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We use computer simulations to study the phase behaviour for hard, right rhombic prisms as a function
of the angle of their rhombic face (the “slant” angle). More specifically, using a combination of event-
driven molecular dynamics simulations, Monte Carlo simulations, and free-energy calculations, we
determine and characterize the equilibrium phases formed by these particles for various slant angles
and densities. Surprisingly, we find that the equilibrium crystal structure for a large range of slant
angles and densities is the simple cubic crystal—despite the fact that the particles do not have cubic
symmetry. Moreover, we find that the equilibrium vacancy concentration in this simple cubic phase
is extremely high and depends only on the packing fraction and not the particle shape. At higher
densities, a rhombic crystal appears as the equilibrium phase. We summarize the phase behaviour of
this system by drawing a phase diagram in the slant angle-packing fraction plane. Published by AIP
Publishing. https://doi.org/10.1063/1.5001483

I. INTRODUCTION

Recent years have seen a number of studies on the phase
behaviour of hard, colloidal particles with different shapes.
One of the reasons for the interest in these systems can be seen
clearly when comparing virtually any two of these papers:
shape matters. Depending on the shape of particles, it is possi-
ble to form a vast array of different phases (see, e.g., Refs. 1–7)
and small differences in the shape of the constituent particles
can evidently mean large differences in their collective phase
behaviour (see, e.g., Refs. 5–7). As advances in colloidal syn-
thesis provide an ever-increasing control over the shape of the
particles, knowledge of the shape-dependent phase behaviour
becomes increasingly valuable.

An interesting example of how shape can lead to novel
and unexpected phase behaviour was reported for hard cubes
in Ref. 8. Here, it was shown that the particle shape can
have an extremely intriguing effect on the concentration and
realization of defects in colloidal systems. It is well known
that at finite temperatures, all equilibrium solid phases pos-
sess point defects such as vacancies and interstitials. These
defects arise as the free energy of the solid phase is always
minimized by a small but nonzero fraction of such defects.
In typical one-component crystals, the equilibrium fraction of
such defects is extremely low—generally on the order of one
vacancy for every ten thousand or more particles. As a result,
most studies of phase behaviour can (and do) safely ignore such
defects.

A stunning exception to this rule was demonstrated for
hard cubes on a simple cubic lattice.8 Specifically, it was
shown that near melting, the simple cubic crystal formed by
hard cubes was riddled with vacancies, reaching equilibrium
vacancy concentrations of up to 6%—three orders of magni-
tude larger than for a typical ionic, metallic, or colloidal crystal.
Interestingly, the vacancies manifest as extended point defects:

each vacancy is shared over a string of lattice sites along one
of the three main crystal directions.8

In light of previous works which showed that phase
behaviour can be highly sensitive to the exact shape of par-
ticles,5–7 one might reasonably ask how robust these defects
are to the particle shape. As a first step in this direction, Ganta-
para et al.7 examined the effect of truncating the cubes on the
phase behaviour of this system. For this system, where the par-
ticles retain their cubic symmetry, they found that the defects
were largely robust to such a particle deformation. Here we
attack this question from a different angle, modify the parti-
cles in a continuous way that removes their cubic symmetry,
and explore how this modification affects both their stable crys-
talline phases as well as the way in which defects manifest in
this system.

Specifically, we examine the phase behaviour of hard,
right rhombic prisms as shown in Fig. 1, with “slant” angles
between 66◦ and 90◦. As these particles are simply formed by
shearing a simple cube, we expected a priori that the crystalline
phase in this system would also be a sheared simple cubic crys-
tal phase. Here we show that this assumption is incorrect and
that the crystal formed near melting is instead a simple cubic
phase—again filled with vacancies. Finally, we will show that
the equilibrium vacancy concentration for this sheared cubic
system is, amazingly, essentially independent of the degree of
slanting of the particles.

