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Using computer simulations, we study the diffusion, interactions, and strain fields of point defects in
a face-centered-cubic crystal of hard spheres. We show that the vacancy diffusion decreases rapidly as
the density is increased, while the interstitial diffusion exhibits a much weaker density-dependence.
Additionally, we predict the free-energy barriers associated with vacancy hopping and find that the
increasing height of the free-energy barrier is solely responsible for the slowing down of vacancy
diffusion. Moreover, we find that the shape of the barriers is independent of the density. The interac-
tions between vacancies are shown to be weakly attractive and short-ranged, while the interactions
between interstitials are found to be strongly attractive and are felt over long distances. As such,
we find that vacancies do not form vacancy clusters, while interstitials do form long-lived intersti-
tial clusters. Considering the strain field of vacancies and interstitials, we argue that vacancies will
hardly feel each other, as they do not substantially perturb the crystal, and as such exhibit weak
interactions. Two interstitials, on the other hand, interact with each other over long distances and
start to interact (attractively) when their strain fields start to overlap. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4990416]

I. INTRODUCTION

Defects are thermodynamically bound to occur in any
crystal at finite temperature. These defects play an important
role in the mechanical and transport properties of crystals and
are a crucial factor for mechanical instabilities such as creep,
yield, and fracture.1–4 The key aspects that underlie these phe-
nomena are the concentrations at which these defects occur,
their mobility, and their mutual interactions.

The hard-sphere model system is one of the most exten-
sively investigated systems and has strongly contributed to
a basic understanding of a variety of fundamental phenom-
ena in condensed matter physics, such as glass transitions,5–7

crystal nucleation,8–13 and optimal packings.14–17 Likewise,
hard spheres provide a simple model system to study crys-
tal defects, both in statistical mechanical theories18–21 and in
experiments using “colloidal” hard spheres.22–27 While these
experiments on colloidal particles allow for direct quantitative
studies of crystals in real space and real time, studying their
defects is typically very challenging. Therefore, computer sim-
ulations have proven to be very useful. The first studies of
point defects in hard spheres date back to the early 1970s by
Bennett and Alder.28 Using computer simulations, they esti-
mated a relatively high vacancy concentration close to melting
(∼10−4). Moreover, they showed that the concentrations of
higher-order vacancies, such as di-vacancies and tri-vacancies,
are significantly smaller than those of mono-vacancies. Almost
three decades later, Pronk and Frenkel calculated the equilib-
rium concentrations of both vacancies and interstitials, even
for polydisperse systems.18,19 More recently, Lechner pro-
vided a method to calculate the effective interactions between
point defects in two-dimensional crystals, which were shown
to be attractive in a system of soft, dipolar spheres.29,30

Yet, so far a detailed understanding of the dynamics and
mutual interactions of point defects in hard-sphere crystals is
lacking.

In this paper, we study the diffusion, interactions, and
strain fields of point defects in a face-centered-cubic hard-
sphere crystal. We show that the vacancy diffusion decreases
rapidly as the density is increased, while the interstitial diffu-
sion exhibits a much weaker density-dependence. The interac-
tions between vacancies are shown to be weakly attractive and
short-ranged. As such, di-vacancies are found to be unstable
and break up easily into two separate mono-vacancies, which
may occasionally reform into a di-vacancy. The interactions
between interstitials, however, are found to be strongly attrac-
tive and are felt over long distances. As such, we find that inter-
stitials form stable interstitial clusters, which only sporadically
manage to dissociate into separate mono-interstitials. These
point defect interactions can be understood by considering the
strain field of vacancies and interstitials.

II. MODEL AND METHODS
A. Simulation details

We investigate face-centered-cubic crystals of NL lattice
sites and N hard spheres of diameter σ using event-driven
molecular dynamics (EDMD) simulations. We express the
density in terms of the number of lattice sites per unit vol-
ume, i.e., ρ = NL/V , where V is the volume of the simulation
box. Note that in these reduced units, the coexistence densi-
ties are ρsσ

3 = 1.0372 for the solid and ρfσ
3 = 0.9387 for the

fluid.31 We define the EDMD unit time as τ =
√
βmσ2, where

m is the mass of a particle, and β = 1/kBT with kB Boltzmann’s
constant and T the temperature.
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For the calculations of the free-energy barrier associated
with vacancy diffusion and the calculations of the vacancy-
vacancy interactions, we have also employed Monte Carlo
(MC) simulations. For the latter, the incorporation of “hop-
ping” moves allows for more efficient sampling of all separa-
tion distances at high densities. More specifically, apart from
regular translational moves of particles, we also allow a parti-
cle to move an integer number of lattice spacings, thus greatly
enhancing the probability that a particle will jump into the
vacancy.

