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We investigate the behaviour of a system of colloidal particles interacting with a hard-core and a
repulsive square shoulder potential under the influence of a gravitational field using event-driven
Brownian dynamics simulations. We use a fixed square shoulder diameter equal to 1.4 times the hard-
core diameter of the colloids, for which we have previously calculated the equilibrium phase diagram
considering two-dimensional disks [H. Pattabhiraman et al., J. Chem. Phys. 143, 164905 (2015) and
H. Pattabhiraman and M. Dijkstra, J. Phys.: Condens. Matter 20, 094003 (2017)]. The parameters
in the simulations are chosen such that the pressure at the bottom of the sediment facilitates the
formation of phases in accordance with the calculated phase diagram of the two-dimensional system.
It is surprising that we observe the formation of layers with dodecagonal, square, and hexagonal
symmetries at the relevant pressures in the three-dimensional sedimentation column. In addition,
we also observe a re-entrant behaviour exhibited by the colloidal fluid phase, engulfing a hexagonal
crystal phase, in the sedimentation column. In other words, a floating crystal is formed between the
colloidal fluid regions. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4993521]

I. INTRODUCTION

In the case of colloidal suspensions consisting of particles
with sizes on the order of micro-meters, the effect of the grav-
itational force is not negligible. Under these conditions, the
gravitational energy and the thermal energy of the colloids are
comparable. This leads to the formation of a spatially inho-
mogeneous suspension in which the density of the particles
varies along the height of the suspension. The inhomogeneous
distribution of the colloidal particles along the height under
the influence of gravity is termed as sedimentation.

As a result of this inhomogeneous density distribution in
colloidal suspensions, the particles at the bottom of the sedi-
ment can crystallise when they reach a certain density. Exper-
imentally, sedimentation is regarded as a prevalent tool to
extract information regarding the equilibrium phase behaviour
of the system. For example, the measured concentration pro-
files can be inverted to obtain the osmotic equation of state.
Sedimentation processes can also be used the other way
around, i.e., they can be used to validate the theoretically calcu-
lated equilibrium phase behaviour of a system and thereby its
bulk phase behaviour. For example, a system of hard spheres
has been a model system for sedimentation studies. This sys-
tem exhibits a phase behaviour characterised by a fluid phase at
low densities and a face-centered cubic phase at high densities.
This behaviour, which was earlier theoretically predicted,1 has
later been corroborated by sedimentation studies.2

Sedimentation behaviour of various charged particles,3

mixtures of hard particles,4 and particles of different shapes5

which result in the formation of various colloidal crystals has

a)h.pattabhiraman@uu.nl
b)m.dijkstra@uu.nl

been extensively studied. However, similar studies involving
the formation of quasicrystals (QCs) by sedimentation has
received less attention. Quasicrystals are solids with long-
range orientational order and no periodicity and may exhibit
intriguing properties including the formation of photonic band
gaps.6–11 Hence, the experimental realisation of quasicrystals
is a topic of intense research.12–18

In our previous studies,19,20 we have theoretically cal-
culated the phase diagram of a two-dimensional system of
particles interacting with a hard-core and repulsive square
shoulder (HCSS) potential. At a shoulder width of 1.4 times
the hard core diameter of the particle, we find a stable random-
tiling dodecagonal quasicrystal. In this work, we investigate
how the phase behaviour in a two-dimensional HCSS sys-
tem extends to three-dimensional systems and whether or not
multiple layers of this quasicrystal can be self-assembled by
sedimentation in three dimensions.

This paper is organised as follows. In Sec. II, we present
the simulation and analysis methods used. In Sec. III, we indi-
vidually discuss the formation of layers with various symme-
tries, and finally we present the conclusions and the direction
of future studies in Sec. IV.

II. METHODS

We first explain the simulation model and computational
methods used for this study in Sec. II A and then give an
account of the analysis methods in Sec. II B.

A. Computational methodology

We perform Event-Driven Brownian Dynamics (EDBD)
simulations of N spherical particles of diameterσHS and buoy-
ant mass m interacting with the HCSS potential in the NVT

0021-9606/2017/147(10)/104902/11/$30.00 147, 104902-1 Published by AIP Publishing.
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ensemble. The HCSS potential can be written as a sum of a
hard-sphere potential VHS(r) and a square-shoulder potential
VSS(r), i.e.,

VHCSS(r) = VHS(r) + VSS(r), (1)

where

VHS(r) =



∞, r ≤ σHS

0, r > σHS
(2)

and

VSS(r) =



ε , r ≤ δ

0, r > δ
, (3)

where r is the interparticle center-of-mass distance and ε > 0
is the height of the square shoulder.

