonic
solids, the more so for bodies with fewer faces, with enhanced
friction compared to the sphere of equal volume exceeding
20% for the tetrahedron. Since ξr > ξt , it is impossible to assign
a single hydrodynamic radius to any of the platonic solids, and
the translational radius ξtR is always smaller than the rotational
radius ξrR.

Interestingly, it turns out that the friction coefficients can
qualitatively, and to some extent quantitatively, be estimated
by another length scale that is defined by

√
A/4π, where A

is the surface area of the solid body of interest. Specifically,
we consider this length scale in units of the volume-defined
unit length R= (3V/4π)1/3 in the bottom row of Table I and

TABLE I. Number of faces nf and relative translation and rotation friction
coefficients, ξt and ξr respectively, of the five platonic solids (tetrahedron,
cube, octahedron, dodecahedron, and icosahedron) and the sphere. In the bot-
tom row, the ratio between the surface-area-defined length scale

√
A/4π and

the volume-defined unit of length R = (3V/4π)1/3 is shown.

nf 4 6 8 12 20 . . .

ξt 1.214 1.086 1.072 1.027 1.019 1.000
ξr 1.278 1.102 1.089 1.030 1.022 1.000√

A/4πR2 1.221 1.114 1.087 1.048 1.032 1.000
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observe that it agrees approximately with the calculated
friction coefficients

ξi ≈

√
A

4πR2
=

A1/2

61/3π1/6V1/3
≈ 0.455 A1/2/V1/3, (11)

where ξi denotes either ξt or ξr . Alternatively, one can for-
mulate this estimate in terms of the hydrodynamic radius as
Rh = ξtR≈

√
A/4π. Obviously, this relation is not exact and

does not distinguish between the translational and rotational
friction, but it may serve as an estimate for the experimental
purposes where both the volume and surface area of a parti-
cle are known. One should also note that this estimate breaks
down for particles with resistance tensors that are strongly
anisotropic. For example, the prolate ellipsoids of large aspect
ratio, where the rotational friction factors in different directions
differ over orders of magnitude can therefore not be accurately
estimated by Eq. (11), which is easily checked with the known
exact friction coefficients.46

B. Three-body swimmers

One of the simplest swimmers that can be described by
our new method is composed of N = 3 rigid bodies connected
by two arms of time-dependent lengths xi(t) driven by a motor.
Earlier works on this three-body swimmer mainly consider a
three-sphere setup, with hydrodynamics modeled by the Oseen
tensor that is only accurate in the regime of long arms and
small spheres. In this work, by making use of a bead-shell
model to determine the resistance tensor, we do not suffer
from these restrictions. In Fig. 3(a), the swimmer design and
stroke cycle I-II-III-IV-I are illustrated for a swimmer consist-
ing of three tetrahedra. The stroke is performed by periodically
and non-reciprocally changing xi(t) between a maximum D
and a minimum D − ε , causing the swimmer to go back and
forth, resulting in a displacement ∆ after one period. The posi-
tions X i(t) of the individual parts and the instantaneous power
P(t) during the stroke are illustrated in Fig. 3(b). In Fig. 3(c)
we show a stroke represented as a closed path ∂Σ in the

two-dimensional internal coordinate space (x1, x2), where the
density plot represents d(Vjdxj)= (∂1V2 − ∂2V1)dx1dx2 (see
Eq. (4)). This function is strictly positive and decreases with
x1 and x2, implying that the displacement per stroke decreases
with D (for fixed ε) and increases with ε . As the platonic solids
do not possess the full spherical geometry, there are obvi-
ously many possible (relative) orientations of the three bodies.
To avoid ambiguity, we only show the results for three-body
swimmers with one and the same fixed orientation of all three
components with respect to the axes that connect the three bod-
ies, as indicated by the legend in Fig. 4. We point out that the
results do not differ significantly for other cases. Animations
of three-body swimmers can be found in the supplementary
material.

