
Glassy dynamics of convex polyhedra
Nikos Tasios, Anjan Prasad Gantapara, and Marjolein Dijkstra 
 
Citation: The Journal of Chemical Physics 141, 224502 (2014); doi: 10.1063/1.4902992 
View online: http://dx.doi.org/10.1063/1.4902992 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/141/22?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
“Ideal glassformers” vs “ideal glasses”: Studies of crystal-free routes to the glassy state by “potential tuning”
molecular dynamics, and laboratory calorimetry 
J. Chem. Phys. 138, 12A549 (2013); 10.1063/1.4794787 
 
On the determination of the glass forming ability of AlxZr1−x alloys using molecular dynamics, Monte Carlo
simulations, and classical thermodynamics 
J. Appl. Phys. 112, 073508 (2012); 10.1063/1.4756037 
 
Nucleation barriers in tetrahedral liquids spanning glassy and crystallizing regimes 
J. Chem. Phys. 135, 124506 (2011); 10.1063/1.3638046 
 
Stepwise melting of a model glass former under confinement 
J. Chem. Phys. 131, 134504 (2009); 10.1063/1.3239468 
 
Comparison of kinetic Monte Carlo and molecular dynamics simulations of diffusion in a model glass former 
J. Chem. Phys. 120, 8134 (2004); 10.1063/1.1690241 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.211.44.85 On: Fri, 13 Nov 2015 15:29:27

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/701402136/x01/AIP-PT/JCP_ArticleDL_092315/AIP-2639_EIC_APL_Photonics_1640x440r2.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=Nikos+Tasios&option1=author
http://scitation.aip.org/search?value1=Anjan+Prasad+Gantapara&option1=author
http://scitation.aip.org/search?value1=Marjolein+Dijkstra&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4902992
http://scitation.aip.org/content/aip/journal/jcp/141/22?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/138/12/10.1063/1.4794787?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/138/12/10.1063/1.4794787?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/112/7/10.1063/1.4756037?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/112/7/10.1063/1.4756037?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/135/12/10.1063/1.3638046?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/131/13/10.1063/1.3239468?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/120/17/10.1063/1.1690241?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 141, 224502 (2014)

Glassy dynamics of convex polyhedra
Nikos Tasios,a) Anjan Prasad Gantapara, and Marjolein Dijkstra
Debye Institute for Nanomaterial Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht,
The Netherlands

(Received 3 September 2014; accepted 18 November 2014; published online 8 December 2014)

Self-assembly of polyhedral-shaped particles has attracted huge interest with the advent of new
synthesis methods that realize these faceted particles in the lab. Recent studies have shown that
polyhedral-shaped particles exhibit a rich phase behavior by excluded volume interactions alone;
some of these particles are even alleged to show a transition to a glass phase by quenching the liquid
sufficiently fast beyond the glass transition (supercooling), such that the formation of structures with
long-range order is suppressed. Despite the recent progress, no study has been made on the glass
formation of polyhedral-shaped particles. Here, we study the glass behavior of polyhedral particles
using advanced Monte Carlo methods. We investigate the formation of a glass of monodisperse hard
polyhedral-shaped particles, namely, octahedra, tetrahedra, and triangular cupola, using simulations.
Finally, the fragility of these particles is determined and compared to that of a polydisperse hard-
sphere system. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4902992]

I. INTRODUCTION

Although the glass phase has been known and studied
for a very long time,1 in reality, this metastable state has
been described by many different definitions, which reflects
our limited understanding. Many materials can form glasses
which exhibit a variety of properties. Creating strong and low-
density glasses, and glasses with various optical and elec-
tronical properties has received special interest, a pinnacle of
which are metallic glasses; these are amorphous metals with
remarkable toughness and small fragility, due to the absence
of crystal defects.

