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We develop a lattice-based Monte Carlo simulation method for charged mixtures capable of treating
dielectric heterogeneities. Using this method, we study oil-water mixtures containing an antagonistic salt,
with hydrophilic cations and hydrophobic anions. Our simulations reveal several phases with a spatially
modulated solvent composition, in which the ions partition between water-rich and water-poor regions
according to their affinity. In addition to the recently observed lamellar phase, we find tubular and droplet
phases, reminiscent of those found in block copolymers and surfactant systems. Interestingly, these
structures stem from ion-mediated interactions, which allows for tuning of the phase behavior via the
concentrations, the ionic properties, and the temperature.
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A wide variety of complex fluids displays modulated
phases in equilibrium, in which spatial variations of the
density or composition often originate from competing
interactions [1].Well-known examples include block copol-
ymers, surfactants, room-temperature ionic liquids, and
colloidal suspensions. The microscopic structural features
of these soft materials are crucial in applications such as
catalysis, drug delivery, lithography, and energy conversion
[2–6]. Typically, the characteristic size of spatial patterns is
determined from the direct pair interactions between the
molecular constituents, e.g., the interactions between the
polar and apolar moieties in surfactants, or multiple-length-
scale pair potentials in colloids [7,8]. Hence, the emergent
structure is usually explained by the interaction mismatch
between the different moieties or length scales, respectively,
leading to the characteristic size of the patterns being limited
to that of the (macro)molecules.
Here, we explore a different route to microphase sepa-

ration via a multicomponent system with short-range and
Coulombic interactions, whereby the competing inter-
actions are indirect, and modulated phases with a character-
istic size much larger than that of the molecular components
can be realized. In the last decade, the formation of
equilibriummicroheterogeneities [9–13] and ordered multi-
lamellar structures [14,15]was demonstrated in a quaternary
molecular system composed of a near-critical binary solvent
mixture containing a small amount of antagonistic salt, in
which the cations and anions are preferentially solvated by a
different solvent species. Here, microphase separation of the
uncharged solvent components, accompanied by the parti-
tioning of the charged species between domains, was
confirmed by scattering experiments, showing microheter-
ogeneities of a few nanometers [13–15]. It has been argued
that the resulting modulated phases originate from the

competition between the short-range solvation of ions and
long-range electrostatic forces [13].
Theoretically, antagonistic salt solutions have been

treated on the mean-field level [16–22], with only a few
examples in three dimensions. Although the theory has been
successful in describing some of the experimental observa-
tions, it neglects fluctuations, which could be important in a
near-critical system, and it considers the ionic species to be
pointlike, thereby neglecting excluded volume interactions.
Molecular simulations of such a multicomponent system
are notoriously slow due to the long-range character of
the Coulomb interaction and the different length scales
involved. Moreover, collective effects stemming from the
dielectric inhomogeneity of the medium [23] make equili-
bration of the system difficult, since image charge effects
have to be taken into account if one uses techniques such as
the Ewald sum [24]. Efficient three-dimensional simulations
are therefore needed to understand the structure and phase
ordering of antagonistic salt solutions.
In this Letter, we explore an Ising-like lattice model of

quaternary mixtures as a canonical example using a new,
highly efficient, Monte Carlo method which includes the
complex electrostatics in polar mixtures. As in previous
works [16–19], we find microphase separation in a wide
range of solvent compositions, temperatures, and salt con-
centrations. However, our simulations uncover also an
unexpectedly rich phase behavior in three dimensions, with
several types of spatially modulated phases, one of them
being the lamellar phase observed by Sadakane et al [14,15].
These phases are analogous to those well known for block
copolymers and surfactant systems. In our quaternary
charged mixture, however, we encounter unique features
in the spatial patterns, since the composition heterogeneities
stem from indirect interactions, mediated by the charged
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species, which serve as a handle by which the structure can
be controlled.
We consider a simple cubic lattice of N ¼ L3 sites of

linear size Λ, our unit of length. Each lattice site i can be
occupied by only one of four species μ ¼ A;B;þ;−, see
Fig. 1 for a schematic illustration of the lattice. A and B are
the neutral solvent species, while the ionic species, þ and
−, carry a charge �e, respectively, where e is the
elementary charge. The incompressibility and hard-core
constraint is satisfied by the occupancy operator oiμ, which
takes a value 1 if site i is occupied by species μ and 0
otherwise, such that