In the EDBD method, a sequence of collision events
involving only two particles at any given instant is com-
puted. During the simulation, the velocities of the particles
are randomly adjusted at regular intervals ∆t as

v(t + ∆t) = αtv(t) + βtvR(t), (4)

where v(t) and v(t + ∆t) are, respectively, the velocities of the
particles before and after the stochastic velocity adjustment,
vR(t) is a 3-D Gaussian variable with a mean of 0 and vari-
ance of kBT /m, with kB as the Boltzmann constant and T as
the temperature. Further, αt has a value 1/

√
2 with a proba-

bility ν∆t and 1 otherwise. The temperature is kept constant

by setting βt =

√
1 − α2

t . In accordance to previous EDBD

simulations,21,22 we set ν to 10τ−1
MD and ∆t to 0.01τMD, where

τMD is the unit of time of an event-driven molecular dynamics
simulation given as τMD =

√
m/kBTσHS .

The present simulation method is an event driven molecu-
lar dynamics (EDMD) method which is extended with Brow-
nian motion. Previous experiments and simulations show that
the structure of the crystalline sediment depends strongly on
the Brownian time, the sedimentation time, and the initial vol-
ume fraction.21,23 The faster the sedimentation, the higher the
initial volume fraction, and the less time the system has avail-
able for equilibration during sedimentation and the crystalline
sediment will become more defective. Brownian motion is,
thus, important for equilibration during sedimentation. In this
case, the Brownian time is set by αt and ν. It is convenient to
define a dimensionless Peclet number g* that is equal to the
inverse gravitational length and a dimensionless particle flux
as defined by the ratio of the Brownian time and sedimentation
time. In our simulations, the Peclet number ranges from 1 to
5, whereas the particle flux is in the range of 0.01-0.05, where
previous simulations and experiments show that there is ample
time for equilibration and least defective crystalline sediments
are obtained.21,23

The simulation box of volume V has a square cross section
of area A and is elongated in the z-direction. Periodic boundary
conditions are applied along the cross section. In the elongated
direction, the particles are confined between two smooth hard
walls at z = 0 and z = H with H as the height of the sedimen-
tation column. The height H is chosen such that the density
at z = (H − σHS/2) is sufficiently small, which allows us to
consider the system to be infinitely long in the z-direction. We
perform simulations starting with a non-overlapping isotropic

fluid state filling the entire sedimentation column with packing
fraction η = 0.01. To mimic sedimentation experiments, these
particles are further subjected to a gravitational field, which is
expressed as an external potential φ(z) written as

φ(z) =



mgz, σHS/2 ≤ z ≤ (H − σHS/2)

∞, otherwise
, (5)

where g is the acceleration due to gravity and z is the vertical
coordinate of the particle. The effect of the gravitational field
on the particles is quantified in terms of the gravitational Peclet
number defined as g∗ = mgσHS/kBT .

In this work, we scrutinise the kinetic formation of
the thermodynamic stable phases described for the two-
dimensional HCSS system with δ = 1.40σHD, where σHD

is the hard-disk diameter, as used in our previous works.19,24

To do so, we perform simulations such that the pressure mea-
sured at the bottom of the sedimentation column, i.e., at z = 0,
corresponds to the region of stability of a particular phase in the
2-D phase diagram. This pressure is calculated as P∗ = βP(z
= 0)σ3

HS = g∗.ρ∗A, where ρ∗A is the mean areal density defined
as the number of particles at the bottom of the sample per
area ρ∗A = Nσ2

HS/A, and we compare P* with P∗2D = βPσ2
HD

directly. However, we note that the direct comparison of pres-
sures between two- and three-dimensional systems may not
always hold true. For example, the fluid (hexatic)-solid transi-
tion in the case of hard disks is at P∗2D = 9.17,25 whereas that
for hard spheres is at βPσ3

HS = 11.57.26 It is good to remind
the readers that we use a three-dimensional system of spheres
here to validate the phase behaviour of a two-dimensional sys-
tem of disks. The underlying reason for this will be explained
in Secs. II B and III A–III C.

The phases considered in this study are dodecagonal qua-
sicrystal, square, low-density hexagonal, and fluid phases. We
especially focus on the possibility of the formation of the qua-
sicrystal and, thus, consider the cross section to be squares with
sides of length 58σHS , which can accommodate a random-
tiling dodecagonal quasicrystal at a density ρ∗ = 1.07, similar
to that used in Ref. 19. The list of parameters used to simu-
late the different phases is given in Table I. The corresponding
values of pressures at the bottom P∗2D = βP(z = 0)σ3

HS are
marked in the phase diagram given in Fig. 1. As a supple-
mentary study, we use two parameter sets having different
Peclet numbers to simulate the quasicrystal. As mentioned
above, a higher value of the Peclet number results in a condi-
tion of high settling rate of the particles, i.e., the particles do
not have enough time to rearrange and equilibrate, and vice
versa. Using systems with different Peclet numbers allows us

TABLE I. System parameters used in the EDBD simulations of a HCSS
system with δ = 1.40σHS under gravity.