The focus of the scientific community’s attention on
glasses is well warranted, because the nature of the glass tran-
sition is still poorly understood and under continuous debate
up to the current day. Materials close to the glass transition
show a slowing down of their dynamics and a lack of long-
range order, and hence, are often compared with highly vis-
cous fluids. Because of the extremely slow dynamics, it is
hard to study the long-time behavior of glasses. The glass
transition can either occur upon cooling, or compression, and
is accompanied by a smooth increase in the viscosity (un-
like first-order phase transitions where abrupt changes are in-
volved). A liquid below its standard freezing point will crys-
tallize in the presence of a seed crystal or nucleus, around
which a crystal structure can form. However, in the absence of
such a nucleus, the liquid phase can be maintained all the way
down to the temperature where homogeneous crystal nucle-
ation occurs. If the system is quenched sufficiently fast, such
that homogeneous nucleation does not occur, an amorphous
(non-crystalline) solid will form.

If a glass former is cooled from its melting tempera-
ture to its glass transition temperature Tg, it shows an in-
crease in its relaxation time by up to 14 decades without
a significant change in its structural properties, hence it is
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a challenge to investigate such a system experimentally, as
well as theoretically. Remarkably, supercooled liquids show
a very similar scaling behavior for the relaxation times for
a very large variety of different liquids. Despite the efforts
to study this dramatic growth in relaxation time, even to-
day there is intense dispute on the actual underlying mech-
anisms. Over the course of time many different theories have
been put forward, such as, the entropy theory by Adams,
Gibbs, and Di Marzio,2, 3 the coupling-model proposed by
Ngai,4 or the mode-coupling theory (MCT) by Götze and
Sjögren.5, 6 The approach by which these theories explain the
slowing down of the supercooled liquid with decreasing tem-
perature, differs radically from case to case. In the entropy
theory it is assumed, e.g., that the slowing down can be un-
derstood essentially from the thermodynamics of the system,
whereas MCT puts forward the idea that at low temperatures
the nonlinear feedback mechanisms in the microscopic dy-
namics of the particles become so strong that they lead to
structural arrest of the system. The most successful theory
has been MCT, which makes predictions that corroborate with
experiments.

Recently, there has also been an increasing interest in the
synthesis and self-assembly of polyhedral particles.7–13 Much
progress has been made in enumerating and characterizing the
packing of polyhedral shapes and the self-assembly of poly-
hedral nanocrystals into ordered superstructures.14 New syn-
thetic methods give access to a wide range of well-defined
polyhedral nanocrystalline shapes and faceted nano-particles
including cubes, truncated cubes, cuboctahedra, truncated oc-
tahedra, and octahedra over a range of sizes from 100 to
300 nm.15–24 The experimental realization of these particle
shapes has sparked an effort to study their dynamics, dens-
est crystal structures, and self-assembly.25–27 de Graaf et al.26

predicted the densest crystal structures of 145 convex poly-
hedra, whereas Glotzer et al.25 studied the self-assembly of
these polyhedra, starting from the isotropic fluid phase, and
also found a quasi-crystalline phase of hard tetrahedra.28

0021-9606/2014/141(22)/224502/7/$30.00 © 2014 AIP Publishing LLC141, 224502-1
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FIG. 1. The three particle shapes studied here. From left to right: octahedron,
tetrahedron, and triangular cupola.

Advancements have also been made in the research of binary
compounds of polyhedra by Escobedo et al.29, 30

In what follows, we present the results of our study on
the dynamics of convex polyhedral-shaped particles near the
glass transition. The study was made using Monte Carlo (MC)
simulations and the shapes investigated are octahedra, tetra-
hedra, and triangular cupola, depicted in Figure 1. The first
two are Platonic solids, which are regular, convex polyhe-
dra; the faces are congruent, regular polygons, with the same
number of faces meeting at each vertex. Triangular cupola is
a Johnson solid. We chose to study octahedra because they
exhibit point symmetry. Tetrahedra on the other hand, while
not being point-symmetric, exhibit a quasi-crystalline phase
which can be readily suppressed by means of quenching.28

