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We investigated the effect of size polydispersity on the crystal-fluid transition in hard-core repul-
sive Yukawa systems by means of Monte Carlo simulations for several state points in the Yukawa
parameter space. Size polydispersity was introduced in the system only with respect to the hard
particle cores; particles with different diameters had the same surface potential ψ0, but the charge
per particle was not varied with packing fraction or distance. We observed a shift to higher pack-
ing fraction of the crystal-fluid transition of bulk crystals with a fixed log-normal size distribu-
tion upon increasing the polydispersity, which was more pronounced for weakly charged particles
(ψ0 ≈ 23 mV) compared to more highly charged particles (ψ0 ≈ 46 mV), and also more pro-
nounced for larger Debye screening length. At high polydispersities (≥0.13) parts of the more highly
charged systems that were initially crystalline became amorphous. The amorphous parts had a higher
polydispersity than the crystalline parts, indicating the presence of a terminal polydispersity beyond
which the homogeneous crystal phase was no longer stable. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4794918]

I. INTRODUCTION

For certain charge-stabilized colloidal systems, such as
well-index-matched particles and/or colloids with a thick
enough steric stabilization layer, the always-present and at-
tractive Van der Waals forces can be neglected.1 The inter-
actions between such like-charged colloids can be described
by the hard-core repulsive Yukawa (screened Coulomb) po-
tential, an effective pair potential that results after the de-
grees of freedom of the microions have been integrated out.
The equilibrium phase behavior for colloidal spheres interact-
ing through a Hard-Sphere-Yukawa (HSY) potential is well
known from computer simulations2–4 and experiments.5–10 In
the (packing fraction η, Debye screening length (κσ )−1) plane
of the phase diagram, a fluid is found at low packing frac-
tions and two different crystal structures at higher packing
fractions: a face-centered-cubic (fcc) crystal at small screen-
ing lengths and a body-centered-cubic (bcc) crystal at larger
screening lengths and moderate packing fractions, flanked by
an fcc crystal at higher packing fractions. The exact locations
of the phase boundaries depend on the details of the model
system, i.e., the charge on the colloids, the salt concentration,
and the dielectric constant of the solvent.

Almost all phase diagrams for the HSY systems were cal-
culated under the assumption that the particles are monodis-
perse in size, i.e., that all particles have the same diameter, and
many for a fixed contact value of the interaction potential.2–4

In real colloidal dispersions, however, both are never truly
the case. In an experimental system the distribution of par-
ticle diameters is determined by the synthesis of the parti-
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cles and can approximately be described by a Gaussian or
log-normal distribution.1 The system can be viewed as con-
taining an effectively infinite number of particle species (each
having a different diameter), and we call the system there-
fore size polydisperse.11 The polydispersity is commonly de-
fined as the ratio of the standard deviation and the mean of
the size distribution. In experimental systems the charge on
the particles is affected by the local chemical potential of the
charge-determining ions; the two limiting cases are described
by assuming constant-charge or constant-potential boundary
conditions on the particle surface.12

For the case of hard spheres (or approximations thereof),
phenomena arising from the presence of polydispersity have
been investigated theoretically,13–23 computationally15, 21–25

and experimentally26–29 (for a review see Ref. 11). We first
consider the case of quenched polydispersity, i.e., where the
polydispersity in the coexisting phases is kept (nearly) con-
stant and where fractionation is thus not allowed. In ex-
periments it has been observed that above a certain value
of the polydispersity, crystallization in the system does not
occur.27 This terminal polydispersity is thought to arise be-
cause with increasing polydispersity the particles fit less well
on the crystal lattice and the crystal structure is destabilized.
At sufficiently high polydispersity the free energy of the fluid
becomes lower than that of any crystal phase. The terminal
polydispersity is the maximal polydispersity that a single sta-
ble crystalline phase can have. Several theoretical and com-
putational studies provide estimates for the value of the ter-
minal polydispersity (ranging from ∼0.05 to 0.12), see, e.g.,
Refs. 13–15, and 24. For polydispersities just below the ter-
minal polydispersity reentrant melting was found at higher
packing fractions in theoretical work16 and experiments.28

