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From experimental studies, it is well known that colloidal particles suspended in a near-critical binary
solvent exhibit interesting aggregation phenomena, often associated with colloidal phase transitions and
assumed to be driven by long-ranged solvent-mediated (SM) interactions (critical Casimir forces), set by
the (diverging) correlation length of the solvent. We present the first simulation and theoretical study of an
explicit model of a ternary mixture that mimics this situation. Both the effective SM pair interactions and
the full ternary phase diagram are determined for Brownian disks suspended in an explicit two-dimensional
supercritical binary liquid mixture. Gas-liquid and fluid-solid transitions are observed in a region that
extends well away from criticality of the solvent reservoir. We discuss to what extent an effective pair-
potential description can account for the phase behavior we observe. Our study provides a fresh perspective
on how proximity to the critical point of the solvent reservoir might influence colloidal self-assembly.
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Colloidal particles dispersed in a binary solvent mixture
have an inherent preference for one of the two solvent
species. This is reflected by preferential adsorption of the
favored species on the colloid surface, leading to the
development of adsorbed films. Such films can mediate
an effective interaction between two colloidal particles
which is remarkably sensitive to the thermodynamic state
of the solvent. Close to the (demixing) critical point of the
solvent, the adsorbed film thickness is determined by the
correlation length ξ of the solvent [1], and, as first predicted
by Fisher and de Gennes [2], the resulting solvent-mediated
(SM) interactions are long ranged, with universal scaling
properties. An analogy between the confinement of quan-
tum fluctuations of the electromagnetic field [3] and that of
thermal composition fluctuations in a near-critical binary
solvent led to these (universal) SM forces being referred to
as critical Casimir forces [4].
Theoretical studies on near-critical fluids confined

between a pair of infinitely large planar walls (representing
two static large colloids) [4–8], along with direct exper-
imental measurements of the Casimir force [9,10] between
a colloid and a wall, have advanced our understanding of
the nature of two-body SM interactions. Although exper-
imental investigations of a suspension of colloids go back
to the pioneering work of Beysens and Estève [11] (for a
very recent experimental study, see [12]), the theory and
computer simulation of such systems remain at a primitive
stage. Here we use computer simulations of a simple model
to understand the strength and range of the SM interactions
and the resulting phase behavior of a dense colloidal
suspension as a function of the thermodynamic state of
the solvent. Computer simulation of colloids in an explicit

molecular solvent with a bulk correlation length that
diverges upon approaching the critical point is notoriously
difficult, as very different length and time scales are
involved. Nevertheless, by sacrificing one spatial dimen-
sion and using a lattice model, we have calculated the phase
diagrams for an explicit ternary solvent-solvent-colloid
mixture, without resorting to the assumption of pairwise
effective potentials employed in other studies, most notably
Refs. [13–15].
Following Rabani et al. [16], we model the ternary

solvent-solvent-colloid mixture as an incompressible ABC
mixture on a 2D square lattice, as shown schematically in
Fig. 1. Colloids C are discretized hard disks with a radius
of R lattice sites, occupying a fraction η of the lattice sites.
Every site that is left unoccupied by the colloidal disks is
occupied by a solvent molecule of either species A or B,
such that the fraction of sites occupied by A and B equals
1 − η − x and x, respectively. We consider only nearest
neighbor AB repulsions and BC attractions: an energy
penalty 1

2
ϵ > 0 is assigned to every nearest neighbor

AB pair to drive AB demixing at sufficiently low temper-
atures T and an energy gain − 1

2
αϵ with α ≥ 0 for every BC

pair to mimic the colloid C’s preference for species B.
Throughout, we set the lattice spacing to unity. We
investigated carefully several lattice effects present in
our model, and we discuss it briefly in Sec. V of the
Supplemental Material [17]. We note that lattice effects
have no implications for the key results of our work.
In the limit η ¼ 0, our model reduces to a binary AB

mixture that is isomorphic to the 2D lattice (Ising)
model. The critical temperature of this binary mixture
is Tc ¼ 0.567ϵ=kB, and its thermodynamic state is