This allows us to study the glass phase beyond this quasi-
crystalline phase. Triangular cupola is the most asymmetric
shaped particle studied here, and can be seen as half of a
cuboctahedron, which is an Archimidean solid. In a recent
study by Glotzer et al.,25 triangular cupola did not exhibit any
crystalline phases, which make it an interesting test case for
the study of glass formation of polyhedral-shaped particles.
Lower bounds for the packing fraction, φLB, of the densest
known packings of these polyhedra have been estimated by
de Graaf et al.14 For triangular cupola, the packing fraction
was estimated at φLB = 0.91836, with a unit cell containing 2
particles. For tetrahedra, it was estimated at φLB = 0.85634,
with 4 particles in the unit cell, while for octahedra, φLB
= 0.94736, with 1 particle in the unit cell forming a
Minkowski crystal.27, 31

In Sec. II, we describe the simulation methods used and
we present and discuss the results in Sec. III.

II. METHODOLOGY

We consider hard polyhedral-shaped particles that inter-
act solely through a hard-core potential. To study the dynam-
ics of the glass transition of these systems, MC simulations
are performed in the NV T and NPT ensembles, in which we
fix the number of particles N, the temperature T, and the vol-
ume V or pressure P, respectively. The simulations consist
of N such particles, confined in a cubic box, and subject to
periodic boundary conditions.

We employed NPT simulations to generate the initial
configurations by quenching the particles, using a high com-
pression rate, to the desired packing fraction, thereby sup-
pressing crystallization. NPT simulations were also used to
measure the equations of state.

The compression rate was set to �P* = 0.0256 per 100
MC steps, where P ∗ = βPVp, and Vp the volume of the par-
ticle. A MC step was defined as N + 1 MC trials consisting of
N/2 translations, N/2 rotations, and 1 volume change.

While quenching the samples, the crystallization was
monitored using the averaged bond orientational order
parameter,32–35 and the least crystallized samples were cho-
sen for our NV T simulations. The complex vector qlm for
particle i is defined as

qlm(i) = 1

Nb(i)

N
b
(i)∑

j=1

Ylm(θij , φij ), (1)

where Nb(i) is the number of neighbors of particle i, and Ylm
are the spherical harmonics. θ ij and φij are the polar and az-
imuthal angles of the bond formed by particles i and j. The
spherical harmonics for a given value l (and |m| ≤ l) form
a (2l + 1)-dimensional representation of the rotational group
SO(3). This means that the qlm(i) corresponding to a particular
representation are scrambled by rotating the external coordi-
nate system.

Solid-like particles are identified as particles for which
the number of bonds per particle ξ (i) is at least ξ c, where

ξ (i) =
N

b
(i)∑

j=1

H [dl(i, j ) − dc],

with H the Heaviside function, dc the dot product cut-off, and

dl(i, j ) =

l∑
m=−l

q̄lm(i)q̄∗
lm(j )(

l∑
m=−l

∣∣q̄lm(i)
∣∣2

)1/2 (
l∑

m=−l

∣∣q̄lm(j )
∣∣2

)1/2 ,

which is normalized to 1. q̄lm is the quantity in Eq. (1), aver-
aged over the nearest neighbors,

q̄lm(i) = 1

Ñb(i)

Ñ
b
(i)∑

j=0

qlm(j ),

where j runs over all Nb(i) nearest neighbors of particle i, in-
cluding i itself.35 Crystallinity can be then defined as the num-
ber fraction of solid-like particles.

In our simulations, we used l = 6, ξ c = 5, dc = 0.3, and
considered particle neighbors at cutoff radius 1.2rc, where
rc is the position of the first peak of the radial distribution
function, g(r) (see Fig. 2). Triangular cupola and tetrahedra
showed insignificant levels of crystallinity (<1%). For Octa-
hedra, at high packing fractions, φ, we chose configurations
with a maximum of 4% crystallinity for production.