B. Defect tracking

We locate vacancies and interstitials in the crystal using
algorithms similar to those mentioned in Refs. 18 and 29.
Namely, we assign each particle to its closest lattice site and
check the occupancy of each lattice point. If there are no par-
ticles assigned to a given lattice point R, it corresponds to a
vacancy defect. We define the vacancy position to be equal to
the position of the empty lattice site: rvac(t) = R. If there are
two particles assigned to a given lattice point, it corresponds
to an interstitial defect. In this case, we calculate for both par-
ticles the distance to the lattice point and define the interstitial
position to be equal to the position ri of the particle i that is
furthest away from the lattice point: rint(t) = ri. Note that dur-
ing the simulation we correct for the center of mass drift of the
system, as described in Ref. 32.

C. Initialization of point defects

In all simulations, we start from a lattice in which we
have introduced the desired number of vacancies or intersti-
tials. Vacancies are initialized by simply removing random
particles from an otherwise perfect crystal. The introduction
of interstitials, on the other hand, can be a bit more involved
at high densities. To this end, we start from a low density
crystal, in which the interstitials can be introduced without
creating overlaps, and compress it to the desired density. This
is accomplished using standard NPT MC simulations, in which
the number of particles N, the pressure P, and the temperature
T are kept constant.

III. RESULTS
A. Diffusion coefficients of vacancies and interstitials

We begin by examining the diffusion of vacancies and
interstitials. To this end, we introduce either one vacancy or
one interstitial in the crystal and follow the diffusion of the
point defect using the tracking algorithm described in Sec. II B.
From these trajectories, we calculate the diffusion constant of
the defect from the long-term diffusive behaviour of the mean
square displacement,

D = lim
t→∞

〈∆r2(t)〉
6t

, (1)

where ∆r2(t) = |r(t) − r(0)|2 with r(t) the position of the
defect at time t. We plot the diffusion constants for vacancies
and interstitials as a function of density in Fig. 1. For vacan-
cies, we find that diffusion goes down rapidly with the density
ρ, in agreement with the early results by Bennett and Alder.28

This is understandable as in order for the vacancy to diffuse, a

FIG. 1. Vacancy (blue) and interstitial (red) diffusion constants D∗ as a func-
tion of the density ρ. The diffusion constants were rendered dimensionless
using D∗ = Dτσ−2.

neighbouring particle has to hop into it, which becomes
increasingly more difficult at higher densities. In contrast,
for interstitials we observe a weak density-dependence on the
mobility for densities ρσ3 . 1.17 and only observe a more
drastic slowing down at very high densities ρσ3 & 1.19. These
data thus show that the slowing down of vacancies and inter-
stitials is fundamentally different from each other and does not
follow the same trend. We also observe that interstitial diffu-
sion is always faster than vacancy diffusion, Di(ρ)>Dv(ρ).
Thus, there is a density window where we expect vacan-
cies to be essentially immobile while interstitials are still
mobile.

B. Free-energy barrier for vacancy diffusion

To better understand the rapid slowing down of vacancy
diffusion with increasing density ρ, we calculate the free-
energy barrier associated with vacancy hopping. More specif-
ically, we introduce a single vacancy in the crystal and con-
strain all but one particle to their own lattice point. This one
particular particle is allowed to hop between its own lattice
site and the neighbouring vacant lattice site. By projecting
the positions of this hopping particle onto the line that con-
nects the two lattice sites, we obtain the free-energy barrier
using βF(x)=−ln(P(x)) with P(x) the probability distribution
function of the projected particle coordinate x. Here x = ± 1

2
corresponds to the particle being located at one of the lattice
sites, and x = 0 corresponds to the transition state. This is
sketched in Fig. 2(a).

In Fig. 2(b), we show the predicted free-energy barriers
associated with vacancy hopping for a range of densities. These
free-energy profiles confirm that the height of the free-energy
barrier increases strongly with increasing density. Interest-
ingly, we observe no changes in the shape of the free-energy
barriers. To show this, we normalize all free-energy profiles
by their maximum barrier height βF∗, and obtain an excellent
collapse, as shown in Fig. 2(c).

The increasing height of the free-energy barrier for
vacancy hopping is solely responsible for the slowing down of
vacancy diffusion. In Fig. 2(d), we plot the activation energy
βF∗ versus the vacancy diffusion coefficient Dv , and obtain a
clear exponential dependence.