PRL 114, 038301 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

23 JANUARY 2015

0031-9007=15=114(3)=038301(5) 038301-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.114.038301
http://dx.doi.org/10.1103/PhysRevLett.114.038301
http://dx.doi.org/10.1103/PhysRevLett.114.038301
http://dx.doi.org/10.1103/PhysRevLett.114.038301


characterized fully by the reduced temperature τ ¼
ðT − TcÞ=Tc together with either the reduced chemical
potential difference Δμs ¼ ðμB − μAÞ=ϵ between species B
and A or the composition x. For Δμs < 0, the AB mixture
favors an A-rich composition at all temperatures. Moreover,
for τ < 0, demixing into an A-rich state (x < 0.5) and a B-
rich state (x > 0.5) takes place at Δμs ¼ 0, with a critical
point fτc ¼ 0; xc ¼ 0.5g; see Figs. 2(a) and 2(b). In the two
limits Δμs → �∞, our ABC mixture reduces to the 2D AC
or BC hard-disk system with packing fraction η in an
(irrelevant) pure A solvent (x ¼ 0) or pure B solvent
(x ¼ 1 − η). Barring small discretization and lattice arti-
facts, and ignoring subtleties regarding the (non)existence
of a stable hexatic phase, these AC and BC systems exhibit
fluid-solid coexistence for η ∈ ½0.700; 0.716� as repre-
sented by vertical dashed lines in Figs. 3(a)–3(c) [24].
Throughout this work, we study colloids immersed

in a supercritical (one-phase) AB mixture, relatively poor
in the colloid-preferred species B (η > 0, τ > 0, and
Δμs ≤ 0). This choice precludes solvent-mediated colloidal
aggregation arising from complete wetting and capillary
condensation [25]. The solvent is treated grand canonically;
i.e., the system is in thermal and diffusive contact with an
AB solvent reservoir with composition xr that fixes τ and
Δμs. The ABCmixture has composition x ≠ xr. Note that τ
merely sets the temperature; it is not a measure of distance
from criticality of the ternary mixture.
We focus on the case where B-rich layers adsorbed on

the colloid surfaces compete with a supercritical A-rich
bulk solvent (τ > 0 and Δμs < 0, α ¼ 0.6). We perform
simulations of the model in the fixed ðη; τ;ΔμsÞ ensemble
(see Sec. I of the Supplemental Material [17]) and in the

grand ensemble, using the staged insertion method [26]
together with the transition matrix Monte Carlo (TMMC)
technique [27], to accurately determine phase coexistence.
The grand canonical (GC)-TMMC results reported here
are for system size L ¼ 256. For a few state points, we
compared the results for two different system sizes L ¼
256 and L ¼ 512 and found the coexisting packing
fractions to be the same up to the third decimal place. In
Figs. 3(a) and 3(b), we present the phase diagram of the
ternary mixture in the Δμs vs η representation for
τ ¼ 0.025, 0.05, 0.075. The correlation length of the AB
solvent reservoir at the isochoric composition (Δμs ¼ 0,
xr ¼ 0.5) is ξ ¼ 0.567=τ, and for these temperatures it is
comparable to the size of the colloid R ¼ 6. Although
the underlying AB solvent reservoir is supercritical, our
simulations reveal that a nonzero concentration of large
Brownian disks induces stable colloidal gas (G), liquid (L),
and crystal (X) phases as well as two-phase G-L and G-X
coexistence. The G-L coexistence, shown more clearly in
Fig. 3(b), terminates at a critical point that shifts to lower
Δμs and higher η with increasing τ. By tracing the locus of
the three critical points of the ABCmixture from τ ¼ 0.075
through 0.05 to 0.025, it appears that the critical points of
the colloidal G-L transition are continuously connected to
that of the binary solvent mixture (η ¼ τ ¼ Δμs ¼ 0);
investigations at smaller τ are constrained by our computa-
tional resources.
ForΔμs < −0.1, we also observeG-X coexistence with a

broad colloid density gap that narrows sharply upon
lowering Δμs, consistent with the limiting hard-disk
fluid-solid coexistence at Δμs → −∞ (vertical dashed
lines). Significantly, this decreasing density gap at G-X
coexistence suggests an additional underlying metastable
G-L lower critical point. Although we have not been able to
identify this in our MC simulations, such an additional
critical point does occur in our mean-field treatment
presented in the Supplemental Material [17]. Moreover,