For the actual study of the dynamics of the particles,
NV T simulations were used at various packing fractions and
configurations of 2000 particles, prepared using the afore-
mentioned NPT quenching scheme. Up to 107 Monte Carlo
steps and some 20 independent simulations were used in av-
eraging the various quantities studied. For all particle shapes
studied, crystallinity fluctuated around some mean value,
with the exception of Octahedra, which for packing fractions
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FIG. 2. Radial distribution functions, g(r), of (a) octahedra, (b) triangular
cupola, and (c) tetrahedra, for various packing fractions, φ, listed inside the
figure. The distribution functions have been shifted by 0.2 in the vertical di-
rection to make them distinguishable.

φ > 0.58, could spontaneously crystallize. These configura-
tions were not considered in our analysis.

The main quantity which was used in studying the slow-
ing down of the relaxation near the glass transition, is the self-
intermediate scattering function FS (SISF), defined as

Fs(k, t) = 1

N

〈 ∑
j

e
−ik

(
r
j
(t0+t)−r

j
(t0)

)〉
, (2)

where ri(t) is the position of the centroid of particle i at time t
(henceforth simply referred to as the particle position). For
isotropic liquids, FS is independent of the direction of the
scattering vector k and depends only on its magnitude. This
allows us to additionally average FS over different directions
and a small shell dk (similar to scattering experiments) of the
wave vector. The self-intermediate scattering function is stud-

ied at wave vector k, close to the first peak of the static struc-
ture factor S(k), which is relevant to the glass transition.36

It should be noted that, due to finite-size effects, the cen-
ter of mass of the ensemble can drift away from its initial
position. This is an unwanted situation since it introduces an
unphysical collective motion of the particle ensemble. To ac-
count for this effect in our simulations, we kept track of the
center of mass and extracted it from the particle positions.

When studying dynamics using Monte Carlo simulations,
it is also important to choose an appropriate maximum dis-
placement and orientation. We followed the scheme presented
by Berthier and Kob,37 which studied the behavior of the re-
laxation times, τα , for a range of different maximum displace-
ments, to make an optimal choice.

Finally, the fragility of the glasses formed by the studied
particle shapes was also investigated. Fragility characterizes
how rapidly the structural relaxation time, τα , of a material
slows down as it is cooled towards the glass transition tem-
perature. Materials with higher fragility have a relatively nar-
row glass transition temperature range, while those with low
fragility have a relatively broad glass transition temperature
range.38 In the case of colloidal glasses, fragility is often de-
fined in terms of the sensitivity of τα with respect to the pack-
ing fraction, φ, instead of the temperature.39, 40 The concept of
fragility is best summarized in a re-normalized Arrhenius plot
(also referred to as an Angell plot38, 39), where relaxation time,
τα , is plotted as a function of the packing fraction rescaled by
the packing fraction φg of the glass transition.

III. RESULTS AND DISCUSSION

Before studying the dynamics of the polyhedral-shaped
particles, we investigated their structure briefly. In Figure 2,
we have plotted the radial distribution function g(r) vs r/σ ,
where σ = V

1/3
p and Vp the volume of the particle. Octa-

hedra exhibit structural correlations very similar to the ones
observed for simple fluids, but for tetrahedra and triangular
cupola, there are additional characteristics present. Upon in-
creasing the packing fractions, tetrahedra show a splitting of
the second peak and the appearance of a first peak at short
distances, which is connected to the formation of icosahedra
and pentagonal-dipyramids, signaling the transition to a more
complex fluid, as indicated by the study of Glotzer et al.28

Triangular cupola shows a very peculiar behavior, due to their
asymmetric shape. The peak corresponding to distances close
to zero (note that for triangular cupola, we define its centroid
on its hexagonal face, bottom face as shown in Fig. 1) in-
creases significantly with increasing packing fraction, as the
number of particles that have their hexagonal faces aligned in-
creases. At r ≈ 1.65σ , a 3rd peak is observed; a consequence
of particles aligning their peripheral faces.

In Figure 3, we show typical configurations of the three
particle shapes in the isotropic phase. Here, it is evident that
triangular cupola tends to form dimers, while tetrahedra create
clusters of icosahedra and pentagonal-dipyramids.