N kBT/ε g* βP(z = 0)σ3
HS Stable phase at bottom

5 × 104 0.25 2.00 30.0 Quasicrystal
2 × 104 0.25 5.00 30.0 Quasicrystal
2 × 104 0.25 4.00 23.8 Square
5 × 104 0.15 0.67 10.0 Low-density hexagonal
1 × 105 0.15 0.67 20.0 Fluid
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FIG. 1. Phase diagram in the (reduced) pressure-temperature plane for a two-
dimensional HCSS system with shoulder width δ = 1.40σHD. The reduced
quantities are defined as P∗2D = βPσ2

HD and T∗ = kBT/ε . The phases marked
are fluid (FL), low-density hexagonal (LDH), square (SQ), dodecagonal qua-
sicrystal (QC), and high-density hexagonal (HDH). The crosses denote the
state points corresponding to the pressures at the bottom of the sediment.

to study the effect of the settling rate on the formation of the
quasicrystal.

B. Structural analysis

In order to characterise the different phases, we employ
an analysis method that is two-dimensional in nature since the
phases observed in the sedimentation column have a layered
structure and resemble the phases observed for the HCSS sys-
tem in 2-D. Specifically, we first identify different layers of the
sediment and then carry out the following analysis procedure
in these layers. We construct the polygonal tiling of the layer
and calculate the two-dimensional m-fold bond orientational
order parameter (BOO) of each particle j in layer l, χl

m(j), and
the average BOO of each layer χl

m as explained in Ref. 20.
The polygonal tiling of each layer is constructed by draw-

ing bonds between the neighbouring particles of each particle j,
which are at a center-of-mass distance smaller than the square
shoulder diameter δ from particle j.

We, then, calculate the m-fold BOO of each particle j in
layer l as

χl
m(j) =

�������

1
NB(j)

NB(j)∑
k=1

exp(imθrjk )

�������

2

, (6)

where m is the symmetry of interest, rjk is the center-of-mass
distance vector between two neighbours j and k, θrjk is the angle

TABLE II. Method of classification of particle j belonging to layer l
according to its bond orientational order (BOO) χl

m(j).

Symmetry BOO conditions Colour

Fluid/other (OT) χl
4(j), χl

6(j), χl
12(j) < 0.5 Orange

Crystal χl
4(j), χl

6(j), χl
12(j) > 0.5

Square (SQ) χl
4(j) > χl

6(j), χl
12(j) Purple

Hexagonal (HX) χl
6(j) > χl

4(j), χl
12(j) Green

Dodecagonal (QC) χl
12(j) > χl

4(j), χl
6(j) Red

FIG. 2. Colour scheme for classes of particles based on the BOO classification
described in Table II.

between rjk and an arbitrary axis, and NB(j) is the number of
neighbours of particle j in the same layer. For each particle j, we
calculate χl

4(j), χl
6(j), and χl

12(j), respectively, representing
square, hexagonal, and dodecagonal symmetries.

The particles are classified based on their BOO according
to the method given in Table II. We consider a particle to be
fluid-like if each of the three χl

m(j) is less than 0.5. On the other
hand, if each of χl

m(j) is greater than 0.5, then a particle is said
to have symmetry m1 if χl

m1(j) is greater than the other two,
namely, χl

m2(j) and χl
m3(j). Further, we identify and colour the

particles according to the following scheme: particles of square
symmetry in purple, those of hexagonal in green, dodecagonal
in red, and fluid-like in orange as shown in Fig. 2.

After calculating the BOO of each particle, the average
BOO of each layer is then evaluated as27

χl
m =

1
Nl

Nl∑
j=1

χl
m(j), (7)

where N l is the number of particles in each layer.

III. RESULTS AND DISCUSSION

In this section, we consider individually the different sed-
imentation simulations carried out to obtain the various stable
phases calculated for the two-dimensional HCSS system.

A. Formation of layers with dodecagonal symmetry

We start with the formation of layers with dodecagonal
symmetry. In this section, we present the sedimentation sim-
ulations using two different Peclet numbers in order to assess
the effect of the settling rate on the formation of the quasicrys-
tal. We first compare the formation of the quasicrystal formed
in these simulations and then analyse the driving force behind
the formation of these layers. Finally, we review the valid-
ity of the phase diagram given in Fig. 1 by comparing the
phases formed in the sedimentation column. The dodecago-
nal quasicrystal (QC) which, as seen in the phase diagram, is
sandwiched between two periodic crystal phases with square
and hexagonal symmetries. Thus, it is interesting to note if and
how the interfaces between the quasicrystal and the periodic
crystals are formed in the sedimentation column.

