RAPID COMMUNICATIONS

PHYSICAL REVIEW E 90, 020503(R) (2014)

Density functional theory for chiral nematic liquid crystals
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Even though chiral nematic phases were the first liquid crystals experimentally observed more than a century
ago, the origin of the thermodynamic stability of cholesteric states is still unclear. In this Rapid Communication
we address the problem by means of a density functional theory for the equilibrium pitch of chiral particles.
When applied to right-handed hard helices, our theory predicts an entropy-driven cholesteric phase, which can
be either right or left handed, depending not only on the particle shape but also on the thermodynamic state. We
explain the origin of the chiral ordering as an interplay between local nematic alignment and excluded-volume

differences between left- and right-handed particle pairs.
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Cholesteric phases, also known as chiral nematics, are
fascinating examples of liquid crystals. Liquid crystals are
phases of matter characterized by a degree of spontaneous
breaking of the rotational and translational symmetries that is
higher than in the liquid and lower than in the crystal phase. In
the nematic phase, for example, the particles self-organize by
all aligning along a common direction (the nematic director),
while keeping their centers of mass homogeneously distributed
in space. Chiral nematic liquid crystals are peculiar as their
nematic director rotates as a helix around a chiral director,
thus giving rise to a chiral distribution of the orientations of
the particles [1]. A cholesteric phase can be either right handed
[as in Fig. 1(a)] or left handed, depending on the handedness
of the helix drawn by the nematic director fi. The wavelength
associated with a full rotation of the nematic director around
the chiral director ) is known as the cholesteric pitch P.
Cholesteric phases are commonly found in both thermotropic
molecular compounds (e.g., derivatives of cholesterol [2-5])
and in lyotropic colloidal suspensions of, e.g., DNA [6,7]
and filamentous viruses [8—12]. Their widespread occurrence
explains why cholesterics were the first liquid-crystal phase
experimentally observed [2]. The pitch is experimentally
known to take values several orders of magnitude higher than
the size of the constituent particles, reaching the visible-light
wavelength in molecular compounds. For this reason, and for
their liquidlike rheological properties, cholesterics have long
found wide technological application in the optoelectronic
industry [13].

Despite their long history and widespread technological
applications, surprisingly little is understood about this chiral
state of matter. A fundamental open question regards the
relationship between macroscopic and microscopic chirality,
i.e., between the handedness of the phase and that of
the constituent particles [14-17]. Moreover, it is still to
be unambiguously proved that hard chiral interactions alone
can give rise to an entropy-stabilized chiral-nematic phase
[17,18]. The problem in interpreting experimental data is
largely due to the limitations of theory and simulation methods.
Computer simulation studies on cholesterics, for instance,
require sophisticated techniques and huge simulation boxes
in order to reproduce the pitch [19,20], thereby imposing
severe limitations on the complexity of the interparticle model
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potentials. Therefore, simulation work has focused mostly on
coarse-grained potentials [21-23], where the microscopic chi-
rality of the pair interaction is implicitly averaged into a single
pseudoscalar parameter [24]. As a result, the crucial question
regarding the relation between microscopic and macroscopic
chirality still needs to be answered. In order to overcome the
severe requirements of simulation, more sophisticated model
potentials [25,26], in which the chirality is introduced in full
detail at the microscopic level, have been recently studied
by means of Straley’s classic theory for the prediction of
the cholesteric pitch [27]. Despite the undoubted relevance
of Straley’s pioneering work, his approach suffers from two
major drawbacks that limit the reliability of its predictions.
First, the theory is based on a second-order small g Taylor
expansion of the free-energy functional, and is therefore valid
only in the limit of a very long pitch P = 27/q. Even though
the latter condition holds in most experimental situations, this
approximation limits the applicability of the theory to more
general instances. Second, Straley’s theory cannot be solved
self-consistently, in the sense that the orientation distribution
function in the presence of a chiral twist is assumed to be the
same as in the achiral limit, an approximation of which the
quality is not easily assessed.

In this Rapid Communication we develop a density func-
tional theory (DFT) that overcomes these two main drawbacks
of Straley’s theory. Following Onsager [28], the interactions
are introduced by truncating the virial expansion at second
order in the density. Improving over Straley’s theory, our
method allows to numerically minimize the free-energy func-
tional exactly (i.e., at arbitrary precision) at this virial order.
Moreover, the numerical method underlying our calculations
allows for the study of arbitrary pair potentials. Here we focus
on the chiral nematic phase developed by a large class of
hard-sphere helices described in Refs. [18,29] cf. Fig. 1(b).

