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I. SUPPORTING INFORMATION

A. Force law

When two spherical shells of radius R are in contact
with a contact force F they each deform from a spher-
ical shape. For small forces the deformation is a slight
flattening localized around the point of contact. The de-
flection of the contact point is δ/2 in our notation, and
is given by [1]:

FL = k
δ

R
, (1)

where k = 2Ed2/
√

3(1− ν2) and ν the Poisson ratio.
If the contact force in a low volume fraction packing is
calculated using Eq. 1 for all δ values we obtain the force
distribution shown in Fig. S1B (black points). However,
more than 50% of contacts deform by a large force, as
shown by Fig. S1A. For larger forces one of the shells
buckles, resulting in a dimple with inverted curvature.
The relation between force and deflection is now given
by Ref 2, 3

FNL = c

√

δ

R
, (2)

where c = 0.534Ed5/2π/(1 − ν2)
√
R. Fig. S1C com-

pares these two analytical results, which intersect at
δc/R = (c/k)2. The force distribution calculated with
Eq. 2 is shown in Fig. S1B (blue points), but it seriously
underestimates the number of small forces in the pack-
ing. If the force distributions are calculated from the
experimental data using Eq. 1 for δi,j < δc and Eq. 2
for δi,j > δc we obtain distributions with unphysical dis-
continuities, as shown in Fig. S1B (red points). The low
value is caused by the narrower width of the last bin
used for binning data with Equation 1. An analytical
formula interpolating smoothly between these limits is
not known, although many numerical results exist, e.g.
Ref. 4.
A suitable formula that accomplishes this can be found

by starting with the assumption that the total deflection
is the sum of that due to the linear contribution, which is
localized near the apex, and the nonlinear contribution,
which is due to the dimple formation [5, 6]. Thus, writing
x = δ/R we find:

x = F/k + F 2/c2. (3)

Solving for F leads to

FCOMB =
c2

2k

(
√

1 +
4k2

c2
x− 1

)

. (4)

This curve is compared with Eqs. 1 and 2 in Fig. S1C
(green curve). While it correctly describes the limits for
small and large x the convergence at large x is unsatisfy-
ingly slow due to the term −1 in Eq. 4. To improve this
we add an empirical term that corresponds to a sigmoidal
curve that climbs from 0 to c2/2k around the crossover
point xc = (c/k)2:

FSTITCHING =
c2

2k

(
√

1 +
4k2

c2
x− 1 + 0.92

x2

x2 + (c/k)4

)

.

(5)
The added term has no linear term in its Taylor expan-
sion to avoid interference with the low x limit. Futher-
more, we give it a prefactor slightly below 1 to produce
an optimal fit in the relevant range 0 < x < 1. It is
compared with the other curves in Fig. S1C (red curve).
Differences with Equations 1 and 2 are very small.
To validate our stitching force law against experimen-

tal data we compare it to Atomic Force Microscopy mea-
surements from Ref. 7 on similar shells of radius 365 nm
and three different shell thicknesses. It is seen that Eq. 5
describes the data quite well, providing confidence in its
validity. The force distribution obtained using this force
law is shown in Fig. S1B (green points). A smooth distri-
bution is found that matches the ones found using only
small or only large forces in their respective ranges.

B. Force network

A quantitative analysis of force chains was performed
based on a definition for a force chain that avoids the
branching and merging of the force network, as described
in the article by Desmond et al. [8]. From their definition
a force segment belongs to a force chain if it is one of the
two largest forces on both particles joined by the force
segment. In this way the maximum number of forces on
a particle is limited to two, thereby avoiding branching
of the chains. In addition to this we set the limit of
the minimum length of a force chain to three particles,
or two force segments. Note that in this definition even
small forces below average can also become a part of force
chain, provided it is the largest for the given particle and
its contacting neighbor. The average length of the chains
in our jammed shell packings at various ϕ and at various
shear amplitudes are given in the Table S2.
For further investigation of the correlation in the direc-

tion of the force segments within chains, we plotted the
probability of the angle (α) between the force segments in
a force chain normalized by the unit solid angle, as shown
in Fig. S3 A and B for compression and shear. The prob-
ability P (α)/ sin(α) is non-uniform in both cases: it has
a small peak at α around 60◦ and a high peak near 180◦.
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FIG. S1. (A) Plot of the fraction of contacts at volume fraction 0.663 for which the deformation depth (δ) is less than twice the
shell thickness (d), expected to obey a linear force-distance law. (B) A typical distribution of contact forces in a low volume
fraction packing of shells (ϕ = 0.663) calculated using the linear force law (black), non-linear force law (blue), a force laws that
is linear for δ < 2d and nonlinear for δ ≥ 2d (red), and the stitching force law (green). (C) Force-deflection graph showing the
linear (black) and square root (blue) laws, their combination Eq. 4 (green), and the stitching law Eq. 5. Curves were drawn
for k = 5 and c = 1. (D) A test of the validity of Eq. 5 using experimental data from Ref.7.