We first present a typical configuration of the sediment
forming quasicrystalline layers in Fig. 3. The panels on the
left correspond to simulations with a Peclet number g* = 5.0
and those on the right are obtained for g* = 2.0. The particles
here are coloured according to the convention explained in
Fig. 2. We notice the formation of about two quasicrystalline
layers for g* = 5.0 and about four quasicrystalline layers for
g* = 2.0. This difference in the number of layers is due to a
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FIG. 3. Comparison of the quasicrys-
tal (QC) sediment formed for Peclet
numbers g* = 5.0 (left) and 2.0 (right).
Side view of a configuration of the sed-
imentation column obtained at t/τMD
= 800 (top). The particles are coloured
according to their individual BOO: qua-
sicrystal (red), square (purple), hexag-
onal (green), and fluid (orange). The
m-fold BOO of each layer with time cal-
culated for symmetries m = 4 (middle)
and 12 (bottom) showing, respectively,
the formation of layers with square and
dodecagonal symmetries.

difference in the height range that corresponds to the pres-
sure range of the stable quasicrystal phase. This height range
decreases with increasing g*. Additionally, we observe that
most of the particles seen in these layers are coloured either
in purple or red which, respectively, represent square or
dodecagonal symmetries. Therefore, we follow the dynam-
ics of the formation of these layers by calculating the BOO
χl

4 and χl
12 of each layer as a function of time. The time

evolution of χl
4 is given in the middle panel in Fig. 3 and

that of χl
12 is given at the bottom. In these time evolution

heat maps, the time scale t/τMD is plotted on the horizon-
tal axis and the layer number is plotted along the vertical
axis.

We make the following observations from these plots: (1)
In both cases, the value of χl

12 is higher than that of χl
4, which

confirms the dodecagonal symmetry of these layers. (2) With
increasing time, we find that the fraction of fluid in the sed-
imentation column decreases, as seen by the receding blue
region in these plots. Alternatively, this means that more crys-
talline layers are formed with time. (3) The value of χl

12 at a
given time decreases as we go up in the sediment indicating that
the layers on the top are more fluid-like than the bottom layers.
(4) Finally, we see that χl

12 obtained for the sediment at higher
Peclet numbers is larger than that at lower Peclet numbers. This
is counter-intuitive as this suggests that faster settling of the
particles result in the formation of a less-defective quasicrystal.

We investigate this further by plotting the polygonal tiling
constructed for the bottom two layers as a function of time for
both the sediments. The top view of these tilings is given in
Fig. 4 for g* = 5.0 and in Fig. 5 for g* = 2.0. Two striking fea-
tures are conspicuous from these polygonal tilings. First, there
are large portions of connected square tilings in the sediment
obtained for the lower Peclet number, while the square tilings
are more uniformly distributed in the case of the high Peclet
number sediment. Second, the position of the tiles in the first
and second layers seems to be on top of each other. Let us now
evaluate each of these observations separately.

Firstly, we analyze the tilings and quantify the square tiles
by calculating the ratio of areas occupied by the square tiles
to those of the triangle tiles. This also relates to the square-
triangle tiling description of a dodecagonal quasicrystal, where
the maximum entropy of the tiling corresponds to equal areas
of squares and triangles.28–30 In the current sediments, we find
that the ratio of the areas of squares to triangles for g* = 2.0
is 1.40 ± 0.05 and for g* = 5.0 is 1.15 ± 0.03. In other words,
in both cases, there are more squares formed than in an ideal
dodecagonal tiling. This excess of squares is larger for the low
Peclet number sediment. This can be explained as follows.
A lower Peclet number refers to a lower rate of sedimentation
and, thus, a longer relaxation time for the particles to rearrange.
The density at the bottom of the sample increases slowly since
the beginning of the sedimentation simulation, as more and
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FIG. 4. Polygonal tilings as obtained
from particle configurations of the first
(top) and second (bottom) layers of the
QC sediment for the Peclet number g*

= 5.0 showing the formation of the qua-
sicrystal for varying times t/τMD as
labeled. The triangle, square, and defect
tiles are, respectively, coloured in blue,
green, and gray.

more particles descend through the column. This means that
the density at the bottom layer first reaches the value where
a square phase is found to be stable. Thus, nuclei consisting
of particles with square symmetry start to form. This can be
observed in the snapshot of the second layer at t/τMD = 60
at both Peclet numbers. However, in the case of the sediment
with lower Peclet numbers, these nuclei have enough time to
aggregate and, thus, start forming larger square structures. On
the other hand, the square nuclei of the fast settling sediment
does not have enough time to rearrange and, thus, are spread all
over the area. Also, a larger settling rate means that the density
corresponding to the formation of the quasicrystal is reached
faster at the bottom of the sediment. This again means that
lesser amount of square tiles are formed in the sediment with
higher Peclet numbers. Because of these reasons, the sediment
with a high Peclet number results in the formation of a lesser
number of square tiles and also lower aggregation of these tiles
than the slow settling sediment.