C. Interactions between point defects

Next, we quantify the interactions between point defects.
Our method is based on recent simulation studies of the
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FIG. 2. Free-energy barriers associated with vacancy diffusion. (a) A schematic picture of a hopping vacancy showing a particle at the left lattice site x = − 1
2 ,

at the transition state x = 0, and at the right lattice site x = 1
2 . (b) The free-energy barrier for vacancy diffusion βF(x) for a range of densities. (c) The normalized

free-energy barrier for vacancy diffusion, which collapses for many different densities to a single profile. (d) The exponential dependence of the vacancy diffusion
constant D∗ on the barrier height βF∗.

interactions between point defects in two-dimensional col-
loidal systems of dipolar spheres.29,33 Here, we apply this
method to hard-sphere crystals in three dimensions.

We start off by introducing either two vacancies or two
interstitials into the crystal and follow their motion over time.
In the case of vacancies, the separation distance between the
two empty lattice sites located at positions Rvac

i and Rvac
j is

given by r = |Rvac
i −Rvac

j |. The separation distance r can now
be used to define an effective potential as

βF(r) = −ln
P(r)
nL(r)

, (2)

where P(r) is the probability to find the vacancy pair at a sep-
aration distance r and nL(r) is the number of lattice sites at
a distance r from a reference lattice site. In the case of inter-
stitials, we choose to express the separation distance also in
terms of the distance between the two doubly occupied lattice
sites r = |Rint

i −Rint
j |, where Rint

i and Rint
j refer to the positions

of the two doubly occupied lattice sites.
The effective potential for the vacancy-vacancy interac-

tion is shown in Fig. 3(a) for a range of densities ρ. Clearly the
vacancy-vacancy interactions are only weakly attractive for
all densities (≈ −1kBT ). These weak attractions highlight that
indeed mono-vacancies do not form stable vacancy clusters,
in agreement with the early results of Bennett and Alder,28

FIG. 3. Effective interactions between two vacancies (a) and two interstitials
(b). The dashed black line in (a) is a guide to the eye. The solid black line in
(b) corresponds to the interstitial-interstitial interaction potential as obtained
from a g(r)-inversion.

who showed that the concentrations of higher-order vacan-
cies are significantly smaller than those of mono-vacancies.
During the simulation, we observe that a di-vacancy will occa-
sionally form from the fusion of two mono-vacancies, but
these clusters break up continually. Thus entropy alone cannot
stabilize vacancy clusters but rather tends to stabilize mono-
vacancies due to the large number of possible configurations
and its associated combinatorial entropy. Interestingly, the
vacancy-vacancy interactions weaken slightly with increasing
density; yet we observe very little density-dependence in the
vacancy-vacancy interactions [Fig. 3(a)].

We also show the effective potential for the interstitial-
interstitial interactions for varying densities ρ [Fig. 3(b)].
In contrast to the vacancies, the interactions between inter-
stitials are found to be strongly attractive and range many
lattice sites. As such, we find that interstitials form long-lived
di-interstitials, which only sporadically manage to dissociate
into separate mono-interstitials. Thus entropy alone plays an
important role in stabilizing interstitial clusters. We observe
a large density-dependence on the interstitial-interstitial inter-
actions. Namely, the effective interactions between intersti-
tials become substantially stronger as the lattice becomes
more compact with increasing density. Unfortunately, we were
unable to properly sample the effective interactions at higher
densities due to these strong interactions.

Interestingly, if we calculate g(r) of the interstitial par-
ticle coordinates (instead of the interstitial lattice sites) and
subsequently use βF(r) ≈ −ln (g(r)), we obtain an extremely
similar effective potential (black solid line). This highlights
that our way of calculating the effective interactions is robust
and does not depend on the exact definition of the interstitial
coordinate.

D. Displacement field of point defects

Intuitively, the interactions between defects arise from the
strain that these point defects generate inside the crystal lattice.
To this end, we calculate the average displacements around
a single vacancy and a single interstitial, as summarized in
Fig. 4.
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FIG. 4. The average displacements |〈u(r)〉 | around a
vacancy (a) and an interstitial (b) for various densities.
(c) The displacement field 〈u(R)〉 around a vacancy at
ρσ3 = 1.05. (d) The displacement field 〈u(R)〉 around
an interstitial at ρσ3 = 1.23. (e) The displacement
field 〈u(R)〉 in the {110}-plane around a vacancy at
ρσ3 = 1.05. (f) The displacement field 〈u(R)〉 in the
{110}-plane around an interstitial at ρσ3 = 1.23. In [(c)
and (e)] and [(d) and (f)], displacement vectors are scaled
up by a factor of 30 and 6, respectively.