II. METHODS
A. Model system

We examine the phase behaviour of hard, right rhombic
prisms as shown in Fig. 1. The shape of these particles is com-
pletely described by the edge length σ and a single angle θ
which corresponds to the angle of the rhombus. This angle
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FIG. 1. A slanted cube with edge length σ and slant angle θ.

we refer to as the “slant angle.” For simplicity and to empha-
size the similarity to cubes, we will refer to these particles as
“slanted cubes.” Note that a slant angle of θ = 90◦ corresponds
to a cube and forms the upper limit of θ. The particles inter-
act only via hard-core interactions: the interaction potential is
zero for all configurations without overlaps and infinity when
overlaps are present.

We focus on slant angles that are likely to result in crystals
which can form extended defects and thus consider only angles
between θ = 66◦ and θ = 90◦. This avoids angles close to
θ = 60◦, which would accommodate a wide range of crystal
structures incorporating layers with rhombic tilings, (such as
those described in Ref. 9).

B. Free-energy calculations

In order to draw the phase diagram of this system, we use
a combination of event-driven molecular dynamics (EDMD)
simulations, Monte Carlo (MC) simulations, and free-energy
calculations. In the simulations, we use the separating axis
theorem10 to detect overlaps and predict collisions in the
systems. For the EDMD simulations, we follow the method
described in Refs. 8 and 11. In the following, we describe the
free-energy calculations we use to study the fluid and crystal
phases of the slanted cubes.

1. Fluid free energy

In order to calculate the free energy of the fluid phase for
a given slant angle θ, we first measure the equation of state
of the fluid. Specifically, we perform MC simulations in the
NpT ensemble, i.e., at constant number of particles N, constant
pressure p, and constant temperature T, and measure the aver-
age number density ρ in each simulation. Alternatively, we
performed EDMD simulations at constant N, volume V, and
temperature T, and measured the pressure. The resulting rela-
tion p(ρ) between the pressure and the density can be used to
calculate the Helmholtz free energy F of the fluid via thermo-
dynamic integration, using the ideal gas as a reference state.12

Specifically,

βF(ρ)
N

=
βFid(ρ)

N
+ β

∫ ρ

0
dρ′

p(ρ′) − ρ′/β

ρ′2
, (1)

where β = 1/kBT with kB Boltzmann’s constant and Fid(ρ)
the ideal-gas free energy.

2. Crystal free energies

As we will see, there are two kinds of crystal lattices
formed in these systems: (i) simple cubic crystal lattices with
“extended” vacancies, as found in Ref. 8, and (ii) all other
crystal phases whose vacancy concentrations are expected to
be low as they only occur at high densities. We follow slightly
different routes to determine the free energy of these two types
of crystals, which we describe in the following.

a. Simple cubic lattices. In Ref. 8, we determined the free
energy of the simple cubic lattices of hard cubes, correspond-
ing to a slant angle of 90◦, for a wide range of densities
and vacancy concentrations. In order to take advantage of
these “known” free energies for the simple cubic lattice with
vacancies, we perform, similar to Ref. 13, thermodynamic
integration over the shape of the particle at constant N, V,
and T,

F(θ2) = F(θ1) +
∫ θ2

θ1

(
∂F
∂θ

)
NVT

dθ. (2)

More details on how this integration is performed are given in
Sec. II C. The integration over the particle shape yields refer-
ence free energies Fref for different vacancy concentrations at a
specific density ρref . We combine these with standard thermo-
dynamic integration over the equation of state at fixed vacancy
concentration and particle shape,

βF(ρ)
N

=
βFref (ρref )

N
+ β

∫ ρ

ρref

dρ′
p(ρ′)

ρ′2
, (3)

in order to determine the free energy as a function of shape,
vacancy concentration, and density.

b. All other lattices. For all other crystal lattices, we calcu-
late reference free energies using the Einstein molecule (EM)
method, as described in Refs. 14 and 15. We then perform stan-
dard thermodynamic integration [Eq. (3)] using the equations
of state in order to determine the free energy as a function of
density for all candidate crystal phases.

Note that for the crystal phases, we use MC simulations
in the isotension-isothermal (anisotropic NpT ) ensemble. This
ensemble, in which the simulation volume can deform, is
required for accurate simulation of crystal systems for which
the lattice parameters are not known a priori.16–18

After determining the free energies for all competing
phases, we determine phase coexistences via common-tangent
constructions and use these to draw the equilibrium phase
diagram.