FIG. 1 (color online). A schematic representation of the
solvent-solvent-colloid lattice model. White cells are occupied
by solvent species A, blue cells by solvent species B, and brown
and black cells represent the interior and the boundary of a single
colloidal particle C, respectively.

(a) (b)

FIG. 2 (color online). (a) Phase diagram of the colloid-free AB
solvent mixture plotted as Δμs vs τ. (b) Phase diagram (binodal)
of the same mixture plotted as τ vs xr, the composition of the
solvent. The two coexisting phases for τ < 0 are designated A and
B. In (a) and (b), the lines correspond to the paths along which the
phase diagram of the full ternary ABC mixture is determined; the
dots represent the states where phase coexistence is observed, and
the orange dot indicates the critical point of the AB solvent
mixture (τ ¼ 0, Δμs ¼ 0).
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if we accept hard-disk coexistence in the opposite limit
Δμs → ∞, then we also expect a G-L-X triple point at
Δμs ≃ −0.06 for τ ¼ 0.025 [see Fig. 3(b)] and at even
lower Δμs for higher τ.
In Figs. 3(d)–3(f) and in the Supplemental Material’s

movie-03/04/05 [17], we show results for systems of
256 × 512 lattice sites simulated at reduced temperature
τ ¼ 0.05 (α ¼ 0.6, R ¼ 6) that illustrate configurations of
(d) a supercritical (homogeneous single-phase) fluid state,
(e) G-L coexistence, and (f) G-X coexistence. In all three
cases, the local solvent composition is strongly correlated
with the local colloid density, such that the coexisting L
phase in (e) and X phase in (f) have a binary BC
composition with tiny traces of A. Conversely, in the
coexisting G phases shown in Figs. 3(e) and 3(f), the
solvent composition is very close to the composition of
the reservoir x≃ xr. In Fig. 3(c), we convert the phase
diagram of Fig. 3(a) into the xr − η representation. It is
evident from the snapshots and Figs. 3(c) and 2(b) that, for

all observed G-L and G-X coexistence, (i) the composition
of the solvent reservoir xr < 0.25 is far from its critical
composition xc ¼ 0.5, and (ii) the correlation length of the
solvent is smaller than the colloid radius, ξ < R. Strikingly,
in the homogeneous supercritical state of Fig. 3(d), the
correlation length (the typical size of the A-rich and BC-
rich “patches”) is clearly much larger than the colloid
radius and thus far exceeds that of the solvent reservoir.
This reflects the nearby (G-L) critical point of the ternary
mixture which, as noted previously, appears to be contin-
uously connected to the critical point of the binary AB
solvent mixture (η ¼ τ ¼ Δμs ¼ 0). In fluid mixtures
where the species interact via short-range potentials, all
structural correlations decay with the same correlation
length [28]. Therefore, along the G-L critical locus,
solvent-solvent, colloid-colloid, and solvent-colloid corre-
lations should decay with the same, diverging correlation
length. We have confirmed this numerically by calculating
the BB, BC, and CC pair correlation functions; see Fig. S3

(a) (c)

(b)

(d) (e) (f)