In Fig. 4 we show the displacement (a) and efficiency
(b) of three-body swimmers consisting of each of the platonic
solids as a function of the maximum arm length D for fixed
small amplitude ε = R, compared to a three-sphere swimmer
performing the identical stroke. We observe from Fig. 4(a) that
in the regime of long arms, the displacement ratio ∆/∆sphere

tends to the friction coefficient ξt , indicated by the horizon-
tal dashed lines. This result is consistent with that of Earl
et al.,15 who showed for three-sphere swimmers that ∆ ∝ R
for the Oseen interaction in the long arm regime, if we take
ξtR≡Rh as the hydrodynamic radius. In Ref. 15 it is also shown
that the instantaneous velocity of sphere-swimmers is inde-
pendent of R for large D, which for general swimmers also
holds true as can be deduced from Eq. (3). Furthermore, to
leading order in R/D, the individual forces F i and the aver-
age rigid body friction tensor 〈<〉 are both proportional to
Rh, such that P ∝ Rh, and hence we find that ηL ∝ ξ

2
t for large

D, which is precisely what is observed in Fig. 4(b). Conclud-
ing, we observe that particles with larger friction constitute
more efficient swimmers, which is interesting given the fact
that the opposite holds for externally driven (e.g., sediment-
ing) particles, where particles that experience more friction
move slower. The black dashed lines in Figs. 4(a) and 4(b)
show a comparison with the Oseen interaction model used by
Najafi and Golestanian,13,14 where we observe an agreement in

FIG. 3. Fourfold stroke of a three tetrahedron-swimmer
(a). Positions X i(t) of the individual parts and instanta-
neous power P(t) during a stroke (b). Stroke path ∂Σ
represented in x-space, with a density plot of d(Vidxi)
(c).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-018708
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-018708
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FIG. 4. Ratio of displacement (a) and efficiency (b) of the three-platonic solid
swimmer compared to the three-sphere swimmer as a function of maximum
arm length D, for amplitude ε/R= 1. The horizontal dashed lines indicate
ξt (a) and ξ2

t (b). Efficiency ηL of a stroke with D − ε close to contact, as
a function of D, for a square stroke I-II-III-IV-I (full lines) and a triangular
stroke II-III-IV-II (dashed lines) (c). The inset shows a zoom for small D/R.
The legend of (c) illustrates the relative orientations of the three bodies and
the fixed minimal separation.

the long-arm regime but a qualitatively erroneous trend in the
short-arm regime. This discrepancy is explained by the break-
down of the Oseen approximation at small distances, while
the bead-shell model extrapolates to an infinitesimal bead size,
such that it holds up to distances comparable to the used bead
sizes, which are two orders of magnitude smaller than the rigid
bodies under consideration.

We explore the maximum efficiency by considering
strokes from D − ε close to contact to a maximum separa-
tion D in Fig. 4(c). Here, we define the minimum gap as
being 20% of the center-to-center distance at which the bodies
start to overlap. This nearest distance depends on the shape
and orientation, as, for instance, two cubes oriented with the
faces adjacent can approach each other more closely than two
tetrahedra in this particular orientation. This minimal separa-
tion is illustrated in the legend of Fig. 4(c). Indeed, for this
maximum-amplitude stroke, we observe that the most effi-
cient swimmer is the three-cube swimmer, which can attain
the smallest contact distance.

Note that in this analysis, we focussed on the effect of
the body shape on the efficiency for a given prescribed stroke,
rather than optimizing the stroke itself as is done, for instance,
in Ref. 47, where the instantaneous power is kept constant
during the stroke. We find that our results for a reparametriza-
tion of the stroke that fixes the power rather than the internal
velocity differ negligibly from the results presented in Fig. 4.
Since the resistance tensor depends on the internal configura-
tion of the swimmer, even when keeping the internal velocities
constant in time, the forces and therefore the instantaneous
power will vary with time. On the other hand, demanding
that the power is constant in time will require adjusting the
internal velocities in a nonlinear fashion in time. We also
point out that a representation of the displacement and effi-
ciency in terms of the amplitude ε rather than the maximum
arm length D (in both cases keeping the minimum arm length
D− ε fixed to near contact) gives rise to qualitatively identical
results.