Now, let us examine the observation regarding the posi-
tion of the tiles of the second layer directly on top of the first

layer. This, in essence, refers to the formation of quasicrystal
layers which are periodic in the third direction. To assess this,
we show the top view of the particles of the first and second
layers obtained for the fast settling sediment in Fig. 6. Here,
the particles in the first layer are represented as filled blue cir-
cles, while those of the second layer are represented as open
black circles. In the figure, we observe that a majority of the
blue particles are enclosed in a black circle. In other words,
the position of the particles of the second layer is on top of the
first layer, which confirms that these structures are periodic in
the third dimension. This leads us to the question of why do
the particles of the second layer not position themselves in the
voids of the particles of the bottom layer, as is expected from
simulations involving gravitational fields.

The answer to this question lies in the fact that the interac-
tion potential between the particles is purely repulsive and has
two-length scales. We explain this further by using a schematic
description in Fig. 7. The colour coding of the particles is the
same as described above; the particles in the first layer are rep-
resented as filled blue circles, while those of the second layer

FIG. 5. Polygonal tilings as obtained
from particle configurations of the first
(top) and second (bottom) layers of the
QC sediment for the Peclet number g*

= 2.0 showing the formation of the qua-
sicrystal for varying times t/τMD as
labeled. The triangle, square, and defect
tiles are, respectively, coloured in blue,
green, and gray.
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FIG. 6. Top view of the center-of-masses of particle configurations of the first
and second layers obtained for the QC sediment with the Peclet number g*

= 5.0 at t/τMD = 800. The particles in the bottom layer are plotted as filled
circles in blue and the particles in the top layer are represented as open black
circles. The gravitational field points into the plane of the paper as marked in
the top-left corner.

are represented as open black circles. On the top, we represent
the situation where the particles of the second layer fall in the
voids of the particles of the first layer. The front view of the
sediment is shown on the left and the top view is shown on
the right. The present case of the periodic layers is shown at
the bottom. First, let us look at the scenario with alternating
layers, i.e., the particles of the second layer are in the voids
of those in the first layer. In this case, we see that each par-
ticle in the second layer, in addition to its nearest neighbour
in the second layer, has three neighbours in the first layer. In
contrast, in the case of the present situation of periodic layers
(shown at the bottom in Fig. 7), each particle of the second
layer has only a single neighbouring particle in the bottom
layer. The same also applies for the third layer on top of the
second, thereby doubling the number of neighbours of each
particle. This reduction in the number of neighbours is trans-
lated as a reduction in the energy of the particle and, thus, of
the entire system. This configuration is favoured, if this reduc-
tion in energy is more than the increase in potential energy of

FIG. 7. Schematic representation of the energetic driving force behind the
formation of layers with particles on top of each other. The particles in the
bottom layer are plotted as filled circles in blue and the particles in the top
layer are represented as open black circles. The direction of the gravitational
field in each case in also marked on the top.

the particle for being at a higher position in the sedimentation
column, i.e., at a higher position on top of a particle instead
of a lower position in the void. This happens to be the case in
our simulations, which leads to the formation of these periodic
layers. This also means that these layers are stabilised by grav-
ity. Finally, this formation of a layered structure justifies the
validation of the phase behaviour of a two-dimensional system
of disks using a three-dimensional system of spheres.

Finally, we proceed to the validation of the phase diagram
in terms of the phases formed along the height of the sedimen-
tation column, which corresponds to a decrease in pressure. To
analyze this, we plot the pressure and density profiles along
the height of the sedimentation column calculated for both
Peclet numbers in Fig. 8. The pressure and density profiles
corresponding to the high Peclet number are on the left and
those of the low Peclet number are on the right. In these plots,
we explicitly mark the pressure boundaries denoting the sta-
bility of each phase as obtained from the 2-D phase diagram.
From the density profiles, we observe that the formation of two
(quasi)-crystalline layers at a high Peclet number and five at
a low Peclet number. Beyond this pressure, we find the pres-
ence of an isotropic fluid, which agrees well with the phase
diagram prediction. However, the puzzling part is the absence
of the square phase.