C. Integration over particle shape

In order to perform the integration in Eq. (2), we need
to determine the derivative (∂F/∂θ). To do this, we use a
finite difference scheme evaluating the free-energy difference
between two values of θ. Note that this method is reminiscent
of the lattice-switch method of Ref. 19. For simplicity, we use
a simple central-difference scheme,

∂F
∂θ
≈

F(θ + ∆θ/2) − F(θ − ∆θ/2)
∆θ

. (4)

As the free energy is related to the volume of phase space
accessible to certain macrostates of a system, a free-energy
difference between two macrostates can be expressed in terms
of the ratio of the partition functions of these macrostates and,
consequently, as a ratio of probabilities. Specifically, consider
two macrostates a and b, where in macrostate a all particles
have a slant angle θa and in macrostate b all particles have
θb. For fixed N, V, and T, the free-energy difference between
these two states is then given by the ratio of the corresponding
canonical partition functions Z,

F(θa) − F(θb) = kBT ln

[
Z(θb)
Z(θa)

]
. (5)
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In order to sample this ratio, we construct a simulation in
which the system is allowed to switch between different slant
angles. Specifically, we introduce a MC move which switches
the slant angle of all particles between θa and θb. In other
words, we perform the simulation in an expanded ensemble in
which the system can sample two different values of θ. The
ratio of the two partition functions in Eq. (5) can now simply
be related to the probability P(θ) of observing each slant angle
in the simulation,19

Z(θb)
Z(θa)

=
P(θb)
P(θa)

. (6)

In general, the shape-switch MC move is unlikely to
be accepted for anything but the smallest changes in shape.
Specifically, changing the shape of all particles simultane-
ously will most likely create at least one overlap. This is a
similar problem to the one encountered for the lattice-switch
method from Ref. 19. One option for improving this is to
introduce biasing schemes, such as umbrella sampling20 or
the multicanonical method.21 However, in our case, the step
size ∆θ is a continuous variable so we can simply choose
a smaller step size for which we find a reasonable accep-
tance rate. Choosing the step size to be small has the added
advantage of improving the accuracy of our finite difference
scheme.

By performing shape-switch simulations for a range of
different slant angles θ and integrating over the results, we
can probe the free-energy difference as a function of the slant
angle θ. As an example, we plot in Fig. 2 the behavior of
∂F/∂θ for a typical choice of density and slant angle. Inte-
grating over this curve from one angle to another then gives
the total free-energy difference between the two. To verify
that this algorithm yields the same result as existing methods
(i.e., the Einstein molecule method), we perform three sets
of calculations: an EM calculation for a simple cubic crys-
tal of cubes (θ = 90◦), an EM calculation for a simple cubic
crystal of slanted cubes (θ = 78.4630◦), and a shape-switch
(SS) calculation going from the former to the latter angle.
We perform all three calculations at the same constant num-
ber density ρσ3 = 0.56. The results of this comparison are
shown in Table I, and one can observe that the two methods
agree within 0.02 kBT per particle, which is within our error
bars.

FIG. 2. Typical example of the behavior of the derivative ∂F/∂θ (in dimen-
sionless units of kBT per particle) in a defect-free simple cubic crystal of
slanted cubes at a density ρσ3 = 0.58. The solid line is a polynomial fit
through the data points, and the shaded area corresponds to the free-energy
difference ∆F(θ) = F(90◦) − F(θ).

TABLE I. Free-energy difference between a simple cubic crystal with
θ = 90◦ and θ = 78.4630◦ at a density of ρσ3 = 0.56 without vacancies, as
calculated by the Einstein molecule (EM) and shape-switch (SS) methods.

βF/N

F78◦ (EM) 7.574(15)
F90◦ (EM) 7.492(15)
∆FEM = F90◦ − F78◦ −0.081(21)

∆FSS = F90◦ − F78◦ −0.100(5)

III. RESULTS

In the following, we predict the phase behaviour of hard
“slanted” cubes. Specifically, we determine candidate (crys-
talline) phases, examine the associated equations of state
for the system, study the vacancies in these systems, and
draw the phase diagram in the packing fraction-slant angle
representation.