P
μoiμ ¼ 1 for ∀i. The dimensionless

Hamiltonian of our system H=ϵ, where ϵ is a suitable
energy scale, reads

H
ϵ
¼ −

1

2

X
hi;ji

X
μ;ν

Jμνoiμojν

þ Γ
4

X
hi;ji

X
μ

1

ε�μ
D2

ijðoiμ þ ojμÞ: ð1Þ

The first term in Eq. (1) is the short-range interaction
between sites, where hi; ji denotes summation over all
nearest-neighbor pairs and the interaction parameters Jμν
measure the magnitude of the interaction between species μ
and ν. The second term in Eq. (1) is the electrostatic energy,
according to the method first introduced by Maggs et al.
[25–30], in which the (dimensionless) electric displacement
field, Dij, is discretized on the links between neighboring
sites i and j, see Fig. 1. In Eq. (1), ε�μ is the reduced
permittivity of species μ, ε�μ ¼ εμ=εA, with εμ and εA the
pure-species permittivities. This choice of permittivity
units leads to the electrostatic coupling parameter Γ ¼
e2=ðεAΛϵÞ in Eq. (1). In this form, the parameter Γ can be
tuned (see below) to correctly capture electrostatic inter-
actions on the lattice.

The advantage of Maggs’s method is twofold; it circum-
vents the time-consuming calculations of the long-ranged
Coulombic interactions in charged systems, typically based
on Ewald summation methods [24], and in contrast to
conventional methods, it can be straightforwardly applied
to systems with a spatially varying and fluctuating dielec-
tric permittivity (or polarization). Maggs’s method uses
constrained updates of an auxiliary electric displacement
field instead of the electric potential, which allows the local
coevolution of the field and the charged particles. Details of
the Monte Carlo simulation of Eq. (1) and its derivation are
given in the Supplemental Material [31], with our imple-
mentation of the method also made available [34].
We choose our simulation parameters to mimic a mixture

of D2O (compound B) and 3-methylpyridine (3MP, com-
pound A) with a dissolved NaBPh4 salt, as in Ref. [10].
To drive bulk phase separation in the salt-free mixture
of D2O-3MP, we set the nearest-neighbor interactions
between the solvents to JAA ¼ JAB ¼ 0 and JBB ¼ 1.
The reduced permittivity of solvent B is set to ε�B ¼ 3,
which is smaller than ε�B ≈ 7 in experiments. This
choice increases the acceptance of Monte Carlo moves.
Nevertheless, our results remain similar for larger values
of ε�B [31].
We first calculate the phase diagram of the polar

solvent mixture, without salt, using the transition-matrix
Monte Carlo (TMMC) method in the grand-canonical
ensemble and using histogram reweighting [35]. If one also
ignores electrostatic effects by settingΓ ¼ 0, Eq. (1) reduces
to the simple lattice-gas (LG) model, which exhibits a
demixing transition below a critical temperature TLG

C ≈
1.128ϵ=kB [36]. The dashed line in Fig. 2 shows the coex-
istence curve for this LGmodel in the xB-τ plane,where xB is
the fraction of B lattice sites and τ ¼ ðT − TLG

C Þ=TLG
C is the

reduced temperature with respect to the LG critical temper-
ature. The solid line in Fig. 2 shows the coexistence curve for
the polar mixture with Γ ¼ 12 (see below), where only the
B-poor side, xB ≤ 0.5, of the fairly symmetric phase dia-
gram is shown. The demixed region of the polar mixture is
broader than that of the simple LG. This is expected, since
the introduction of electrostatics generates an effective
(attractive) Keesom potential between same solvent sites
[26], increasing the tendency for demixing.
Next, we consider the full quaternary mixture by adding

to the AB mixture a small amount of an antagonistic salt.
From symmetry of the Hamiltonian in Eq. (1), an inter-
action strength J�B ¼ 1 between the ions and solvent B
would correspond to no preferential solvation. To make the
salt antagonistic, we set JBþ ¼ 6 and JB− ¼ −4. Hence, the
positive ions are preferentially solvated by the B solvent,
whereas the negative ions prefer the A solvent. All other
ion-solvent and ion-ion interactions are set to 0. The above
choice results in a Gibbs transfer energy (per ion at infinite
dilution) from a neat B solvent to a neat A solvent, g�,
which is antisymmetric, gþ ¼ −g− ≈ 15kBTLG

C , purely due

FIG. 1. Two-dimensional schematic representation of the lattice
model for a binary AB solvent mixture with a dissolved salt
consisting of þ and − monovalent ions. The grid represents the
lattice sites, and the different colors represent the different species
in the system, as shown in the legend. The arrows represent the
discretized electric field (not to actual scale and direction).
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to short-range dispersion interactions. This is a large value,
but not unreasonable for highly antagonistic salts [19]. Our
Hamiltonian implicitly includes also the electrostatic
contribution to the solvation of ions due to their Born
self-energy [37]. However, this contribution, which leads to
a preferential solvation of both ions in the high-permittivity
B solvent, is small in our system compared to the
contribution stemming from the short-range interactions.
The dielectric constants of the ions are set to ε�þ ¼ ε�− ¼ 1.