FIG. 3 (color online). (a) Phase diagrams of the full ABC ternary mixture plotted as solvent chemical potential Δμs vs hard-disk
(colloid) packing fraction η for R ¼ 6. (b) The top portion of (a) is replotted for clarity. (c) Phase diagram of the ABC model plotted as
reservoir solvent composition xr vs η. Black, red, and blue symbols refer to τ ¼ 0.025, 0.05, and 0.075, respectively. The diamonds and
dots denote the phase boundaries obtained from grand canonical staged insertion Monte Carlo (MC) simulations and ðη; τ;ΔμsÞ-
ensemble MC simulations, respectively. The vertical dashed lines denote fluid-solid coexistence for pure hard disks. (d)–(f) Simulation
snapshots of a system of 256 × 512 lattice sites at τ ¼ 0.05 and α ¼ 0.6, showing (d) a supercritical colloidal phase at Δμs ¼ −0.005 of
128 colloids, (e) gas-liquid (G-L) coexistence at Δμs ¼ −0.04 of 348 colloids, and (f) gas-crystal (G-X) coexistence at Δμs ¼ −0.3 of
580 colloids.
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of the Supplemental Material [17]. We have also confirmed
the divergence of the long wavelength limit of the structure
factor SBB upon approaching the critical point of the ternary
mixture at a fixed value of temperature τ ¼ 0.025; see
Fig. S4 of the Supplemental Material [17].
As mentioned earlier, there have been several attempts to

ascertain the phase behavior of colloids in a near-critical
solvent based solely on effective two-body interactions, e.g.,
Refs. [12,13]. In order to assess the validity of this approach
for the present model system, we calculated several one-
and two-colloid properties for the range of thermodynamic
state points studied above. For the three temperatures
investigated, we show in Fig. 4 the dependence on Δμs
of (a) the thickness λ of the adsorbed B-rich film on a single
disk, (b) the minimum Um of the effective pair potential
Uðx; yÞ, and (c) the reduced second virial coefficient
B�
2 ¼ ð1=2ÞR∞−∞

R∞−∞f1− exp½−Uðx; yÞ=kBT�gdxdy=2πR2,

normalized to that of 2D hard disks. The effective two-body
potential Uðx; yÞ is obtained as follows. We simulate a
system of just two colloids suspended in solvent at fixed
fΔμs; τg. We fix the position of one colloid fixed at (0,0) and
compute the probability Pðx; yÞ of finding the other colloid
at position ðx; yÞ, using the TMMC technique (see Sec. Vof
the Supplemental Material [17] for details). To facilitate
comparison, we replot the phase diagrams of Fig. 3 in the
η − Δμs representation in Fig. 4(d). The film thickness λ and
thewell depthUmin are measures of the range and strength of
Uðx; yÞ, respectively. The quantity B�

2 is a well-established
(dimensionless) measure of combined strength and range.
This must be sufficiently negative in order for gas-to-liquid
condensation to occur in systems described by pairwise
additive interactions [29,30].
Figure 4(a) shows a monotonic increase of the film

thickness from λ ≪ R to λ ≫ R, reflecting the growth of
the correlation length, as the isochoric composition is
approached (Δμs → 0). In the same range, Um varies
nonmonotonically, being strongest at slightly negative
Δμs, reaffirming earlier theoretical predictions [31,32].
At Δμs ≃ 0, the effective pair potential is long ranged;
however, it is only weakly attractive (jUmj=kBT < 1). Upon
decreasing Δμs, Uðx; yÞ does become more attractive,
although the adsorbed film thickness λ and thereby the
range of Uðx; yÞ decrease. B�

2 also becomes more negative.
We performed simulations of the effective system,

with the colloid-colloid pair interaction determined by
the measured effective potential. For states where the
actual ternary mixture is supercritical, e.g., fτ¼0.075;
Δμs¼−0.0075g, fτ ¼ 0.05;Δμs ¼ −0.005g [cf. Figs. 3(a)
and 4(d)], simulations performed with the effective two-
body potential predict G-L coexistence. The square sym-
bols in Fig. 4(d) denote the packing fractions of coexisting
phases at these two representative state points. This along
with the B�

2 and Um=kT curves indicates that the
approaches employing only effective pair potentials as
obtained from, e.g., planar slit studies and the Derjaguin
approximation overestimate the extent of G-L coexistence
and underestimate the shift in critical point of the ternary
mixture with respect to that of the solvent reservoir.
In summary, we find the phase behavior of a model of

colloids in a near-critical solvent to be rich; (i) we observe
G-L and G-X coexistence with accompanying solvent
demixing, (ii) both occur far from the critical point of
the solvent reservoir and the locus of G-L critical points
appears to connect smoothly to this, and (iii) many-body
interactions are crucial to account quantitatively for the
observed colloidal phase behavior. In light of our results,
it would be interesting to revisit the problem of protein
assembly in two-dimensional plasma membranes of living
cells [33,34] and the recent experiments of Nguyen et al.
[12]. The topology of the phase diagram of colloidal
particles in a near-critical binary solvent stems from an
intricate balance between competing colloid-solvent and

(a)

(b)

(c)

(d)

FIG. 4 (color online). (a) Thickness λ of theB-rich film adsorbed
on a single colloid. (b) The minimum well depth of the effective
two-body SM potential. (c) The reduced second virial coefficient
B�
2. (d) To facilitate comparison, the phase boundaries of the

ternary ABC mixture of Fig. 3 are replotted in the η − Δμs
representation. The square symbols (d) correspond to packing
fractions of coexisting phases computed from simulations of
colloids interacting via the measured two-body interaction. Black,
red, and blue symbols refer to reduced temperatures τ ¼ 0.025,
0.05, and 0.075, respectively (R ¼ 6, α ¼ 0.6).
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solvent-solvent couplings that can be captured properly
only in a treatment of the full ternary mixture. Moreover,
we speculate that the topology is likely to hold for an
analogous 3D system (hard-sphere colloids); there is
nothing particular to two dimensions, an assertion sup-
ported by our mean-field treatment—see Supplemental
Material [17].
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I. SIMULATION METHODS

Our model is based on that of Rabani et al. [1]. We model the colloidal suspension as an

incompressible ABC mixture on a 2D square lattice. Colloids C are discretized hard discs (HD)

with a radius of R lattice sites that can undergo translational motion on the square lattice. The

hard-disc Hamiltonian HC is zero for non-overlapping configurations, and infinite if any pair of

colloids overlap. Every lattice site i has an occupancy number ni = 1 if it is occupied by a colloidal

disc, and 0 if it is available for an A or a B solvent molecule. For sites with ni = 0 we associate

an occupancy number si = −1 if the site is occupied by A, and si = 1 if by B. We consider only

nearest neighbour interactions and assign an energy penalty ε/2 > 0 for every nearest neighbour

AB pair to drive AB demixing at sufficiently low temperatures and an energy gain of −αε/2 with

α ≥ 0 for every BC pair to mimic preferential adsorption of solvent B on the colloid surfaces. The

total Hamiltonian thus reads

H = HC +
ε

4

∑

〈i,j〉
(1− sisj)(1− ni)(1− nj)−

αε

4

∑

〈i,j〉
ni(1 + sj)(1− nj) (1)

where the summation runs over the set of distinct nearest neighbour pairs ij, and for every

lattice site i, ni = 1 is it is occupied by a colloidal disc, and 0 if it is available for an A or a B

∗ m.dijkstra1@uu.nl
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solvent molecule. For sites with ni = 0 we associate an occupancy number si = −1 if the site is

occupied by A, and si = 1 if by B.

We performed simulations in an elongated simulation box of 256 × 512 sites in the fixed

(η, τ,∆µs)-ensemble. For packing fractions η of hard discs that lie within the binodal curve,

two-phase coexistence will be observed in the simulation box. The packing fractions of the co-

existing phases can be obtained from the resulting density profiles of the hard discs. In order to

determine the G-L coexistence more accurately we treat the colloids grand canonically using the

staged-insertion technique [2] in combination with the transition matrix (TM) MC method, see

e.g.[2–4].