From the density plots, we see that the crystalline layers
are formed in the sediment for pressures corresponding to the
stable QC or SQ regime in the phase diagram. However, all

FIG. 8. Pressure (top) and density (bot-
tom) profiles calculated for the QC
sedimentation column for Peclet num-
bers g* = 5.0 (left) and 2.0 (right) at
t/τMD = 800. The stability regions of the
dodecagonal quasicrystal (QC), square
(SQ), and fluid (FL) phases in terms of
the reduced pressure P∗2D = βPσ2

HD as
taken from Fig. 1 are marked.
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the layers formed in the sediment exhibit dodecagonal symme-
try, which leads to the following question: Why are layers of
square symmetry not formed? This could be because of either
one of the following reasons: (1) The formation of an inter-
face between the quasicrystal and the periodic crystal might
not be energetically favourable or (2) during sedimentation, it
might be easier for the particles to settle on top of the particles
below because of energetic reasons as explained previously. In
addition, a higher settling rate could also contribute to it, i.e.,
the particles belonging to the top layers do not have sufficient
time to rearrange into a square lattice. Also, for the particles
to arrange into a square lattice on top of a quasicrystal would
mean that the particles of the square layer would fall in the
voids of the underlying quasicrystal layer. This again causes
an increase in the potential energy. Thus, it is possible that
these energetic constraints outweigh those for the formation
of a square lattice thereby leading to the formation of only
layers with quasicrystal symmetry in the sedimentation col-
umn. Finally, we note that although the phase behaviour in
3-D seems to match well with that in 2-D, the square phase
may be absent in 3-D. This will be studied in Sec. III B. It is also
good to mention that in the free-energy calculations performed
to map out the phase diagram, a defect-free quasicrystal struc-
ture was used. It might be possible that the kinetic formation of
the quasicrystal with defects precedes that of the defect-free
structure. This could also contribute to the formation of the
quasicrystal at lower pressures.

Additionally, given that this layered structure of the qua-
sicrystal is not a bulk equilibrium structure, it is interesting
to know how many layers of the quasicrystal can be obtained
using this sedimentation method. We could estimate this using
the hydrostatic equilibrium condition,

dP(z) = −mgρ(z)dz. (8)

The pressure difference at heights z1 and z2 is easily obtained
by integrating both sides,∫ z2

z1

dP∗(z) = P∗(z2) − P∗(z1)

= ∆P∗ = −
∫ z2

z1

g∗ρ∗(z)d(z/σHS). (9)

From Fig. 1, we find that the quasicrystal is stable in a pressure
range of ∆P∗ ' 5. If we assume the density of the quasicrystal
to be constant and independent of height, i.e., ρ∗ ' 1, we find
that∆P∗ ' 5 corresponds to a height difference 1 ≤ ∆z ≤ 3 for
g∗ ∈ [2, 5], i.e., 1-3 layers. However, as described above, the
quasicrystal was also found to be stable in the stability regime
of the square phase. Hence the pressure range increases to
∆P∗ ' 20, which corresponds to 4-10 periodic layers of the
quasicrystal. We thus expect to obtain at most 10 periodic
layers of the quasicrystal with this method.

B. Formation of layers with square symmetry

At the end of Sec. III A, we found that it is not feasible for
a layer with square symmetry to form on top of a layer with
dodecagonal symmetry. Does that mean that the formation of
layers with square symmetry is never possible in this system?
We address the formation of layers with square symmetry in
this section. For this, we first perform sedimentation simula-
tions using the parameters promoting the formation of a square
phase as given in Table I and then employ the same analysis
methods as those used for studying the quasicrystal formation
in the sediment.

First, we show a typical configuration of the sedimentation
column obtained at t/τMD = 1500 in Fig. 9(a). The particles
are coloured according to the convention in Fig. 2 with parti-
cles possessing square symmetry in purple. As can be noticed
in the figure, two layers at the bottom of the column have a
large concentration of purple coloured particles, denoting the
formation of layers with square symmetry. This is further con-
firmed by the evolution of the BOO χl

4 of the bottom two layers
to values close to one, as given in Fig. 9(b). Further, we plot the
pressure and density profiles along the sedimentation column,
respectively, in Figs. 9(c) and 9(d). From these, we see that
the formation of two layers with square symmetry agrees well
with the respective phase diagram.