From the color map of Fig. 3(c), we observe that the upper
triangle I-II-IV-I contributes less to the displacement than the
lower triangle II-III-IV-II, while we observe from Fig. 3(b)

that the (average) power in all four steps is comparable. There-
fore, we propose the new stroke II-III-IV-II, where both motors
operate at the same time while crossing the diagonal IV-II. The
D-dependence of the efficiency of such a stroke, with D − ε
close to contact, is shown by the dashed lines in Fig. 4(c).
We see that the square stroke is yet favorable for small ampli-
tudes, while for larger D the triangular stroke becomes much
more efficient by a factor ∼2, with a crossover regime around
D/R≈ 20. Also for this triangular stroke, the differences in effi-
ciency for the various shapes are determined by the smallest
contact distance, as can be seen in the inset of Fig. 3(c).

C. Helical flagellum swimmers

Our numerical method is not limited to relatively simple
designs such as the three-body swimmer. We turn the dis-
cussion to a swimmer that propels itself by a rotating helical
flagellum, not unlike E. coli bacteria.3–5

We assume this swimmer to consist of two parts, an axially
symmetric cell body and a helical flagellum, that can rotate
with respect to each other. The helical flagellum is attached to
the surface of the cell body in such a way that the center of this
attachment lies in the origin of the defined coordinate system
{x̂, ŷ, ẑ}. The centerline of the helical shape of contour length
` is parametrized for s ∈ (0, `) by

h(s) = r f (s) (cos(ks) x̂ + sin(ks) ŷ) + αs ẑ, (12)

with α2 + r2k2 = 1, for pitch parameter α, radius r, and wave
number k. Here, the function f (s)= s2/(s2 + (c`)2) ensures the
perpendicular attachment to the surface of the cell body for
c > 0 and asymptotes rapidly to unity for small enough c. We
find our results to be fairly independent of c in a range of
0.02 < c < 0.1 and therefore we have fixed c = 0.05. In this
parameterization, the helical pitch is expressed as p= 2πα/k.
Given the centerline parametrization (12), the surface of the
helical flagellum is parametrized as

H(s, φ) = h(s) + ρ (cos(φ) n(s) + sin(φ) m(s)), (13)

where n(s), m(s) are mutually orthogonal unit vectors that are
also orthogonal to dh(s)/ds. The volume V of the axially sym-
metric cell body is kept constant for every aspect ratio L/D,
and a fixed unit length is defined by R= (3V/4π)1/3 as before.
The swimmer and its relevant shape parameters are shown in
Fig. 1, and animations of the motion of this type of swimmer
can be found in the supplementary material. The relative rota-
tion rate θ̇ between the cell body and the flagellum is imposed
by a motor, whereas the other 6 degrees of freedom of this
swimmer are those of a rigid body.

Analytical48 studies of such helical flagella swimmers
usually ignore the rotational asymmetry of the helix around
the long axis, and hence its transverse translation and rotation,
such that the number of degrees of freedom of the swimmer
reduces to three. Moreover, the hydrodynamic interactions
between the cell body and the flagellum (the off-diagonal
blocks Ri,j) are usually ignored.1,2,49,50 In this study, we do
not ignore these features, which turn out to play an important
role in certain shape regimes. We do assume the flagellum to
be rigid and to retain its shape during the swimming motion,
a safe assumption for artificial swimmers which also seems
to hold for several biological flagellum swimmers such as

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-018708
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E. coli.3–5 Note that this implies that we neglect any effects of
elasticity of the helical filament. We point out that there are also
hydrodynamic simulation studies that capture the dynamics of
the E. coli bacterium accurately.57–59

In order to compare velocities and rotation rates of real E.
Coli with those predicted by our model, we insert typical shape
parameters as reported in Ref. 3, D= 0.88 µm, L = 2.25 µm,
r = 0.20 µm, p= 2.2 µm, ` = 7.1 µm, and ρ= 0.035 µm, cor-
responding to the swimmer shown in Fig. 1(a). Note that E.
coli typically have around 10 flagella2,3 that bundle and syn-
chronize during swimming, which we effectively describe as
a single flagellum of approximately three times the filament
radius, which is 0.012 µm≈ ρ/3. Also, the reported motor
rotation rate equals θ̇/2π = 154 Hz.