The long-range orientational order of a homogeneous
phase is described in terms of the orientation distribution
function (ODF) ¥(R), which is the probability density
of a particle having an orientation R. The 3 x 3 rotation
matrix R can be parametrized in terms of the unit vector
@ = (cos ¢ sinf, sin¢ sinf, cosf), where ¢ € [0,27) and
0 € [0,m), and the internal azimuthal angle o € [0,27)
[cf. Fig. 1(b)]. The ODF satisfies the normalization
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FIG. 1. (Color online) (a) Space dependence of the nematic
director fi in a cholesteric phase with chiral director ¥ and pitch
P. (b) Hard-helix particle modeled as a collection of 15 partially
overlapping hard spheres of diameter o, whose centers of mass are
equally spaced on a right-handed helix of contour length L = 100,
inner radius r = 0.40, and pitch p = 4o [18]. The orientation of the
helix can be expressed by means of the unit vector @ and the internal
azimuthal angle .

condition f dRY(R) =1, where dR =doda =
dcosOdpda. A system of helices is in an (achiral) uniaxial
nematic phase if the ODF satisfies ¥ (R) = ¥ (fip - ®), where
the nematic director fig is a spatial constant that can be
chosen to be the z axis of the laboratory reference frame,
so that fip - ® = cos6. In this situation it is possible to
expand the single-particle density in Legendre polynomials
[30]. Let us now consider a cholesteric phase, whose chiral
director coincides, say, with the y axis of the laboratory
frame. Let P be the macroscopic pitch and ¢ = 27/ P the
corresponding chiral wave number. At any point r = (x,y,2)
in space the nematic director is fi,(y) = R,(gy)hy, where
R,(gy) is a 3 x 3 matrix representing a rotation around the
y axis by an angle gy and hy = fi,(0). The ODF describing
a chiral-nematic phase can then be expanded in Legendre
polynomials P;(x) as

Yy () @) = Y YiPilBy(y) - @), )

1=0
with the expansion coefficients y; given by

2+ !

] = ——

5 1 d(fy - @)y (o - @)Pi(Ng - @),  (2)

where d(fip - ®) = d cos 6. Note that ; does not depend on g.
The Legendre expansion in Eq. (1) is particularly convenient
since it decouples the information on the local distribution of
orientations (i.e., the set of coefficients ;) from that about the
chiral period g. In other words, once the ODF at y = 0 and the
pitch P are separately known, we can reconstruct the ODF at
arbitrary y by means of Egs. (1) and (2).

We calculate the equilibrium ODF v (fi,(y) - ®) of hard
helices by means of DFT [31]. Within DFT the free energy is
expressed as a sum of an ideal gas and an excess functional,
Flv¥] = Falv] 4+ Fexc[¥]. The ideal component of the free-
energy functional per unit volume is known exactly and
consists of a translational and rotational entropic contribution
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given by

F o &) (o -
B ;[I/f] Zp[log(pAa)_l]Hﬂzpf (i - &) Y (o - &)
—1

x log [y (g - ®)], 3)

where B = (kzT)™', kg is the Boltzmann constant, 7 the
temperature, A* the thermal volume, and p = N/V the
number density [28,30]. The absence of any dependence on g
in Eq. (3) renders explicit the fact that the ideal part of the free
energy is insensitive to chiral ordering. The excess free-energy
functional, which accounts for particle-particle interactions, is
not known and has thus to be approximated. Here we adopt
the Parsons-Lee second-virial approximation, which is known
to be exact for infinitely thin rods in the achiral limit ¢ = 0
[28] and interpolates smoothly via shorter rods to spheres
[32,33]. By introducing the Legendre polynomial expansion
Eq. (1), the second-virial excess free-energy functional can be
expressed as

BFecl¥] _ p*Glpv)

” S D Vi En(g). “

1,I'=0

where v is the single-particle volume and G(x) = '(]_fgfl

is the Parsons-Lee correction term [33]. The g-dependent
coefficients Ej;(q) are defined as

En(q) = — / d(Ar) ?§ dRdR
X f(Ar,R,R)P; (g - @) Pr(fi,(Ay) - ). (5)

The Mayer function f = e~ #* — 1 is defined in terms of the
pair potential u(Ar,R,R’) of two particles with orientations
R and R/, respectively, and center-to-center distance Ar =
r — r’. Notice that, by setting ¢ = 0 in Eq. (5), we recover
the usual Legendre polynomial expansion of the excluded
volume [30].