The length L of the simulation box in all our simulations is at least 4 times the correlation length

of the bulk solvent reservoir at the composition xc = 0.5, (the maximum correlation length of the

solvent reservoir at a fixed τ). We have also taken care to simulate for time scales much longer

that the slowest correlation time in the system. The GC-TMMC simulation results reported in our

manuscript are for a system size L = 256. A typical GC-TMMC run, to locate one coexistence

point for the L = 256 system, takes ' 600 CPU hours. For a few state points we compared the

results for two different system sizes, L = 256 and L = 512, and found the coexisting densities to

be the same up to the third decimal place. The L = 512 system required ' 5000 CPU hours to

simulate one state point. It is not feasible to perform TMMC simulations in system sizes larger

than L = 512.

II. MEAN FIELD PHASE DIAGRAM : 3D REPRESENTATION

Within a mean-field approximation we analyzed the Helmholtz free energy associated with the

Hamiltonian of our ABC model, which can be decomposed as FMF = FC + FAB + UBC , with (i)

the pure-colloid contribution FC(η, T ) (ii) the mean-field free energy FAB(x, η, T ) of the binary

AB mixture in the free space in between the colloids (with fractions 1−x′ and x′ ≡ x/(1− η) of A

and B, respectively), and (iii) the average adsorption energy UBC of the B solvent on the colloid

surfaces. This yields, up to irrelevant constants,

FMF (η, T, x) = FC(η, T )+
2εx(1− x− η)

(1− η)
+kBT

[
x ln

x

1− η + (1− x− η) ln

(
1− x− η

1− η

)]
−Zαε

vc

xη

1− η
(2)

where Z ' 2πR is the effective colloidal coordination number and where vc ' πR2 is the

effective volume (area in 2D) of the colloid. For FC(η, T ) we employ the hard-disc free energy
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from Ref. [5] for the fluid phase, and from Ref. [6] for the solid phase. The phase diagram shown

in Fig. S1 is based on Zα = 32 and vc = 1000, which do not correspond to values used in our

simulation studies. Our objective here is to attempt to understand the topology of the simulation

phase diagrams qualitatively and investigate the possibility of a lower (metastable) G-L critical

point.

In Fig. S1, we plot the resulting phase diagrams for various τ > 0, which reveal a closed-loop

immiscibility gap and two G-L critical points. We plot three slices of the full phase diagram and

the locus of critical points of the ternary mixture. This is shown as the dark green curve in the

figure, and it smoothly approaches the critical point of the pure solvent mixture τMF
c = 0.0 (blue

diamond symbol). The locus of critical points indeed continues for τ < τMF
c . For clarity, we do

not present this. The pale green curve is the projection of the critical line on the η − τ plane.

The line of colloidal G-L critical points in our simulations should also behave in a similar manner.

Furthermore the mean-field theory predicts that at a fixed temperature, there exists an upper

G-L critical point and a lower metastable G-L critical point. On increasing temperature the two

critical points approach each other, merge and disappear at a certain temperature. This point is

indicated by the olive green diamond symbol in Fig. S1. We also observe coexistence of two crystal

phases with the same (hexagonal) symmetry but different lattice spacings, also terminating at a

critical point. The topology of the mean-field phase diagram and its τ -dependence are remarkably

consistent with that obtained from simulations.

III. CORRELATION FUNCTIONS

We define the two-point correlation functions as,

gαβ(r) =
N

〈Nα〉 〈Nβ〉

〈 ∑

{i,j|ri−rj=r}
nαi n

β
j

〉
(3)

where nαi represents the occupancy of species α at site i, Nα is the total number of sites filled

with species α, and N =
∑
αNα, is equal to the lattice size. It is now well-established that in fluid

mixtures where all species interact via short range potentials, all structural correlations should

decay with the same correlation length [7]. In Fig. S3, we plot the quantity log |gαβ(r)− 1|, for

the pairs BB, BC and CC. It is evident that all correlations do decay with the same correlation

length, as expected [7], illustrating that the correlations of all species of our ternary mixture remain

coupled.
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FIG. S1. Phase behavior of the ternary mixture as predicted by mean-field theory: Binodals

of the ternary colloid solvent system as calculated within mean-field theory plotted in the ∆µs vs η vs τ

representation. We show slices of the full phase diagram for three fixed temperatures τ = 0.025 (black),

