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EFFECTS OF THE LIQUID-LIQUID PHASE
SEPARATION OUTSIDE THE COEXISTENCE

REGION

Although definitive evidence of a liquid-liquid (LL)
phase separation requires observation at temperatures at
and below the LL critical point (LLCP), its presence af-
fects the thermodynamic behaviour of the system even at
higher temperatures. In particular, quantities diverging
at the critical point exhibit loci of extrema which can be
observed in a wide region of the phase diagram [1] and
originate at the critical point. Examples are provided
by the isothermal compressibility KT and the isobaric
heat capacity CP . In the LLCP hypothesis, the density
anomalies of water and other tetrahedral liquids, where
the density of the liquid phase exhibits a maximum as
a function of the temperature at constant pressure, has
been related to the extrema in response functions em-
anating from the LLCP [2]. In Fig. S1, we draw the
pressure-temperature (P − T ) phase diagram of the sys-
tem with cosφ = 0.825 and L = 0.5σ, where the LL
phase transition is thermodynamically stable. We do ob-
serve a line of constant-pressure density maxima ρmax

that occurs at temperatures above the LLCP, as well as
lines connecting the extrema in KT and CP . Qualita-
tively, the diagram bears a striking resemblence to the
one determined for the ST2 model for water[2]. Consis-
tent with thermodynamic requirements [3], the point at
which dP/dT |ρmax

= ∞ is also a KT extremum.
The slope of the LL coexistence line Pcoex(T ) is posi-

tive, while it is expected to be negative in ST2. Via the
Clausius-Clapeyron equation, this slope can be directly
related to the difference in entropy between the two co-
existing phases:

dPcoex

dT
=

∆S

∆V
, (1)

where ∆S and ∆V are respectively the difference in en-
tropy and volume between the two phases. The posi-
tive slope indicates that the entropy of the high-density
liquid (HDL) is lower than that of the low-density liq-

uid (LDL). We also note that by construction, in this
model, at low T both phases are fully bonded and hence
have the same energy, imposing a vanishing coexisting
pressure for T → 0. Possibly, the slope of the coexis-
tence curve, expecially close to the critical point, can be
modulated by imposing a repulsive term disfavouring the
denser phase and/or modulating the angular profile of the
potential modeling the bond. Indeed in earlier work, it
has been shown that increasing the bond directionality of
a tetrahedral Kern-Frenkel-based potential, by combin-
ing a weaker flexible patch with a stronger narrow patch,
can switch the slope of the Widom line (the line of max-
ima in CP ) from positive to negative [4]. Interestingly,
in our case the slope of the coexistence line already de-
creases close to the critical point, and the Widom line,
typically seen as the extension of the coexistence line,
already shows a negative slope, suggesting that a minor
modification to the model may be sufficient to match this
aspect of the ST2 water phase diagram.

POTENTIAL ENERGY IN THE FLUID

Fig. S2 shows the behaviour of the potential energy U
as a function of density for several different bond flexi-
bilities (cosφ) and temperatures (T ), at fixed L = 0.5σ.
The system exhibits a clear minimum in the potential
energy at an “optimal” network density [5], a character-
istic of network-forming fluids. The minimum originates
from the typical monotonic decrease of U with density
at low ρ and from the breaking of the bonds associated
with the progressive distortion of the tetrahedral geom-
etry on increasing ρ beyond the optimal value. Counter-
intuitively, the minimum becomes deeper for less flexible
bonds (higher cosφ). Although one might expect that
making the bonds more directional would lead to a lower
number of bonds in the system, the larger entropy of net-
work states with broken bonds for wide angles leads to
a larger U when cosφ is large. Additionally, less flex-
ible bonds also lead to more strongly structured tetra-
hedral networks [6], which may favor bond formation.
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FIG. S1: Phase diagram of the tetramer model with cosφ =
0.825 and L = 0.5σ in the P−T plane. The blue line shows the
LL coexistence line, ending in a critical point. The black line
denotes the line of density maxima, where

(
∂ρ
∂T

)
P

= 0. The
green line connects extrema in the isothermal compressibility

KT , i.e. points where
(
∂KT
∂T

)
P

= 0, with the thicker solid line

indicating maxima and the dashed line indicating minima.
Similarly, the red line traces the extrema in the isobaric heat

capacity CP , i.e. where
(
∂CP
∂P

)
T

= 0.

A secondary minimum could be expected at a density
approximately a factor of two larger than the optimal
density, indicating the possible formation of an interpen-
etrated network. Between these two densities, U shows
a region of negative curvature, indicating an energetic
driving force favoring phase separation [7].