We find a swimming speed of v = 17 µm s−1 and body
and flagellum rotation rates of 23 Hz and 131 Hz, respec-
tively, which should be compared to the observed values
v = 29 ± 6 µms−1, 23 ± 8 Hz, and 131 ± 31 Hz.3 Hence, our
method produces fairly accurate results for the complex swim-
ming motion of E. coli. Note that, since the flagellum is not
completely rotationally symmetric, the swimming gait shows a
periodic transversal “wobble” motion, as can be seen in the ani-
mations. However, this “wobble” is smaller than that reported
by Ref. 3, which might be explained by the fact that we con-
sider a single flagellum at the polar end of the cell body, rather
than several ones attached at several positions.

The numerical values of (some of the) resistance ten-
sor components of this swimmer can be compared to the
measurements of Chattopadhyay et al.,50 where the com-
ponents of a three-dimensional resistance tensor were mea-
sured for a population of E. coli. We calculated the coeffi-
cients for the translation of the flagellum along, and rotation
around, the cell body symmetry axis to be 0.78× 10−8 N s m−1

and 0.99× 10−21 N s m, respectively, while for the cell body
these are 1.0× 10−8 N s m−1 and 5.5× 10−21 N s m. The
off-diagonal component that describes the rotation-translation
coupling of the flagellum (again, around the symmetry axis)
is 3.6× 10−16 N s. We find these values to agree qualitatively

with the results in Ref. 50 but quantitatively different by 30% to
a factor of 2. These discrepancies can be related to the fact that
the measurements in Ref. 50 are done for a population of E. coli
with a spread in shape parameters, as for instance, the reported
cell body length L varies between 2 and 5 µm. Indeed, the fact
that the measured cell body translational resistance coefficient
is higher while the rotational coefficient is lower indicates that
the average cell body aspect ratio of this population was higher
than that in our calculation.46

The calculated Lighthill efficiency of this swimmer is
ηL = 0.0064. A calculation of the efficiency is also done in
Ref. 50, although a different definition is used where only the
cell body translation resistance appears in the numerator of
Eq. (6). When we correct for this, we find our efficiency to be
fourfold lower, which can be traced back directly to the dif-
ference in the resistance tensor. Lastly, the power consumed
by our swimmer is 7.8× 10−16 W, which also agrees qualita-
tively with Ref. 50 (where it is 4.3× 10−16 W), but one should
keep in mind that this quantity also depends on the motor
frequency.

An interesting question, which is of direct relevance for
constructing artificial swimmers, is how the efficiency depends
on the geometry. One could argue that evolution has selected
the most efficient shapes, but also that the efficiency is good
enough for the survival of E. coli and that other shapes could be
(much) more efficient. Of course, as bacteria use only a fraction
of their available energy for swimming,51 other factors than the
swimming efficiency could determine the evolutionary fitness.
Also, as E. coli perform a run-and-tumble motion,3 the ability
to tumble efficiently could also be important. Yet, from the
perspective of constructing swimmers with limited internal
fuel supply, the geometry-dependent efficiency is an important
design feature.

In Fig. 5 we show the dependence of ηL on the flagel-
lum radius r and the pitch parameter α, for three different cell
body aspect ratios L/D = 2.5 (a), 1 (b), and, 0.5 (c). The flagel-
lum length and radius are fixed at `/R= 11 and ρ/R= 0.051,
corresponding to the values for E. coli.