A. Candidate crystal phases

In order to draw the phase diagram for this system, we first
have to determine which crystalline phases are likely to be sta-
ble, i.e., we need to determine the “candidate” crystal phases
for our free-energy calculations. Due to the shape of the parti-
cles, we postulate that there are three likely candidate crystal
structures, namely, a plastic simple cubic crystal, a rhombic
crystal, and a zig-zag crystal, as illustrated in Fig. 3. Note
that both non-plastic crystals are space filling. To explore the
(meta)stability of these phases, we performed MC simulations
in the isotension-isothermal ensemble. Such simulations allow
the box shape to transform, potentially facilitating changes in
the crystal lattice. Interestingly, for all slant angles between
66◦ and 90◦, independent of which initial crystal we chose, the
system transformed into a plastic simple cubic crystal for inter-
mediate densities. At high densities, the crystal phases always
maintained the initial structure, and at low densities, it melted
into a fluid. The equations of state for the rhombic crystal
and the zig-zag crystal were essentially indistinguishable. Fur-
ther free-energy calculations revealed that the rhombic crystal
was stable over the zig-zag crystal both near the coexistence
region and at higher densities (see Table II) with a difference
of∆F ≈ 0.01 kBT/N . For reference, the free-energy difference
between the hard sphere hcp and fcc phases near coexistence
is an order of magnitude smaller, ∆Fhcp,fcc ≈ 0.001 kBT/N .19

Given these results, we will only consider the rhombic crys-
tal as the high-density phase in the following. Note that no
other crystal structures were ever observed to form in our
simulations.

FIG. 3. Likely candidate crystal structures for the slanted cube particle shape.
From left to right: a plastic simple cubic crystal, a rhombic crystal, and a
zig-zag crystal.
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TABLE II. Reduced free energies of the rhombic and zig-zag crystal struc-
tures for packing fractions η = 0.75 and η = 0.90. For all crystals listed here,
N = 1000.

η βF/N

Rhombic (72.5424◦) 0.90 22.011(11)
Zig-zag (72.5424◦) 22.035(11)
β(FRC − FZZ )/N −0.024(16)

Rhombic (72.5424◦) 0.75 14.228(7)
Zig-zag (72.5424◦) 14.237(7)
β(FRC − FZZ )/N −0.011(10)

To further explore the phase transitions in this system, we
determine the full equation of state for each of the postulated
crystal phases, as well as the fluid. We do this using a com-
bination of event-driven molecular dynamics simulations in
the NVT ensemble and Monte Carlo simulations in the NpT
ensemble. The results are summarized in Fig. 4. In all cases, we
clearly observe a first-order phase transition from the fluid to
the plastic simple cubic crystal. Note that very little hysteresis
is observed in this phase transition, indicating a fairly low sur-
face tension. The equations of state at high densities also hint
at a second first-order phase transition from the plastic sim-
ple cubic phase to a rhombic crystal. However, here we only
observed a rhombic crystal melting into a simple cubic crystal
but not the reverse process. Nonetheless, further free-energy
calculations confirm the presence of a second first-order phase
transition as indicated in Fig. 4.

In order to further explore the plastic nature of the simple
cubic lattice, in Fig. 5, we show snapshots of the two crys-
tals for a slant angle θ = 72.5424◦. Upon visualizing the

FIG. 4. Equations of state for various slant angles. For all slant angles, we find
three phases. Namely, at low densities, a fluid (red); at intermediate densities, a
simple cubic crystal phase (blue); and at high densities, a rhombic crystal phase
(yellow). Dashed black lines indicate the coexistence densities and pressure
as determined by free-energy calculations.