Figure S3 shows U as a function of the reduced den-
sity ρ∗ = ρ(σ+L+ δ/2)3 for three different values of the
softness. As expected, increasing the length of the arms
leads to an overall lower number of bonds in the system.
Additionally, the increase in energy when compressing
the liquid beyond its optimal density is much less pro-
nounced for small L, which is consistent with the fact
that the LL phase transition disappears for sufficiently
small L.

Finally, Fig. S4 shows the effects of cosφ and L on the
potential energy at fixed T .

COMMON TANGENTS

Figure S5 shows the common tangent constructions at
temperature kBT/ε = 0 (with kB Boltzmann’s constant)
for three different values of the bond flexibility at fixed
softness L = 0.5σ.

HISTOGRAMS

To determine phase coexistences between the various
fluid phases, we use both successive umbrella sampling
(SUS) simulations (in the grand canonical ensamble) and
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FIG. S2: Potential energy U per particle as a function of
the density ρ at fixed L = 0.5σ, for three different values
of the bond flexibility cosφ and a range of temperatures, as
indicated. In each plot, the set of temperatures shown is the
same. The lines are fits to data from Monte Carlo simulations.
In panel (c), the raw simulation data is also shown as points.

free-energy calculations, as explained in the Methods sec-
tion. When using the SUS simulations, we evaluate the
histogram P (N), the probability to find N particles in
the simulation box at fixed T , volume V and chemical
potential µ. The histogram can be reweighted analyti-
cally by changing µ. In case of a coexistence, P (N) must
show two peaks of equal area, centered around the coex-
istence densities. If a coexistence is absent, only a single

© 2014 Macmillan Publishers Limited. All rights reserved. 
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FIG. S3: Potential energy U per particle as a function of the
density ρ at fixed cosφ = 0.9, for three different values of the
softness L and a range of temperatures, as indicated. In each
plot, the set of temperatures shown is the same. The lines are
fits to data from Monte Carlo simulations. Note that panel
(c) is partly based on the same data as Fig. S2c.

peak is observed. At low temperatures, the SUS simu-
lations become difficult to equilibrate, and we resort to
thermodynamic integration to determine the coexistence
densities instead. To obtain the Helmholtz free energy
per particle (f = F/N) as a function of T , we use:

β2f(ρ, T2) = β1f(ρ, Tref) +

∫ β2

βref

dβ u(ρ, T ), (2)
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FIG. S4: Top: potential energy as a function of density at
fixed arm length L = 0.5σ and temperature kBT/ε = 0.08,
for different values of the bond flexibility cosφ. Bottom: po-
tential energy as a function of density at fixed bond flexibility
cosφ = 0.9 and temperature kBT/ε = 0.08, for different val-
ues of the arm length L. The lines are fits to the simulation
data.

where u(ρ, T ) the average potential energy per particle
of the system at a given density and temperature, and
β = 1/kBT .

To calculate a reference Helmholtz free energy at high
temperature Tref , we perform another run of SUS simu-
lations, evaluating the chemical potentials in each of the
SUS windows µ

N,N+1
as

βµ
N,N+1

= βµ− log

(
P (N + 1)

P (N)

)
,

with µ the chemical potential used in the grand-canonical
SUS simulation, and P (N) the probability of observing
N particles in the simulation. We also perform an NPT
simulation at the same Tref and intermediate density. We
then combine the pressure P of the NPT simulation with
µ

N,N+1
obtained from the SUS simulation at the same

density (ρref) to obtain a free energy

fref = µ− P/ρref . (3)

Next, we use µ
N,N+1

from all SUS windows to evaluate
the free energy at Tref for different numbers of particles

© 2014 Macmillan Publishers Limited. All rights reserved. 
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FIG. S5: Common tangent plots at kBT/ε = 0 for three of
the phase diagrams in the Fig. 4 of the main text. The
thick lines indicate the free energy per unit volume of the
different phases. At each density, the phase or linear combi-
nation of two phases with the lowest free energy is stable. A
constant linear term (cρσ3) has been added in each plot to
enhance readability; this has no effect on the resulting phase
behaviour. Metastable phases are shown as dotted lines. The
thinner red lines show the common tangent constructions con-
necting coexisting state points.

N in the same volume:

F (N,V, T ) = Nfref +

∫ N

Nref

µ
N,N+1

dN, (4)

where Nref = V ρref is the number of particles in the
system at the reference density. We then evaluate, for

each desired density, the free energy at other T using Eq.
2. Finally, to calculate a histogram from this free energy,
we use:

P (N) ∝ exp(βµN) exp(−βF (N,V, T )), (5)

where µ is again tuned such that the two peaks have
equal area, and the volume is chosen to match the one
used in the SUS simulations.