As we mentioned in Sec. II, we followed the scheme pre-
sented by Berthier and Kob37 to study the dependence of the
relaxation time, τα , of the α-relaxation, on the maximum dis-
placement. To this end, we calculated the SISF (Eq. (2)) and

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.211.44.85 On: Fri, 13 Nov 2015 15:29:27



224502-4 Tasios, Gantapara, and Dijkstra J. Chem. Phys. 141, 224502 (2014)

FIG. 3. Typical isotropic configurations of the three particle shapes studied. From left to right: Octahedra, triangular cupola, and tetrahedra are seen. Triangular
cupola is observed to form dimers while tetrahedra create clusters of icosahedra and pentagonal-dipyramids.

fitted these with a stretched exponential ∼ e−(t/τ
α

)β to extract
the relaxation times τα . For each maximum displacement,
we kept the rotational acceptance fixed at 30%. For conve-
nience, we use the average acceptance ratio, ā, instead of the
maximum displacement, which can easily be determined in
a Monte Carlo simulation. In Figure 4, we show the relax-
ation time, τα , as a function of ā, for the three particle shapes
at packing fraction φ = 0.62 and additionally, φ = 0.55 for
octahedra. The curves have been normalized by their mini-
mum value, τmin

α , to get the maximum overlap. The plots ex-
hibit a minimum plateau centered at ā ≈ 30%. Thus, for a
remarkably large range of acceptance ratios, 5%–75%, sim-
ilar relaxation time scaling is observed. It should be noted
that we have observed that acceptance ratios for hard par-
ticles are quite low for relatively small maximum displace-
ments when compared to other systems, like hard spheres and
Lennard-Jones particle systems. This is to be expected and
is a consequence of the particles’ complex shape. It is re-
markable, though, that we have a very strong agreement be-
tween the different particle shapes. As a result of this study,
we chose to use an acceptance ā = 30% for the maximum
displacement of our simulations. The average acceptance
for the rotational trial moves was also kept at ā = 30%. In
Figure 5, we show the SISFs we extracted for the three par-
ticle shapes studied, where relaxation time was scaled by the
short-time diffusion coefficient D0. The SISFs were computed
at a wave vector k close to the first peak of the static struc-
ture factor. For reference, we found kσ = 5.6, 3.83, and 4.9
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0
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τ α
/τ

m
in

α

Octahedron
Tetrahedron
TriangularCupola
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FIG. 4. Relaxation time τ
α

, normalized by its minimum value, τmin
α , vs the

average acceptance ratio, ā, for the three particle shapes studied, at packing
fraction φ = 0.62 as well as φ = 0.55 for octahedra. A plateau in the relax-
ation time is observed centered at ā ≈ 30%.

for octahedra, tetrahedra, and triangular cupola, respectively.
Triangular cupola exhibits no peculiarities, as expected, as it
has no other phases except of the isotropic one.25 We also
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FIG. 5. The self-intermediate scattering function, FS(t), of (a) octahedra, (b)
triangular cupola, and (c) tetrahedra, for varying packing fractions in the
range φ ∈ [0.36, 0.62]. Solid lines are stretched exponential fits of the α-
relaxation part.
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note that a plateau is not apparent in the SISF due to the
short-time dynamics in MC simulations, which is different
from the ballistic diffusion of other simulation schemes. Oc-
tahedra are known to exhibit two phases, a metastable body-
centered cubic (BCC) phase and a Minkowski crystal.27, 31