FIG. 5. Crystal phases of slanted cubes. Top row: snapshots with particles
depicted at their true size. Middle row: particles shrunk to a fraction of their true
size to show the crystal lattice. Bottom: scatter plot of the particle orientations.
Red, green, and blue indicate, respectively, the x̂, ŷ, and ẑ unit vectors in the
reference frame of the particle (Fig. 1). The left column shows the simple
cubic crystal phase and the right column shows the rhombic crystal phase.

particle orientations on the unit sphere, we can observe that
the simple cubic crystal is plastic in nature (Fig. 5, bottom).
Clearly there is not one preferred orientation of the particle
in the simple cubic crystal. Instead, particles align their car-
dinal axes (x̂, ŷ, and ẑ in Fig. 1) along the lattice directions
and rotate randomly between the different discrete orientations
that satisfy this alignment. Note that the simple cubic crystals
of (non-slanted) cubes are also plastic in nature, but due to
the symmetry of cubes, these discrete orientations are identi-
cal. In contrast, in the rhombic crystal phase, the particles are
all aligned perfectly and lack the freedom to rotate from one
discrete orientation to the other.

B. Vacancy concentration

We now turn our attention to the vacancies in the simple
cubic crystal. As the simple cubic lattice of hard cubes has an
extremely high equilibrium vacancy concentration near coex-
istence, we postulate that vacancies will also be very important
for the plastic simple cubic crystal formed by our “slanted”
cubes.

To this end, we calculate equations of state and free ener-
gies for the simple cubic crystal for slant angles θ = 78.4630◦

and θ = 72.5424◦ and vacancy concentrations α = 0.000,
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0.008, 0.016, 0.024, and 0.032. Here, α is defined as the frac-
tion of lattice sites not filled by a particle, i.e., α = Nvac/NL,
with Nvac the number of vacancies and NL the number of
lattice sites. The shape-switch calculations were also per-
formed at these vacancy concentrations, at a constant density
of ρσ3 = 0.58, as at this density the simple cubic crystal
is stable for all slant angles 66◦ ≤ θ ≤ 90◦. By subtract-
ing the free energy of a crystal lattice without vacancies Fperf

from the total free energy F, we can look purely at the con-
tribution of the vacancies. This is shown in Fig. 6(a), where
we plot the free energy F(Nvac) as a function of the num-
ber of vacancies Nvac, for a slant angle θ = 78.463◦. We can
clearly observe that for slanted cubes, the free energy of the
simple cubic crystal phase is lowered by incorporating a sub-
stantial fraction of vacancies. We thus find, similar to the hard
cubes8 and truncated hard cubes,7 a vacancy-rich simple cubic
crystal.

Typically, the effect of vacancies on the free energy of a
crystal can be decomposed into a free-energy cost for creating
the vacancy, and a combinatorial entropy associated with the
location of the empty lattice site. When vacancies in a crystal
do not strongly interact (as was shown to be the case for hard
cubes8 and truncated hard cubes7), this can be written as

F(Nvac) = F(0) + εvacNvac + Fcomb(Nvac), (7)

where εvac is the free-energy cost of creating a defect, and the
second term is the combinatorial entropy,

Fcomb(Nvac) = −kBT log

[
NL!

N!(NL − N)!

]
, (8)

FIG. 6. (a) Fits through the vacancy contributions to the free energies of an
SC crystal of slanted cubes with a slant angle θ = 78.463◦ with NL = 8000
lattice sites. The fitted value for F(0) has been subtracted to plot all curves in
the same graph. Open symbols indicate the data, solid lines indicate the fits,
and filled (black) symbols indicate the minimum of these fits: the equilibrium
vacancy concentration. (b) The same as top, but with the combinatorial term
subtracted as well. The linear dependence on the number of vacancies can be
seen clearly here.

FIG. 7. The equilibrium vacancy concentration αeq as a function of the pack-
ing fractionη. The dashed lines indicate the melting densities. The equilibrium
vacancy concentration is independent of the slant angle when compared at the
same packing fraction.

with NL the number of lattice sites. If we subtract the com-
binatorial term from the data in Fig. 6(a), we indeed clearly
observe a linear dependence of F(Nvac) on Nvac, indicating that
the vacancies also only interact weakly in crystals of slanted
cubes [see Fig. 6(b)].