The advantage of expressing the excess free-energy func-
tional in terms of the coefficients E;(q) as in Eq. (4) is
immediately evident. By separating the information about the
local ordering of the particles (the Legendre coefficients )
from that about the pitch (the chiral wave number ¢q), we
can minimize the functional in three standard steps. First, we
evaluate via Monte Carlo integration the coefficients Ej;(q) in
Eq. (5) for different values of ¢ and 0 < 1,1’ < ljyay; in all the
cases studied here the truncation /;,,x = 20 is large enough to
be effectively infinity. Note that this integration needs to be
done only once for a given particle shape. Second, at fixed T,
p, and g we minimize the total free energy with respect to
the coefficients ;. Finally, we reinsert the coefficients y; into
the free energy and identify the chiral wave number g, that
minimizes the free energy with respect to ¢, at fixed p and 7.

Here we apply our theory to right-handed hard helices.
Figure 2 shows results for the shape parameters L/o = 10,
inner radius /o = 0.4, and internal pitch p/o = 2, 3, and 4
[see Fig. 1(b)], for which the particle volume v/o? = 6.85,
6.96, 7.00, respectively. Figure 2(a) shows the g-dependent
free-energy landscape for p = 4o, the white dashed line
indicating g, Figures 2(b) and 2(c) show the dependence of
@min and the corresponding equilibrium pitch P on the density,
respectively. A positive value of the chiral director g, (and
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FIG. 2. (Color online) (a) Free energy per unit volume as a
function of the packing fraction pv and the chiral wave number
g for hard helices with contour length L/o = 10, helix radius
r/o = 0.4, and pitch p/o = 4. The white dashed line identifies g,
that minimizes the free energy at fixed packing fraction. (b) Chiral
wave number ¢, for hard helices with contour length L/o = 10,
helix radius r/o = 0.4, and helix pitch p/o =2, 3, and 4, and (c)
the corresponding equilibrium pitch P = 27 /Gmin-

pitch P) represents a right-handed chiral phase, whereas a
negative one identifies a left-handed chiral phase. Figure 2(a)
shows that the free energy for ¢ = g, is lower than forg = 0,
and Figs. 2(b) and 2(c) demonstrate that the sole internal
chirality of the particles does not determine the chirality of
the phase. In fact, even though all the three helix models
have the same right-handed chirality, the phases formed by
helices with p/o = 2 and p/o = 4 have opposite handedness.
Interestingly, helices with p/o = 3 give rise to a left-handed
phase at low density and a right-handed phase at higher
density. The transition between these two regimes occurs at a
packing fraction pv ~ 0.43, where the phase becomes achiral
(gmin =0 and P — o0). An extensive investigation of the
handedness of the stable cholesteric phase as a function of the
helix parameters at fixed contour length L = 100 is reported
in Fig. 3. We identify the values of the helix radius » and
pitch p that give rise to chiral phases, whose handedness with
respect to that of the constituent helices is (i) the same, (ii)
the opposite, or (iii) mixed, with a chirality inversion from
left to right upon increasing the packing fraction. The data
displayed in Fig. 3 refer to values of the packing fraction
pv < 0.5; at higher densities the nematic phase is expected
to be metastable with respect to inhomogeneous states [32].
Figure 3 shows, for L = 100, a clear trend with opposite
handedness favored by rather elongated helices with p/o > 3
to 3.5. We also notice that the cholesteric pitch of particles
with small p and r, resembling more structured rods with
surface roughness rather than proper helices, is very sensitive
to small changes in the shape. Nevertheless, our theory unveils
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FIG. 3. (Color online) Handedness of the cholesteric phase of
hard helices with contour length L /o = 10 and variable helix radius
r and pitch p. The handedness of the cholesteric phase with respect
to that of the constituent hard helices can be the same (solid square),
opposite (solid circle), or mixed with a change in handedness from
left to right upon increasing the packing fraction (solid triangle).
The dashed lines identify the approximate transition between these
regimes. Open symbols represent parameters for which such a
classification is uncertain within our statistical accuracy.

this subtle dependence and allows for future, detailed analysis
of these complex features.