Others report instead a crystal-to-glass transition, due to the
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presence of an equilibrium glassy phase at high densities and
high polydispersities;19 also experimentally a polydispersity-
induced crystal-to-glass transition has been observed.29 These
findings could be explained by noting that with increasing
polydispersity, the maximum packing fraction for an ordered
3D crystal decreases, while it increases for a fluid or dis-
ordered glassy state,15, 25 making the fluid or glass the ther-
modynamically stable phase at high packing fractions.16 For
systems interacting through a softer pair potential than the
hard-sphere potential, terminal polydispersities have been
found as well. Monte Carlo simulations revealed a crystal-to-
glass transition in systems of polydisperse charged colloids
interacting through a HSY pair potential.30 In semigrand en-
semble simulations a terminal polydispersity was reported for
a soft-sphere system, which in the crystalline phase increased
with increasing potential softness.31 In recent simulation work
a terminal polydispersity as well as reentrant melting were
found for HSY systems with quenched size polydispersity us-
ing free energy calculations.32

A common feature in the above-mentioned theoretical
and computational studies is that the polydispersity in the
coexisting phases was kept constant. For the hard-sphere
system, simulation work was also carried out under dif-
ferent conditions where the size distribution in the coex-
isting phases was allowed to vary. This gives rise to the
phenomenon where the system splits into two or more co-
existing phases with different polydispersities, so-called frac-
tionation. One scenario where fractionation occurs is when
a fluid with large size polydispersity (∼0.12) coexists with a
crystal that has a narrower size distribution (∼0.06).17 How-
ever, the simulations that led to this result were carried out
in the semigrand canonical ensemble, which fixes the chem-
ical potential differences for different particle sizes with re-
spect to some reference particle, but not the overall parti-
cle size distribution in the system, thus allowing for variable
polydispersity. Later, solid-fluid coexistence with fractiona-
tion was found in more realistic theory and simulation work
for the experimentally relevant situation of a fixed overall size
distribution.18, 22 Also, in theoretical and computational stud-
ies the coexistence of multiple solid phases was found, each
with a narrow size distribution, in a system with a large over-
all polydispersity and a fixed overall size distribution.18, 21, 23

It should be noted here that, when given enough time, a sys-
tem can of course always divide itself up in less polydis-
perse subsystems that then may form crystal phases. How-
ever, since fractionation requires significant long-distance
particle diffusion, it is expected that in experimental sys-
tems extensive fractionation will take (inaccessible) long
times.20

The outcome of experiments on systems with poly-
disperse particles will thus not only be determined by
equilibrium thermodynamics, but also by non-equilibrium
phenomena. The above-mentioned experimentally observed
absence of crystallization above a certain polydispersity value
could also be due to slow dynamics (the dynamic glass tran-
sition), or high nucleation barriers, which are known to in-
crease with polydispersity.27, 33 Simulation work on a soft-
sphere system predicts that while a first-order freezing tran-
sition up to a polydispersity of 0.45 is present, in experi-

ments non-equilibrium effects will dominate at polydispersi-
ties above 0.12.34

Most experimental work on HSY systems has been per-
formed on colloidal systems where the double layer thickness
(κ−1) is smaller than the particle diameter (σ ). However, re-
cently there has been renewed interest in soft systems where
the double layer thickness is on the order of the particle size
or larger.7, 35 Inevitably, polydispersity is present in these ex-
perimental systems as well, although the nonlinear double-
layer interaction is expected to make its effects on phase be-
havior less strong than for hard-sphere systems. Preliminary
experimental observations indicate that the long-range inter-
actions enable the crystal structure to accommodate a very
large polydispersity.36 In this work we move beyond the sim-
ple hard-sphere-like colloidal systems and investigate the phe-
nomena arising from the presence of polydispersity in sys-
tems in which the particles interact with a hard-core soft
repulsive Yukawa potential.