In the packing fraction range φ ∈ [0.58, 0.60], all systems
tend to crystallize into a Minkowski crystal before reaching
the α-relaxation regime. After φ = 0.62, octahedra do not
crystallize very often, at least within the simulation time used
here, but simulations of up to 108 MC steps seem to suggest
that crystallization can still occur, but the nucleation times
increase rapidly. At higher φ, a large slowing down of the
relaxation time, in comparison with triangular cupola, is ob-
served. Tetrahedra on the other hand exhibit a slightly differ-
ent behavior, corresponding to the packing fraction at which
a plateau is present in the equation of state (not shown here).
The tails of the SISF are stretching for φ ≥ 0.5, which matches
the packing fraction at which tetrahedra transition to a more
complex fluid.28 We were not able to discern with certainty
whether the samples show any quasi-crystalline regions, as
this requires a more elaborate characterization method. It is
worth mentioning here, though, that diffraction patterns of
dense configurations of tetrahedral-shaped particles show no
(quasi-)crystalline order as there are no clear Bragg peaks vis-
ible. Fitting the relaxation with a stretched exponential, as
indicated by the solid lines in Fig. 5, though, exhibited a devi-
ation at the tail, a behavior which is not seen in regular super-
cooled liquids and is not explained by Mode Coupling The-
ory. We argue that this effect is due to the formation of clusters
of pentagonal-dipyramids and icosahedra that was mentioned
earlier. The clusters themselves, first need to break the cage
formed by other clusters and individual particles, after which
particles need to break the cage formed by particles from the
same cluster. This was confirmed by means of visualization
of the simulation runs; we monitored several clusters which
seemed to slowly start moving and then breaking down to
their individual constituents. It would be interesting in future
work to somehow identify clusters and see how they diffuse
before breaking apart.

By fitting the above self-intermediate scattering func-
tions, Fig. 5, with a stretched exponential, we extracted the
relaxation times, τα , for a wide range of packing fractions,
φ. This allowed us to make an Arrhenius plot to study the
fragility of the glass formed by the polyhedra we studied, sim-
ilar to the work done by Mattsson et al.40 For comparison, we
also simulated and studied a polydisperse hard-sphere system
with a size polydispersity of 10%. The Arrhenius plot can be
seen in Fig. 6, where we have scaled the relaxation times with
respect to that of spheres, so that in the limit of small pack-
ing fractions the four curves coincide. For φC, we chose the
packing fraction at which the scaled relaxation time, D0τα/σ 2,
became equal to e2. To describe the data, the Vogel-Fulcher-
Tammann (VFT) equation was used, where the temperature
was replaced by φ,

τa = τ∞ exp

[
A

(φV FT
c − φ)2

]
. (3)

We note that Eq. (3), unlike the regular VFT equation, uses
the square of the packing fraction. As was reported in Ref. 41,

0.0 0.2 0.4 0.6 0.8 1.0

φ/φC
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100

101

κ
D

0
τ α

/σ
2
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Triangular Cupola
T etrahedron

FIG. 6. Relaxation time τ
α

(scaled by the short-time diffusion coefficient
D0) vs packing fraction for the three polyhedra and polydisperse hard-
spheres. The relaxation times of the polyhedra are scaled by a dimensionless
factor κ so that they fall on top of each other in the limit of small packing frac-
tions. The lines are VFT fits of the data, while the green line is an indication
of the limit of very strong glass formers.

we also find that this form offers a better fit of the relaxation
data. φV FT

c sets the apparent divergence of the relaxation time.
Moreover, free volume arguments42 lead to the identification
φV FT

c ≡ φrcp, the random close packing fraction where os-
motic pressure diverges. Kinetic arrest must occur at φrcp, be-
cause all particles block each other at that density.43–45

From Fig. 6, it can be seen that the fragility (i.e., the
slope of the curves) varies continuously from strong to frag-
ile. Close to the glass transition, spheres appear to be the
most fragile, followed by octahedra and triangular cupola, and
tetrahedra being the stronger glass former.