In the case of a vacancy, we observe that particles next to
a vacancy tend to relax only a small amount (0.01σ-0.02σ)
inward towards the vacancy center, as shown in Fig. 4(a).
Moreover, the displacements of particles are short-ranged;
only the nearest neighbours feel the local dilation of the
lattice. This is also clear upon plotting the average displace-
ment vectors 〈u(R)〉, as shown in Fig. 4(c), where vectors are
scaled up by a factor of 30. As such, we conclude that the
vacancies hardly perturb the lattice. Note that with increas-
ing density, the displacements around the vacancy decrease
[Fig. 4(a)].

In contrast, interstitials cause substantial displacements
of surrounding particles from their lattice sites: the nearest-
neighbouring particles are forced to displace large amounts
from their lattice sites in order to be able to accommodate the
interstitial particle. These particle displacements occur even
over large distances from the core of the defect; the local
deformation of the lattice is felt over many lattice sites from
the interstitial center, as shown in Fig. 4(d). The displace-
ments increase with increasing packing fraction [Fig. 4(b)].
Note that in the region near the center of the interstitial

(r . 10σ), the displacements decay exponentially, as was also
observed previously in a simple bead-spring model.34,35 Thus,
somewhat surprisingly we find similar scaling to the bead-
spring model, despite the presence of hard interactions in our
system.

From Figs. 4(c) and 4(d) it is clear that the displacements
for both interstitials and vacancies are more pronounced along
certain lattice directions than others. Thus, what appears as
noise in Figs. 4(a) and 4(b) actually stems from anisotropic
strains inside the lattice. This anisotropy is clearly visible in
plots of the displacements in 2d planes that pass through the
defect. In Figs. 4(e) and 4(f) we plot such a plane, namely, the
{110}-plane that intersects the defect. This plane allows us
to examine the strain along the 〈110〉, 〈100〉, and 〈111〉 direc-
tions, among others. Interestingly, these plots show that both
for vacancies and interstitials, the displacements are most pro-
nounced along the 〈110〉-direction, while displacements along
the other primary crystal axes, 〈100〉 and 〈111〉, are signifi-
cantly weaker. Note that this anisotropic character to the strain
fields is also responsible for the fluctuations in the interactions
plotted in Fig. 3.
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IV. DISCUSSION AND CONCLUSIONS

In conclusion, we have studied the diffusion, interactions,
and strain fields of the simplest point defects in the hard-sphere
model system. We have shown that the vacancy diffusion
decreases rapidly as the density is increased, while the inter-
stitial diffusion exhibits a much weaker density-dependence.
The rapid decrease of the vacancy diffusion was found to be
directly related to the increase in the height of the predicted
one-dimensional free-energy barriers. Additionally, we have
quantified the interactions between vacancies, which were
shown to be weakly attractive and short-ranged, and between
interstitials, which were found to be strongly attractive and
act over much larger distances. Thus we found that entropy
alone cannot stabilize vacancy clusters but rather tends to sta-
bilize mono-vacancies, while interstitials tend to cluster into
long-lived multi-interstitials. We also measured the average
particle displacements around a single vacancy and a single
interstitial. For vacancies, only the neighbouring particles were
found to displace a small amount towards the vacancy center,
while for interstitials the particles’ displacements are large
and even involve particles that are many lattice sites away
from the defect center. This is well reflected in the effective
interactions we have calculated, which were found to be weak
and short-ranged for vacancies and strong and wide-ranged for
interstitials.

The fact that vacancy diffusion goes down rapidly with
increasing density explains why vacancies in the dense, lower
regions of sediments will not be able to anneal out, as observed
in both experiments and simulations.36,37 For interstitials, we
found a weaker density-dependence on the diffusion con-
stant. This feature may be especially relevant under out-of-
equilibrium conditions where the crystal is perturbed (e.g.,
radiation damage or through the application of optical tweez-
ers) and point defects are generated: while the interstitials
may still be able to diffuse to the boundaries and anneal out,
the vacancies will be stuck inside the bulk of the crystal. We
hypothesize that the reason that vacancies slow down so dras-
tically is that they are perfectly commensurate with the lattice
and do not impose any lattice distortions. Namely, at high den-
sities the jumping particle requires significant displacements of
the surrounding particles in order to be able to pass through.
Yet, these fluctuations become increasingly less probable at
higher densities. For interstitials, however, the surrounding
particles are always forced to deviate from their lattice site, in
order to be able to accommodate the extra particle, and small
collective displacements can lead to diffusion of the interstitial
defect. It would be interesting to investigate further whether,
similar to the 2d case,38–41 distinct topological configurations
of single point defects can be identified and connected to defect
diffusion and rotation.

Lastly, we would like to point out that the predicted free-
energy barriers associated with vacancy diffusion all collapse

onto a single curve when normalized by the barrier height. For
further research, it would be interesting to investigate where
this collapse originates from.
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