Figure S6 shows examples of histograms at cosφ = 0.9
as obtained from SUS simulations, and histograms calcu-
lated (at the same volume V = 1728σ3) from the free en-
ergies obtained via thermodynamic integration over the
temperature. While the SUS data shows more noise, the
coexistence densities from both methods agree very well.

Figure S6-(c) shows SUS histograms for both the gas-
liquid and the LL transition for cosφ = 0.9 and kBT/ε =
0.08 and kBT/ε = 0.09. Note that the liquid coex-
isting with the gas and the low density liquid coexist-
ing with the high density liquid have different densities.
The chemical potentials of the two transitions are dis-
tinct as well: for kBT/ε = 0.08, βµGL = −12.87 and
βµLL = −11.16, and for kBT/ε = 0.09, βµGL = −10.03
and βµLL = −8.64.

A second set of histograms, again at V = 1728σ3, are
shown in Fig. S7, for cosφ = 0.825. Interestingly, the
valley between the two phases is not very deep even at
T = 0. In other words, it is still easy for the system to
switch between the two phases. Note that critical points
are estimated by examining at which T the two peaks
in the P (N) histogram were twice as high as the valley
between them [8].

EFFECT OF SYSTEM SIZE

To ensure that the phase transition is not an artifact
of our small system size, we performed additional SUS
simulations for larger system sizes, with a volume up to
eight times larger than the standard one. In particu-
lar, we have investigated volumes up to V = 13824σ3 for
L = 0.5σ and cosφ = 0.9. The LL critical point is clearly
present for all explored system sizes, confirming the inde-
pendence on system size of the critical phenomena. The
histograms for several T for the largest system size inves-
tigated, calculated implementing histogram reweighting,
are shown in Fig. S8.

COMPARING THE MODEL TO WATER

Qualitatively, the structure of liquid water at low tem-
peratures is similar to that of tetravalent patchy particles
with strong bond rigidity [6]. Thus, despite the simplic-
ity of our model, it is instructive to consider mapping the
tetramer model introduced here onto water. To do this,
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FIG. S6: Histograms obtained from a) SUS simulations and
b) free-energy calculations (middle), at L = 0.5σ, cosφ = 0.9,
and a range of temperatures as indicated. Note that for read-
ibility, only some of the points are denoted by symbols. In
c) we replot two of the SUS histograms, and include the SUS
histograms for the gas-liquid coexistences at the same temper-
ature (but different chemical potential) to provide evidence
that the liquid coexisting with the gas and the low density
liquid coexisting with the high density liquid have different
densities (as clarified in the inset, which shows a zoomed-in
version of the region outlined by dashed lines). Note that the
gas peaks are barely visible, being located at N ≈ 0.
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FIG. S7: Histograms obtained from SUS simulations (top)
and free-energy calculations (bottom), at L = 0.5σ, cosφ =
0.825, and a range of temperatures as indicated. Note that for
readibility, only some of the points are denoted by symbols.
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FIG. S8: Histograms obtained from SUS simulations for a
large system size (V = 13824σ3), at L = 0.5σ, cosφ = 0.9,
and a range of temperatures as indicated.

we require an estimation of the bond flexibility cosφ and
bond length L.

From comparisons between the angular distribution
and strength of the pre-peak of the structure factor be-
tween water and a standard Kern-Frenkel model, we
can conclude that typical water models have a bonds
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for which the directionality roughly corresponds to a
patch opening angle of cos θ ≈ 0.95 in the Kern-Frenkel
model [6]. This is exactly the value of the opening an-
gle cos θ for bonding used in this article when no extra
flexibility is added via cosφ. Thus, in terms of flexibility,
the results for cosφ = 1 (region III in Fig. 3 of the main
article) refer to the case of water.

Concerning L, we recall that this quantity controls the
ratio between the distance of closest approach for un-
bonded (determined by σ) and bonded pairs (determined
by σ+L) of particles. Analysis of the radial distribution
function (and of its density dependence) can thus provide
estimates of L for atomic and molecular systems. For the
case of water, even when the density varies from ρ = 0.92
to ρ = 1.4 g/cm3, there is no indication of pair of parti-
cles located at distances closer than the typical hydrogen
bond distance: no signal shows up in the radial distri-
bution function before the main peak [9]. Hence, one
can conclude that water should be mapped into the case
L → 0 and cosφ → 1. Consistent with experimental re-
sults, our calculations confirm that both for L → 0 and
cosφ → 1 spontaneous crystallization prevails (Figs. 2
and 3 in the main text).
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