Experiments indicate that in systems of charge-stabilized
colloidal particles suspended in apolar or low-polar sol-
vents the charge on the colloids is packing-fraction-
dependent.9, 37–40 The interactions in these HSY systems
are therefore more accurately described by constant-
potential boundary conditions than constant-charge bound-
ary conditions.38, 39, 41 Only recently, phase diagrams for
HSY systems were calculated within the constant-potential
model.42 Use of the constant-potential model requires cal-
culation of the packing-fraction-dependent effective colloidal
charge and effective screening length. Because of these tech-
nical difficulties the present simulations were started with all
particles having the same surface potential, but the amount of
charge was not a function of the packing fraction or distance
between the particles.

We used Monte Carlo simulations to study the effect of
polydispersity on the behavior of hard-core Yukawa systems.
It was found that Monte Carlo simulations in which physically
relevant moves (small particle displacements) are used, are a
correct and efficient way to investigate the dynamics in col-
loidal systems.43–45 Molecular dynamics simulations are less
appropriate to describe the dynamics in suspensions of col-
loidal particles, as they employ Newtonian dynamics rather
than the Brownian dynamics which is operative in colloidal
systems. We expect only limited fractionation, to the extent
introduced by the selected initial configuration and allowed
for by the diffusion of the particles on simulation timescales.
We note that NVT Monte Carlo simulations are not a suitable
technique to establish the equilibrium behavior of a polydis-
perse system, as was pointed out in Ref. 22. The behavior
of the system at coexistence will be dominated by finite-size
effects, which can be more severe in polydisperse systems
compared to monodisperse systems, because in polydisperse
systems some phases may occupy only a very small volume
when the constituting particle sizes are under-represented in
the overall size distribution. Furthermore, the use of fixed par-
ticle sizes in combination with slow diffusion, as is the case
for our system, means that fractionation is very slow and on
simulation timescales equilibrium is not reached. The results
might be indicative of what could happen in an experiment
in which a polydisperse system is allowed to crystallize at a
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low packing fraction and is subsequently slowly compressed,
for example, by gravity. For certain combinations of parame-
ters sufficiently slow compression is expected to preserve the
crystalline structure up to the packing fraction where the lat-
tice spacing becomes too small to accommodate the spread of
sizes present in a polydisperse system. The extent to which
fractionation takes place will be determined by the mobil-
ity of the particles at this packing fraction. Slow dynamics
will prevent the system to fully fractionate on experimental
timescales, resulting in phase behavior that depends on the
quenched polydispersity.

The remainder of this paper is organized in the fol-
lowing way. In Sec. II we give simulation details and de-
scribe the order parameters we used to analyze the results, in
Sec. III we discuss the results, and in Sec. IV our conclusions
are presented.

II. METHOD

A. Simulation details

In our model, the particles interact through a pairwise
hard-core repulsive Yukawa potential:46

uij (r) =
{

εij
σij

r
e−κ(r−σij ) r ≥ σij

∞ r < σij

, (1)

with σ ij = (σ i + σ j)/2 and the contact value of the potential
between two colloids i and j

βεij = ZiZj

(1 + κσi/2)(1 + κσj/2)

λB

σij

, (2)

where r is the center-to-center distance between particles i
and j, Zi (Zj), and σ i (σ j) are the charge number and di-
ameter of colloid i (j), λB = e2/(4πεrε0kBT ) is the Bjerrum
length (with e the unit charge, εr the relative dielectric con-
stant of the solvent, ε0 the dielectric permittivity of vacuum,
kB the Boltzmann constant, and T the absolute temperature),
β = 1/(kBT ), and κ = √

8πλBρs is the inverse Debye screen-
ing length (with ρs the monovalent salt concentration). The
electrostatic surface potential ψ i for an isolated particle is
given by12