τ = 0.05 (dark red ), and τ = 0.075 (blue). The gray, pale red and pale blue curves correspond to metastable

colloidal gas-liquid coexistence, which also terminates at a critical point. The dark green curve is the locus

of critical points of the ternary mixture, this approaches smoothly the critical point of the solvent denoted

by the blue diamond dot in the limit τ → τMF
c = 0.0, η = 0, ∆µs = 0. For each τ we show the upper

(stable) and lower (metastable) G-L critical points as indicated by the orange diamond symbols. The olive

green diamond symbol corresponds to the point where the upper and lower critical points of the ternary

system merge and disappear. The dashed orange lines (guide to the eye) connect the critical points to their

projection in the η − τ plane. The projection of the locus of critical points in the η − τ plane is given by

the pale green curve.
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FIG. S2. a) Projections of the binodals of the ternary colloid-solvent system as calculated within mean-field

theory for three fixed temperatures τ = 0.025 (black), τ = 0.05 (dark red ), and τ = 0.075 (blue) (same as

shown in figure S1), on the ∆µs - η plane. b) Phase diagrams of the ABC model computed with simulations

for three fixed temperatures τ = 0.025 (black), τ = 0.05 (dark red ), and τ = 0.075 (blue) (same as Fig. 3a

of our manuscript).
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FIG. S3. The partial pair correlation functions plotted as log |gαβ(r)− 1| vs distance, normalized by the

lattice spacing a, at temperature τ = 0.025, colloid packing fraction η = 0.4 and chemical potential ∆µs =

−0.005. All three correlation functions exhibit the same decay length and period, as predicted by [7].
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FIG. S4. a) Partial structure factor SBB computed at τ = 0.025, ∆µs = −0.00315, and different values

of colloid packing fraction; η = 0.0 (green), η = 0.0345 (brown), η = 0.0862 (blue),η = 0.1724 (orange)

and η = 0.3276 (cyan). The structure factors, were shifted by 0.5 in log-scale for clarity. The inset shows

the G-L binodal for τ = 0.025 (black diamond symbols). b) The maximum value of the structure factor

SBB(k → 0) vs. the packing fraction η of the colloids.

IV. STRUCTURE FACTORS

At the G-L critical points, whose location can be gleaned from Fig. 3 b) of the paper the

solvent-solvent (BB), colloid-colloid (CC) and solvent-colloid (BC) correlations decay with the

same, diverging correlation length. Here in figure S4 a) we show the BB structure factor defined

as SBB(k) = (1/N)
〈
nkn−k

〉
, where nk, is the Fourier transform of the solvent occupancy profile

[8]. We compute SBB(k) at a fixed temperature τ = 0.025, and solvent chemical potential ∆µs =

−0.00315, fixed very close to the critical value. We present results at several packing fractions of

the colloid η, indicated by dots in the phase diagram, shown in the inset of Fig. S4 a). The long

wavelength limits of the partial structure factors Sαβ(k = 0) diverge on approaching the critical

point. In Fig. S4 b) we plot the limit SBB(k = 0), obtained from a linear extrapolation of the

simulation data, vs η, which shows a maximum corresponding to the state closest to the G-L critical

point. Calculations of SBB(k → 0) vs η, close to the critical value, can yield a rough estimate of

the G-L critical point.