From fits to F(Nvac), such as those shown in Fig. 6(a),
we obtain the equilibrium vacancy concentration at each den-
sity, i.e., the vacancy concentration α which minimizes the
free energy. We summarize these results as a function of the
slant angle and the packing fraction η in Fig. 7. Amazingly,
we can observe that the equilibrium vacancy concentration of
the simple cubic lattice is essentially independent of the slant
angle θ. We note that while such an invariance to shape was
also found for vacancies in a simple cubic crystal of parallel
rounded cubes,22 it was not found for a simple cubic crystal
of cuboctahedra.7

C. Phase diagram

Combining all our free-energy calculations for different
slant angles, densities, and vacancy concentrations, we deter-
mine the phase diagram for this system. Our results are shown
in Fig. 8, where we plot the predicted phase diagram in the θ-η
plane. For the sake of completeness, we also plot the equilib-
rium vacancy concentration of the simple cubic phase through
the use of a colour map. As expected from our observations of
the equations of state, we observe a stable simple cubic phase

FIG. 8. Phase diagram in the θ-η plane for the slanted cube system. Indicated
are the fluid (F), simple cubic crystal (SC), and rhombic crystal (RC) phases.
The gray shaded areas denote coexistence regions, and the (red) colouring
represents the equilibrium vacancy concentration in the SC phase. The lines
connect the points and merely serve to guide the eye.
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over the entire investigated range of slant angles, which coex-
ists with a fluid at low packing fraction, and with a rhombic
crystal at high packing fraction. The stability range of the sim-
ple cubic phase decreases with a decreasing slant angle, which
can be intuitively understood as the increasing asymmetry of
the particles becomes more and more incommensurate with
simple cubic ordering. As θ decreases, the particles become
less and less cube-like, and as a result neighboring particles in
conflicting orientations increasingly interfere with each others
freedom of movement in the crystal, in particular at high densi-
ties. The resulting decrease in entropy destabilizes the simple
cubic phase with respect to both the fluid and the rhombic
crystal phase, leading to a smaller area of stability.

IV. CONCLUSIONS

In conclusion, we examined the phase behaviour of a
system of hard slanted cubes and in particular focused on
the role of vacancies in the equilibrium phase behaviour
for this system. We find three stable phases for slant angles
66◦ ≤ θ ≤ 90◦, namely, a fluid phase, a vacancy-rich simple
cubic crystal phase, and a rhombic crystal phase. Note that we
find that the vacancy-rich simple cubic phase always appears
at intermediate densities, while the rhombic phase occurs at
high densities.

Interestingly, we find that for the rhombic crystal the lat-
tice angles are strictly identical to the particle slant angle.
This is in sharp contrast to two-dimensional self-assembly
experiments of rhombic platelets,23 where it was shown that
the angle of the rhombic lattice can differ significantly from
the slant angle of its constituent particles. We hypothesise
that this disparity between experiment and simulation may
be attributed both to rounding of particle edges and deple-
tion interactions in experiments. It is well known that particles
with rounded edges and/or corners can form crystal struc-
tures in which the lattice angles differ significantly from the
perfectly sharp shape. Rounded squares, cubes, and super-
balls are the most notable and well-studied examples of this,
forming lattices with different angles depending on their
rounding.24–26

The more surprising and important part of our results con-
cerns the behaviour of the vacancies in the simple cubic lattice.
Specifically, we find that the equilibrium vacancy concentra-
tion in the simple cubic phase is essentially independent of
the slant angle—meaning that it is the same as for simple hard
cubes. Moreover, in agreement with what was observed for
hard cubes, we show that the vacancies in these systems also
do not strongly interact.

Our results clearly indicate that extended vacancies are
extremely robust with respect to distortions in the particle
symmetry and thus might be present in a much wider range
of colloidal polyhedra than the particles with cubic symmetry
that have previously been studied. We note, however, that the
extended defects observed in this system are still restricted to

the simple cubic crystal; we do not predict significant vacancy
concentrations in the rhombic crystal phase, which only occurs
at much higher packing fractions. Hence, whether extended
defects can be realized in other crystalline lattices remains an
open question. However, we speculate that if a defect is able to
extend, the free-energy cost to create it must be low, which in
turn is indicative of a high equilibrium vacancy concentration
for the crystal as a whole. We aim to test this hypothesis in
future work.
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