FIG. 5. Efficiency ηL as a function of
helical radius r and pitch parameter α
(see Fig. 1 and text) for body aspect ratio
L/D = 2.5 (a), L/D = 1.0 (b), and L/D
= 0.5 (c). Panel (d) shows the efficiency
for L/D = 1 calculated with the sim-
plified 3× 3 resistance tensor, featur-
ing only a single local maximum. The
swimmers shown in the four corners of
each panel further illustrate the shapes
covered in the r-α plane.
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For an E. coli-like cell body with L/D = 2.5, we find in
Fig. 5(a) a single maximum ηL = 0.0089 at r/R = 0.68 and
α = 0.80. This shape is shown in Fig. 1(b). Surprisingly, for
smaller L/D a second maximum develops, as can be seen
for a spherical body with L/D = 1 in Fig. 5(b), with a local
optimum of ηL = 0.0085 for a “wagging tail”-like shape at
r/R = 3.1 and α = 0.75 (Fig. 1(d)), next to the global opti-
mum of ηL = 0.0089 for r/R= 0.68, α = 0.75 (Fig. 1(c)). In
Fig. 5(d), we show ηL for L/D = 1, but now calculated with
a simplified 3× 3 resistance tensor, where the off-diagonal
hydrodynamic interactions between cell body and flagellum
are ignored. We observe (from comparison with Fig. 5(b)) that
although this approximation produces fairly accurate results in
the small-r regime, it is unable to reproduce the second local
maximum of the “wagging tail”-type swimmer at larger r. This
is in agreement with the observation from the animations that
this shape shows a large transversal motion (or “wobble”),
indicating that these transversal degrees of freedom are not
negligible. To calculate the efficiency of even smaller L/D,
we consider a cell body of an oblate ellipsoid of L/D = 0.5.
In Fig. 5(c), we observe that the “wagging tail” local maxi-
mum becomes a global maximum, with ηL = 0.0084 for r/R
= 2.7 and α = 0.68 as shown in Fig. 1(e). Not shown here
are results for L/D > 2.5, which we find to be qualitatively
similar to the L/D = 2.5 case. Neither shown here are results
obtained by varying ρ and ` and fixing the radius and pitch at
the values for E. coli (r/R = 0.33 and α = 0.87). Here, we find
that the efficiency increases monotonically with decreasing ρ,
while as a function of ` it shows a broad maximum around
`/R= 11. We point out that by varying only the two shape
parameters r and α in Fig. 5, we found maxima that are not
(global) maxima in the full five-dimensional shape parameter
space. A five-dimensional optimization, which may be mate-
rial for future work, could result in obtaining either a single
global maximum or several local maxima.

We find the optimal radius and pitch parameter of
Figs. 5(a) and 5(b) to be in agreement with the results of ear-
lier optimization studies on similarly (not identically) shaped
swimmers using resistive force theory52 or boundary element
methods.53,54 However, none of these studies report the second
optimal “wagging tail”-type flagellum, while it does resemble
the optimal (externally driven) swimmer calculated in Ref. 29,
which also exhibits only a single maximum. Interestingly, this
type of flagellated swimmer is (to our knowledge) not observed
in nature.

IV. SUMMARY AND OUTLOOK

In summary, in this work we have set up a method
that combines a theoretical framework for the equations of
motion of an N-component swimmer, with numerical bead-
shell model calculations. This method allows for the calcula-
tion of the displacement and efficiency of any general-shaped
swimmer, with relatively short computation time. First we
employed this method to calculate the friction coefficients for
the platonic solids and found that the hydrodynamic radius
may be estimated by

√
A/4π.

When applied to the class of three-body swimmers, we
found that for long arms the displacement and efficiency are

determined by the single-body friction coefficient, while max-
imally efficient strokes are performed when the bodies can
approach as closely as possible. Next, we have applied this
scheme to a swimmer with a helical flagellum, modelled after
an E. Coli bacterium. The calculated swimming velocity and
body/flagellum rotation rates are in fairly good agreement with
the measured values for E. Coli. Also, the swimming efficiency
shows an intricate dependency on the swimmer geometry.
Within this class of swimmers, we distinguish two types of
efficient swimming flagella: a helical flagellum that resembles
the flagellum of the E. Coli bacterium and a stretched “wag-
ging tail”-type flagellum, where this second optimal shape is
not reported in earlier optimization studies.

Our theoretical description can straightforwardly be
extended to a single swimmer close to a wall by exploiting
analogies to image charge effects.55,56 This is a natural next
step given the fact that many experiments are conducted in a
quasi two-dimensional geometry. Hydrodynamic pair interac-
tions, and perhaps even many-body interactions, can also be
accounted for, albeit at the expense of numerical effort. Work
in these directions is being pursued.

SUPPLEMENTARY MATERIAL

See supplementary material for animations of the swim-
mers considered in this text.
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