V. EFFECTIVE TWO-BODY INTERACTIONS

The effective two-body interactions were computed by simulating a system of two colloids at

fixed {∆µs, τ}. We fix the position of one colloid at the origin and measure the probability of
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finding the other at position {x, y}. We use the Transition Matrix Monte Carlo technique to make

sure the colloids sample the entire range of distances {−Lmax ≤ x ≤ Lmax,−Hmax ≤ y ≤ Hmax}.
The two body potential U(x, y) is obtained as U(x, y) = −kT log(P (x, y)/P (∞,∞)).
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FIG. S5. Effective two body potential between two colloids suspended in a solvent at τ = 0.05 for a)

∆µs = −0.01 and b) ∆µs = −0.5. The area in white is inaccessible due to the hard core repulsion.
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FIG. S6. Effective two-body interactions between a

pair of colloids at ∆µs = 0, α = 19. ξ is the correlation

length of the solvent.

The effective colloid-colloid interaction of

the discretized colloids (refer to Fig. 1 in paper)

in our lattice model is anisotropic; the strength

of the interaction close to contact varies sub-

stantially. In figure S5 we plot the two-body

potential measured at ∆µs = −0.01 and ∆µs =

−0.5 at temperature τ = 0.05, where it can be

seen that lattice effects are pronounced when

the range of the interaction is of the order of

1 − 3 lattice sites. While these lattice effects

play no role in G-L coexistence, they play a

significant role in G-X coexistence. The crys-

tal phase is facilitated by the colloids aligning

along the more energetically favorable directions.

The form of the effective colloid-colloid interaction between our colloidal discs depends on the

proximity of the solvent reservoir to its critical point and, to some extent, on the value of the

adsorption strength α. In the scaling regime, i.e for small values of ∆µs and τ , the functional

form of these effective interactions is known [9–11] theoretically. In Fig. S6 we plot the effective
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two-body interaction computed at ∆µs = 0 for colloids of different sizes at different temperatures.

The distance between the colloids is scaled with the correlation length of the bulk reservoir. Our

data shows good scaling behaviour, except at short distances where scaling is no longer applicable

and where lattice effects become important. That we find good scaling gives us confidence that

our simulations capture correctly the fluctuations responsible for the Casimir attraction.

VI. MOVIE INFORMATION

Movie I (SI-movie-01.mov) shows a ternary ABC mixture with neutral colloids (R = 6, α = 0,

Nc = 64), with no preference for solvent species A or B, at colloid packing fraction η = 0.11

and solvent composition x = (1 − η)/2 (to the right of the dashed line), in equilibrium with a

solvent reservoir (left), with composition xr = 1/2, at the same reduced temperature τ = 0.005

and reduced solvent chemical potential difference ∆µs = 0.

Movie II (SI-movie-02.mov) shows a ternary ABC mixture with colloids that strongly prefer

solvent species B ( R = 6, α = 19, Nc = 64), at colloid packing fraction η = 0.11 (to the right of

the dashed line) in equilibrium with a solvent reservoir (left), with composition xr = 1/2, at the

same reduced temperature τ = 0.005 and reduced solvent chemical potential difference ∆µs = 0.

Movie III (SI-movie-03.mov) shows a canonical ensemble simulation of a ternary ABC mixture

with Nc = 128 colloids, in a system of 256 × 512 lattice sites, at reduced temperature τ = 0.05

and reduced solvent chemical potential difference ∆µs = −0.005 (R = 6, α = 0.6). The system

exhibits a supercritical colloidal phase.

Movie IV (SI-movie-04.mov) shows a canonical ensemble simulation of a ternary ABC mixture

with Nc = 348 colloids, in a system of 256× 512 lattice sites, at reduced temperature τ = 0.05 and

reduced solvent chemical potential difference ∆µs = −0.04 (R = 6, α = 0.6). The system exhibits

colloidal gas-liquid (G-L) coexistence.

Movie V (SI-movie-05.mov) shows a canonical ensemble simulation of a ternary ABC mixture

with Nc = 580 colloids, in a system of 256× 512 lattice sites, at reduced temperature τ = 0.05 and

reduced solvent chemical potential difference ∆µs = −0.3 (R = 6, α = 0.6). The system exhibits

colloidal gas-crystal (G-X) coexistence.
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