We then follow the dynamics of the formation of these
layers by analyzing the snapshots of the bottom two layers as
a function of time. The top views of these layers are given
in Fig. 10. Similar to the behaviour during the nascent time
scales in the QC sediment seen previously in Figs. 4 and 5,
the crystal formation in the bottom layer begins with the for-
mation of small crystalline domains of particles with square

FIG. 9. (a) Side view of a configura-
tion of the SQ sedimentation column
obtained at t/τMD = 1500. The particles
are coloured according to their indi-
vidual BOO: quasicrystal (red), square
(purple), hexagon (green), and fluid
(orange). (b) The BOO χl

4 of each layer
as a function of time showing the for-
mation of layers with square symme-
try. (c) Pressure and (d) density pro-
files calculated for the sedimentation
column at t/τMD = 1500. The stability
regions of square (SQ) and fluid (FL)
phases in terms of reduced pressure
P∗2D = βPσ2

HD as taken from Fig. 1 are
marked.
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FIG. 10. Typical configurations show-
ing the top view of the first (top) and
second (bottom) layers of the SQ sedi-
ment for varying times t/τMD as labeled.
The particles are coloured according
to their individual BOO, namely, qua-
sicrystal (red), square (purple), hexago-
nal (green), and fluid (orange).

symmetry (t/τMD = 100). These crystalline domains coalesce
with time and form larger grains separated by grain boundaries
consisting of fluid-like particles or particles with dodecagonal
symmetry (t/τMD = 1000). Finally, these grain boundaries
anneal out with time (t/τMD = 1500). Obviously, the set-
tling rate plays an important role in the annealing process.
In the present scenario, we find that the second layer starts to
crystallise before the grain boundaries in the bottom layer are
annealed out. Thus, these grain boundaries remain till the end
of our simulation. Additionally, we observe that this structure
also consists of periodic layers, with the particles of the second
layer lying on top of the ones in the first layer.

C. Formation of (suspended) layers
with hexagonal symmetry

One of the peculiar features exhibited by the HCSS sys-
tem is the formation of a low-density hexagonal phase, where
the particles are separated by a distance equal to the square
shoulder diameter δ. The formation of this phase induces a
re-entrant behaviour of the fluid phase. Our objective in this
section is two-fold. We attempt to (1) demonstrate the forma-
tion of layers of the low-density hexagonal phase and analyze
if it conforms to either a face-centered cubic (FCC), a hexago-
nal close-packed (HCP), or a AAA stacking and (2) determine
if the fluid displays a re-entrant behaviour along the height of
the sedimentation column, i.e., with decreasing pressure. This
would result in a configuration where hexagonal layers are
suspended in between two fluid phases, i.e., a floating crystal
phase.

Accordingly, we first simulate the sedimentation of par-
ticles with parameters that promote the formation of a low-
density hexagonal phase as given in Table I. A typical config-
uration of the sedimentation column at t/τMD = 500 is given
in Fig. 11(a). The particles here are coloured according to the
convention given in Fig. 2. Correspondingly, the layers at the
bottom composed of particles coloured in green exhibit hexag-
onal symmetry. The presence of hexagonal symmetry of these
layers is confirmed by the high values of the χl

6 values cal-
culated as a function of time for these layers and plotted in

Fig. 11(b). Combining this time evolution of BOO and the
pressure [Fig. 11(c)] and density [Fig. 11(d)] profiles along the
sedimentation column, we find the formation of about twenty
layers of hexagonal symmetry. This also agrees well with the
pressure boundaries obtained from the phase diagram, marked
with dashed lines in Figs. 11(c) and 11(d). Further, we try to
analyze the composition of these hexagonal layers to identify
the nature of the stacking. It is common to find the formation
of randomly stacked hexagonal layers in experimental and
simulation sedimentation studies on hard spheres conducted
at low Peclet numbers.21,22 This is because the free-energy
difference between the face-centered cubic (FCC) and hexag-
onal close-packed (HCP) phases is very small in the case of
hard spheres. We calculate the nature of stacking by using the
method described by Marechal et al.21 We represent this by
colour coding layers stacked as FCC in dark red and HCP in
blue in Fig. 11(e). We observe a behaviour analogous to that
of a system of hard spheres, i.e., the formation of randomly
stacked hexagonal layers. However, we did not find any slanted
stacking faults as observed in previous EDBD simulations on
sedimenting hard spheres.21,22 We also note that in contrast to
the quasicrystal and the square crystals, we do not find that the
hexagonal layers are periodically stacked.