Since our model incorporates hard interactions only, the
stability of chiral ordering must be due to a gain in excluded-
volume entropy with respect to the achiral state. The effect of
right-handed chiral ordering consists of favoring right-handed
configurations of particle pairs versus left-handed ones, vice
versa for left-handed chiral phases. A pair of rods is in a right-
handed (left-handed) configuration if (r — r') - (@ x &) > 0
(<0). In order to interpret the predictions of the theory, it is
crucial to measure the difference in excluded volume between
right- and left-handed configurations of pairs. We introduce
the right- (E) and left-handed (£ ) excluded volume of two
helices as a function of the relative angle between them y =
arccos(® - @) as

A 7 do do’
Ef(arw):— d(Ar)
0

21 21
X f(Ar,R,R)O(XAr - (& x &), (6)

with ®(x) the Heaviside step function. The sum of right- and
left-handed excluded volumes in Eq. (6) gives rise to the usual
excluded-volume averaged over the internal azimuthal angles
« and «'. The difference AE = Ex — E; between right- and
left-handed excluded volume for the three hard-helix models
in Figs. 2(b) and 2(c) is reported in Fig. 4(a). For helices
with p/o =4 the left-handed excluded volume is smaller
than the right-handed one for each value of the angle y.
Consequently, we expect the resulting chiral phase to be left
handed, as confirmed by Figs. 2(b) and 2(c). However, for hard
helices with p/o = 2 and p/o = 3 the same situation arises
only when the angle y between the particles is sufficiently
larger than zero (i.e., cos y sufficiently smaller than unity).
On the contrary, when y is sufficiently small the excluded
volume is minimized by right-handed configurations. This
shows why solely the handedness of the particles is not
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FIG. 4. (Color online) (a) Difference AE = Er — E; between
the right- and left-handed excluded volume [cf. Eq. (6)] as a function
of the cosine of the angle between the main axes cosy = @ - @ of
the same hard helices as in Figs. 2(b) and 2(c). The dashed rectangle
identifies the portion of the plot reported in the inset. (b) Estimated
difference in free energy A F, between right- and left-handed chiral
ordering as defined in Eq. (7).

sufficient to determine the handedness of the corresponding
chiral phase. Notice that the difference in right- and left-handed
excluded volumes in Fig. 4(a) represents a purely geometrical
property of the particles. In order to gain further insights, we
need to relate such geometric property with the thermody-
namics. Mimicking the functional form of the second-virial
excess free energy, we estimate the free-energy difference
associated to right- and left-handed chiral ordering at density
o as

BAF,
v

2
-2 f 46> Vo(Ro - Yo(hy - )AE® - &),

(7

where ¥o(fiy - ®) is the ODF at density p evaluated for
simplicity in the achiral limit ¢ = 0. If at a given density
p the free-energy difference AF, takes a positive (negative)
value, we expect the stable chiral phase to be right handed
(left handed). We report in Fig. 4(b) the values of AF, for
the three hard-helix models considered in Figs. 2(b) and 2(c).
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The plots in Fig. 4(b) not only confirm with great accuracy
the regimes of stability of the right- and left-handed chiral
phases, as manifested by a comparison with Fig. 2(b), they
also qualitatively reproduce the density dependence of the
chiral wave number q.

In conclusion, we developed a DFT for the cholesteric
ordering developed by hard chiral rods. Our approach offers
a significant improvement over previous attempts to address
the problem, since no assumption regarding the length of
the pitch, the form of the local ODF, or the interactions is
required. The only approximation introduced is the Parsons-
Lee corrected second-virial truncation of the free energy,
which is known to give reliable results when sufficiently thin
rods are considered. The algorithm on which our calculations
are based allows for the study of arbitrary pair potentials, and
can be straightforwardly generalized to account for two-body
energetic terms (thermotropic cholesterics). We study the
cholesteric ordering of right-handed hard-sphere helices by
evaluating the handedness and the pitch of the phase. Our
results show that the handedness of the phase depends not only
on the details of the interaction, but also on the thermodynamic
state. Additionally, by evaluating the separate contribution to
the total excluded volume due to right- and left-handed pairs
of helices, we uncover relevant insights on the origin of the
chiral ordering. The chiral shape of hard helices gives rise to a
difference in excluded volume between right- and left-handed
pairs of helices. Depending on the local degree of nematic
alignment, such a difference can favor right- or left-handed
chiral ordering and, in limit situations, even achiral ordering.
Our findings offer a powerful tool and insights to further
advance our understanding of this state of matter.

Note added. Recently, a work [29] appeared where the
equilibrium pitch of a subset of hard helices is calculated
at isotropic-nematic coexistence with the low g-expansion of
Straley’s approach.
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