Hence, an effective Keesom potential is also generated
between the ions and solvent B, but since ε�B is small,
this only slightly increases the overall preference towards
solvent B. The size of a lattice site is set to Λ ¼ 10 Å, equal
to the hydrated size of the biggest component in the
experimental system, the BPh−4 ion. Setting the lattice
Bjerrum length λB ¼ ΓϵΛ=ð4πkBTε�AÞ to 8.4 Å, close to
the experimental value, leads to Γ ¼ 12 at TLG

C .
The quaternary mixture is simulated in the canonical

ensemble, using a lattice of size L ¼ 64 and a fixed number
of N− ¼ Nþ ¼ 4096 ions, corresponding to an occupancy
of c0 ¼ ðN− þ NþÞ=L3≊0.03 or a molar concentration of
52 mM, close to the lower limit of 60 mM, at which an
ordered-lamellar phase was experimentally observed [15].
All simulations with varying xB and τ are started from a
random configuration of a well-mixed solution.
Instead of a two-phase state, simulations of the salty

mixture inside the AB coexistence region reveal stable
modulated mesophases with remarkably diverse structures.
We visualize these structures in Fig. 3, by plotting

isosurfaces of the local composition xB ¼ 0.5. Each panel
in Fig. 3 corresponds to a point in the xB − τ plane, as
indicated in Fig. 2. In Fig. 3(a), we show a lamellar phase
(L) of alternating composition regions, similar to the
experimental observations [14,15]. The same configuration
is obtained from simulations that are started from a two-
phase state with the salt-free coexistence compositions.
Figure 3(b) shows a perforated lamellar (PL) phase, and
Fig. 3(c) a tubular lamellar (TL) phase, with lamella
showing a tubelike structure, where one could argue that
the TL phase is actually an extreme case of the PL phase. In
Figs. 3(d)–3(e), we also identify an ordered tubular (T)
phase, where the minority solvent is organized in parallel
tubes, and a tubular disordered (TD) phase, where the tubes
are disordered. Lastly, a disordered droplet (Dr) phase of the
minority component is found for low-enough compositions
xB, see Fig. 3(f). A partial structure factor SBBðkÞ [38] of all
the different microphases obtained from simulations [31] is
presented in Fig. 4(b) and in [31], revealing (i) multiple
peaks not only for L but also for PL and even TL phases,
and (ii) a single broad peak for the T, TD, and Dr phases.
Therefore, it is possible that some of these phases could
have gone unnoticed in scattering experiments [9–13].

FIG. 2. Phase diagram of a polar AB solvent mixture with
dielectric contrast ε�B ¼ εB=εA ¼ 3 (solid line), and of the lattice-
gas model (Γ ¼ 0, dashed curve), in the reduced temperature (τ)
and composition (xB) plane. For a salt concentration of 52 mM,
the colored squares denote various mesophases found in simu-
lations, with the color coding in the legend corresponding to the
different mesophase types: lamellar (L), perforated lamellar (PL),
tubular lamellar (TL), tubular (T), tubular disordered (TD), and
droplet (Dr) phases. The letter markers correspond to the panels
of Fig. 3. The regions of the mesophase boundaries serve only as
a guide to the eye. The color gradient represents the uncertainty in
the maximum temperature at which these mesophases can be
detected.

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Representation of isocomposition surfaces xB ¼ 0.5.
The orange (green) surface represents the side of the B (A)
[minority (majority)] phase. We show representative state points,
marked in Fig. 2, of (a) lamellar, (b) perforated lamellar,
(c) tubular lamellar, (d) tubular, (e) tubular disordered, and
(f) droplet phases.
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A summary of all the state points we investigated and
their classification is shown in Fig. 2, which shows that
droplets form for xB ≲ 0.25 and lamellar and tubular
structures for xB ≳ 0.25. For temperatures τ ≲ −0.2, we
find lamellarlike phases, of which only the perforated
lamellar phase exists at higher temperatures. The system
transitions from the lamellar phase to the tubular-lamellar
phase by reducing the fraction of B solvent, which dictates
more compact B-rich domains. For higher temperatures,
τ ≳ 0.1, the system becomes disordered, exhibiting a
bicontinuous structure [31] at first, and eventually becom-
ing fully mixed at high-enough τ. We stress that all the
mesophases were also stable at smaller values of J�B, and
in some cases with ε�B ¼ 1. Moreover, for ε�B ¼ 9, which is
close to the experimental value, we found additional phases
such as a gyroid phase and hexagonally ordered droplet and
tubular phases [31]. By contrast, in three-dimensional
simulations of a mean-field model [19], only bicontinuous
and tubelike domains have been found until now.
The detailed structure of the lamellar phase is presented in