We then proceed to explore the formation of suspended
crystalline layers of hexagonal symmetry bordered by a fluid
phase in the sediment. For this, we use a set of parameters
conforming to the formation of a fluid phase at the bottom
of the sedimentation column as given in Table I. Following
the convention, we first show a typical configuration of the
sedimentation column at t/τMD = 600 in Fig. 12(a) and colour
the particles according to their BOO as explained in Fig. 2. We
indeed find the formation of crystalline layers with hexagonal
symmetry in between two fluid phases. In other words, we
observe a re-entrant behaviour of the fluid phase bordering
a floating crystal phase with layers of hexagonal symmetry.
The hexagonal symmetry of the layers in the crystal phase is
further proven by the high χl

6 BOO values shown in the time
evolution heat map in Fig. 12(b). However, we observe that the
corresponding pressure [Fig. 12(d)] and density [Fig. 12(c)]
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FIG. 11. (a) Side view of a config-
uration of the low-density hexagonal
(LDH) sedimentation column obtained
at t/τMD = 500. The particles are
coloured according to their individ-
ual BOO: quasicrystal (red), square
(purple), hexagon (green), and fluid
(orange). (b) The BOO χl

6 of each layer
as a function of time showing the forma-
tion of layers with hexagonal symme-
try. (c) Pressure and (d) density profiles
calculated along the height of the sedi-
mentation column. The stability regions
of low-density hexagonal (LDH) and
fluid (FL) phases in terms of reduced
pressure P∗2D = βPσ2

HD as taken from
Fig. 1 are marked. (e) Identification of
layers as FCC or HCP stacking in the
sediment. The particles are coloured as
FCC (red) and HCP (blue).

profiles of the sediment have not yet completely evolved. Also,
similar to the previous case of hexagonal layers, we find that
these suspended layers are also randomly stacked.

The interesting feature of this sedimentation process is the
formation of alternate regions of hexagonal symmetry and fluid

at the bottom of the sediment with time. This can be observed
in the time evolution of the hexagonal BOO χl

6 in Fig. 12(b).
At the start of the sedimentation process, the sedimentation
column is filled with an isotropic fluid, as seen by the low value
of χl

6 in blue. With time, the density at the bottom increases.

FIG. 12. (a) Side view of a configura-
tion of the FL sedimentation column
obtained at t/τMD = 500. The parti-
cles are coloured according to their indi-
vidual BOO: quasicrystal (red), square
(purple), hexagon (green), and fluid
(orange). (b) The BOO χl

6 of each layer
as a function of time showing the forma-
tion of layers with hexagonal symme-
try. (c) Pressure and (d) density profiles
calculated along the height of the sedi-
mentation column. The stability regions
of low-density hexagonal (LDH) and
fluid (FL) phases in terms of reduced
pressure P∗2D = βPσ2

HD, as taken from
Fig. 1, are marked.
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FIG. 13. Top view of the first layer
of the sediment showing the melting
of the hexagonal phase to a fluid for
varying t/τMD as labeled. The particles
are coloured according to their individ-
ual BOO, namely, quasicrystal (red),
square (purple), hexagon (green), and
fluid (orange).

Once it reaches the density where the hexagonal phase is found
to be stable, structures with hexagonal symmetry start to form
at the bottom layers. This is seen as an increase in the values of
χl

6 represented by pink colour. With time, we observe that more
hexagonal layers start to form. In contrast, we also see that the
pink colour at the bottom gives way to the blue colour again
denoting the melting of the hexagonal layers into a fluid with an
increase in the pressure. We also observe more layers melting
as time proceeds. This melting process of the first layer of
the sediment can also be seen from the particle configurations
taken at different times, which is shown in Fig. 13. We observe
the formation of larger fractions of fluid with time in these
snapshots.

IV. CONCLUSIONS AND OUTLOOK

To summarise, we studied the sedimentation behaviour
of a system of particles interacting with a hard-core and a
repulsive square shoulder potential with a fixed shoulder width
equal to 1.4 times the hard-core diameter. We find that the
system forms a two-dimensional layered structure because of
energetic arguments. This enables us to validate the forma-
tion of the thermodynamically stable phases as predicted by
the two-dimensional phase diagram, which is highly surpris-
ing. Accordingly, we confirm that layers with symmetries of
a dodecagonal quasicrystal, square, and low-density hexag-
onal are formed in the pressure range corresponding to the
respective stability regions in the 2-D phase diagram. Further
ascertaining the validity of the calculated phase diagram, we
find that the fluid phase, in the case of a low-density hexagonal
phase, exhibits a re-entrant phase behaviour along the height of
the sedimentation column. In addition, we evaluated the effect
of settling rates on the formation of the quasicrystal and found
that faster settling rates lead to the formation of a quasicrys-
tal with a tiling composition closer to that of the maximum
entropy tiling.

For future work, it is interesting to study the formation
of the dodecagonal quasicrystal in detail and to determine the
optimal pressure and settling rates for its formation. It is also
interesting to see how the quasicrystal formation is affected in
the case of colloidal epitaxy.
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