The data were fit by both the VFT function (Eq. (3))
and the MCT power law, namely, τα ∝ (φMCT

c − φ)−γ . φMCT
c

is predicted by MCT as the packing fraction at which the
system becomes kinetically arrested to a nonergodic phase,
whereas the system is still ergodic and liquid. The MCT ex-
pression gave a sufficiently good fit for packing fractions φ

� 0.58, while the VFT equation fits for packing fractions φ

� 0.58. The results of the fits for all three particles are sum-
marized in Table I. From the table, we also observe that the
ergodic-nonergodic transition predicted by the VFT expres-
sion, indeed lies at higher packing fractions than the ones ob-
tained by the MCT fits and the packing fractions that we in-
vestigated. Similar results were found in Refs. 41 and 46 for

TABLE I. VFT and MCT power law fitting parameters. φMCT
c is the

ergodic-nonergodic transition critical packing fraction predicted by MCT,
while φV FT

c is a packing fraction extracted from fitting with the VFT ex-
pression, and sets the apparent divergence of the relaxation time. The VFT
parameter A controls the growth of the relaxation time as the packing frac-
tion approaches φV FT

c .

Fitting parameters

Name φMCT
c φV FT

c γ A

Sphere 0.591908 0.657293 1.69861 0.0272889
Octahedron 0.603741 0.731188 1.69448 0.103722
Triangular cupola 0.595553 0.791872 1.68653 0.224292
Tetrahedron 0.575995 0.832166 1.67706 0.402016
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colloidal spheres. It should be also noted that tetrahedra have
a larger error bar due to their peculiar behavior. The critical
exponent for spheres, γ , is slightly less than previously re-
ported values,46–48 γ ∈ [1.7, 2.5]. However, we mention here
that γ is extremely sensitive to the precise range that is used
in the MCT fitting as also noted in Refs. 46–48.

IV. CONCLUSIONS

In conclusion, we performed Monte Carlo simulations on
pure systems of polyhedral-shaped particles and observed the
formation of glassy phases without the introduction of size
polydispersity. Polyhedra tend to align their facets, forming
locally ordered structures which can hinder the formation of
a crystal, in the case they are incommensurate with the stable
crystal structure. In the case of octahedra the relatively small
facets49 allow for rearrangements which make it difficult to
avoid crystallization in the packing fraction range φ ∈ [0.58,
0.62].

In addition, we presented a Monte Carlo scheme for an-
alyzing the dynamics of the glass phase. We find rich behav-
ior compared to simpler systems in which the particles in-
teract with isotropic pair potentials. In the case of tetrahedra
and triangular cupola, we observed locally ordered clusters
which introduce additional relaxation modes that cannot be
accounted for by conventional theories. Finally, we analyzed
the fragility of the three polyhedra by making an Arrhenius
plot of the α-relaxation times as obtained from fitting the
SISFs with a stretched exponential.

Relaxation times as a function of packing fraction were
also fitted by the MCT power law expression, and we found
that the ergodic-nonergodic critical packing fraction, φMCT

c

∈ [0.57, 0.6], does not strongly depend on particle shape. In
addition, the plot seems to indicate that polyhedra are stronger
glass formers than systems of polydisperse hard spheres. Oc-
tahedra, which are point symmetric and crystallize relatively
easily into a crystal with one particle in the unit cell, were
found to be the most fragile of the particle shapes that we
studied. Triangular cupola, which are not point symmetric and
should crystallize in a crystal with two particles in the unit
cell, forms dimer clusters and is slightly stronger glass for-
mer in comparison with octahedra and spheres. Finally, tetra-
hedra are the strongest glass formers, of the shapes studied
here, as they possess large facets and form clusters of icosa-
hedra and pentagonal-dipyramids in the fluid phase, which are
incompatible with the stable crystal structure consisting of 4
particles in the unit cell.

It is tempting to speculate that one can identify polyhe-
dra that are strong glass formers by assessing the size of the
largest facet of a particle, whether or not the particle is point-
symmetric, and the tendency to form locally favored clusters
which are incompatible with the stable crystal structure. As
an example, cubes do not form a glassy phase; although the
facets are relatively large compared to the total surface area,
cubes are point symmetric and form local clusters that co-
incide with the stable, simple cubic crystal structure. In any
case, a larger variety of polyhedral shapes should be studied
to draw any definite conclusions.
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