Fig. 4(a), where we plot profiles of B solvent and ion
compositions, corresponding to the state of Fig. 3(a), as a
function of the lattice position s in the lamella-normal
direction. The figure shows that the composition in the

middle of the lamella (dashed lines) approaches a salt-free
solvent mixture as the ions almost completely partition
between the lamellae, with almost all the positive (negative)
ions in the B-rich (A-rich) regions. The ion concentration is,
however, higher at the lamella interfaces, where a back-to-
back electric double layer is formed. The slight asymmetry
between the ion profile in each phase stems from the effective
Keesom potential that increases the affinity for solvation of
both ionic species in the B solvent.
We propose a simplified mean-field model for the

lamellar phase formation, since this phase is relatively
easy to analyze and can be related to experimental findings.
The structure revealed by Fig. 4(a) suggests that, as a first
approximation, we may assume that (i) both ionic species
and solvents partition completely between the lamellae,
(ii) the species densities depend weakly on position within
the lamellae, and (iii) the (dimensionless) surface tension,
γ, at the lamellar interfaces is not too much affected by the
presence of ions [19]. We therefore treat the system as
oppositely charged slabs with alternating composition.
The resulting free-energy difference between the lamellar
and demixed two-phase states ΔFlam is given in the
Supplemental Material [31]. Minimization of ΔFlam with
respect to the lamella thickness δ yields

δ ¼
�

192γ

Γc20½xB=ε�B þ ð1 − xBÞ�
�

1=3
∝ c−2=30 : ð2Þ

We test Eq. (2) by plotting the simulated thickness of the
lamellae against c−2=30 in Fig. 4(c). There is a good
quantitative agreement between Eq. (2) and the simulation
results, although in the simulation δ changes stepwise, with
increasingly larger steps, due to the finite size of the
simulation box. Similar to the results of Ref. [15], the
lamellae thickness δ increases with decreasing salt con-
centration. Our model highlights the important interplay
between electrostatics and surface tension in forming
lamellae. However, the model is far too simplistic for real
systems where the ion partitioning is partial and, more
importantly, molecular size asymmetry plays a significant
role in structure formation [12,15].
Putting δ from Eq. (2) back into the free energy ΔFlam,

we can estimate when the lamellar phase is favored
(ΔFlam < 0) over demixed two-phase states. In Fig. 4(d)
we plot ΔFlam for several JBþ values as a function of the
salt concentration. The lamellar phase is favored only
above a critical salt concentration for large enough JBþ,
such that ΔFlam ¼ 0 exists, which is also confirmed by
simulations. The critical concentration decreases with
increasing JBþ, since this favors ion partitioning and,
hence, lamellae formation.
In conclusion, we performed three-dimensional Monte-

Carlo simulations of binary oil-water mixtures containing
antagonistic salts, which point towards the possible exist-
ence of more mesophases than observed thus far. Since

(a) (b)

(c) (d)

FIG. 4. (a) B-solvent composition xB and the normalized ion
densities, corresponding to the lamella in Fig. 3(a), as a function
of the lattice position s in the lamellae-normal direction. Dashed
lines are the coexistence compositions of the salt-free solvent.
(b) Radially averaged partial structure factor, SBBðkÞ, as a
function of the dimensionless wave vector, k, corresponding to
the microphases in Fig. 3, as indicated by the curve labels.
(c) Lamella thickness δ (symbols) as a function of c−2=30 for
τ ¼ −0.2 and xB ≈ 0.5. In simulations, δ is calculated from
δ ¼ 2π=kmax, where kmax is the position of the second-largest
peak in SBBðkÞ, see panel (b). The dashed line corresponds to
Eq. (2), where the surface tension was calculated using TMMC
simulations of a salt-free mixture [35]. (d) Excess lamellar free
energy ΔFlam=ðϵNÞ as a function of c0 at τ ¼ −0.3 and xB ≈ 0.5,
and for several JBþ values, with JB− ¼ 2 − JBþ.
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only the lamellar phase has been characterized until now,
we hope that our findings will motivate further experi-
mental work to explore the D2O-3MP-NaBPh4 system and
others in more depth. In near-critical conditions, however,
mesophase fluctuations become large and therefore larger
simulation boxes are needed to determine critical behavior.
Work to significantly increase the simulated domain by
parallelizing our code is underway. We hope that this will
enable us to shed light on the critical features of the
mesophases in the future. Although our lattice model was
constructed specifically for a charged quaternary mixture, it
could straightforwardly be extended to study mesoscale
phenomena in other condensed matter systems with
Coulombic interactions, for example, the challenging
problem of polymeric complex coacervation [39].
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