For all volume fractions and shear strains the probability
is strongly suppressed for α < 60◦ due to the narrow size
distribution of the shells. The peak around 60◦ indicates
an enhanced tendency for larger forces to form trimers in
the system; a similar peak was also observed in experi-
ments on monodisperse compressed emulsions [9]. How-
ever, the peak height is rapidly reduced and is shifted
to higher angles with increasing volume fraction ϕ. In
addition, for the packing, ϕ = 0.810 (Fig. S3 A), we find
more or less three prominent peaks: around 60◦, 120◦

and near 180◦, which again is a sign that there is local
ordering in the sample, but not confirmed by local bond
order analysis [10]. For shear deformation, the probabil-
ity at 180◦ is found to be slightly higher compared to that
in compression, but there is no big change with increase
in shear strain (Table S2).
From the distribution P (α)/ sin(α) we measured the

persistence length of the chains given by [11],

ℓ∗ = 〈2Rt〉/(1− 〈cos(180− α)〉) (6)

where 〈2Rt〉 is the mean diameter of the particle. Ta-
ble S2 shows the persistence length of force chains at
different volume fractions and for different strain am-
plitudes plotted in Fig. S3 A and B. The value of the
persistence length is smaller than the average length of
the chain, especially for compression. However, clearly
long-range chain like correlation is higher in the shear
experiments as compared to a uniaxial compression.



3

1.5

3.5

X

Z

X

Z

Y

g

Y

g

A
B

FIG. S2. A magnified view of Fig. 5, the force networks in compressed shells in the lowest and highest packing fractions, (A)
ϕ = 0.699 and (B) ϕ = 0.908 for forces greater than 1.5 times the average value. Forces, in units of the average force 〈F 〉 are
represented by tubes connecting the centers of contact pairs where the thickness and color of the tube is proportional to the
magnitude of the normal force. Red indicates a force 3.5 times larger than the average force. The X-axis is the direction of
gravity.
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FIG. S3. Distribution of angle between the force segments in force chains normalized by the solid angle in packings at various
(A) ϕ and (B) shear strain amplitudes. The main effect of the shear was to displace the small local maximum from 60◦ to
about 75◦ or a deformation of the local order around a particle.
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TABLE S1. The value of average contact force and pressure
measured at different volume fractions in the static shell pack-
ings containing shells of d/Rt = 0.02, except for image stack
T1 which corresponds to shells of d/Rt = 0.04.

Image stack ϕ 〈F 〉 Pressure

(µN) (KPa)

S1 0.892 0.079 18.92

S2 0.913 0.077 18.22

S3 0.900 0.076 17.12

S4 0.895 0.075 16.45

S5 0.908 0.074 16.67

T1 0.906 0.275 29.21

S6 0.897 0.074 15.92

S7 0.888 0.072 15.36

S8 0.883 0.068 13.99

S9 0.852 0.067 12.68

S10 0.835 0.063 11.31

S11 0.806 0.058 9.61

S12 0.810 0.059 10.27

S13 0.793 0.057 9.25

S14 0.791 0.054 8.69

S15 0.765 0.054 8.10

S16 0.763 0.058 7.62

S17 0.776 0.053 8.11

S18 0.752 0.049 6.93

S19 0.726 0.046 5.88

S20 0.721 0.044 5.34

S21 0.723 0.046 5.89

S22 0.701 0.042 4.67

S23 0.699 0.042 4.63

S24 0.693 0.043 4.65

S25 0.677 0.041 3.98

S26 0.663 0.031 2.56

TABLE S2. Average lengths and persistence lengths of force
chains obtained from jammed shell packings at different vol-
ume fractions and for different strain amplitudes.

ϕ average chain length Persistence length (ℓ∗)

×〈2Rt〉 ×〈2Rt〉

0.699 4.45 2.31

0.752 4.35 2.26

0.765 5.25 2.08

0.806 5.68 2.85

0.810 5.33 1.61

0.835 4.30 2.22

0.852 5.89 3.43

0.885 4.86 2.27

0.888 4.65 2.32

0.900 6.10 2.43

0.906 4.96 2.62

0.908 5.23 3.49

0.913 6.21 3.11

Measured strain

0 4.42 3.31

0.093 4.61 3.51

0.169 4.66 3.64

0.204 4.93 3.76

0.216 4.63 3.46
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