βeψi = Zi

1 + κσi/2

2λB

σi

. (3)

We took the charge number of the particles such that particles
with a different size had the same surface potential. However,
as mentioned before, the surface charge was not a function of
the packing fraction or distance between the particles. This
means that the charge number of particle i with diameter σ i is
given by

Zi = Z
σi

σ̄

1 + κσi/2

1 + κσ̄ /2
, (4)

where Z and σ̄ are the charge number and diameter of a cho-
sen reference particle. Inserting this expression for the charge
number in Eq. (1) leads to the following expression for the
potential:

uij (r) =
{

ε̄
σiσj

σ̄ r
e−κ(r−σij ) r ≥ σij

∞ r < σij

, (5)

where βε̄ = Z2λB/[(1 + κσ̄ /2)2σ̄ ] is the contact value of the
potential for two reference particles with charge number Z and
diameter σ̄ (see Eq. (2)).

The particle diameters σ in our systems are distributed
according to a log-normal distribution:

p(σ ; μ, δ) = 1

σδ
√

2π
e
− (ln σ−μ)2

2δ2 , (6)

where μ and δ are the mean and the standard deviation of
the natural logarithm of variable σ (which is a continuous
variable, contrary to σ i above). The diameter of the above-
mentioned reference particle (σ̄ ) is chosen such that μ = ln σ̄ .
The use of a log-normal distribution rather than a Gaussian
distribution avoids the problem of having a finite probability
for negative diameters. We define the polydispersity s as the
ratio of the standard deviation and the mean of σ :

s ≡
√

〈σ 2〉 − 〈σ 〉2

〈σ 〉 . (7)

The polydispersity can be written in terms of the log-normal
distribution parameter δ:

s =
√

eδ2 − 1, (8)

and for the values of δ that we use (δ ∈ [0.00, 0.15]), s can be
approximated by

s ≈ δ. (9)

We performed NV T Monte Carlo simulations, keeping
the number of particles N, the volume of the cubic box V , and
the absolute temperature T constant. The packing fraction η is
given by

η = π

6V

N∑
i=1

σ 3
i , (10)

where the sum runs over all particles N in the system and σ i is
the diameter of particle i. The initial configuration was either
a face-centered-cubic (fcc; N = 2048) or body-centered-cubic
(bcc; N = 2000) crystal configuration, chosen to match the
stable crystalline phase of the monodisperse system at the
packing fraction of the crystal-fluid transition, as determined
from free energy calculations in Monte Carlo simulations.4

Polydisperse initial configurations were made by placing N
particles on a crystal lattice with diameters randomly assigned
according to the aforementioned log-normal distribution. If
overlap occurred each particle was assigned a new diameter.
For each combination of βε̄, κσ̄ , η, and s we made not more
than 106 attempts at generating non-overlapping configura-
tions. It should be noted that above a certain polydispersity
this procedure does not result in non-overlapping initial
configurations. We used two different typical contact val-
ues, βε̄ = 20 and 81 (corresponding to surface potentials
ψ0 ≈ 23 and 46 mV at room temperature, assuming
λB/σ̄ ≈ 0.01), and several values of κσ̄ from the range
2.5–10. The pair potential was cut off at a distance of 4.10σ̄ .
We found no significant differences in our results for larger
values of this cut-off distance. The maximum displacement
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of the particles was set to 0.1σ̄ . Simulations were run for
2 × 104 Monte Carlo cycles, where one cycle means on
average one displacement per particle. For each state point
five independent runs were performed. After 2 × 104 Monte
Carlo cycles we analyzed the configurations by calculating
various order parameters (see Sec. II B).

B. Order parameters

For each particle i we can define a set of 2l + 1 bond-
orientational order parameters qlm(i):

qlm(i) = 1

Nb(i)

Nb(i)∑
j=1

Ylm(θij , φij ), (11)

where Nb(i) is the number of neighbors of particle i, θ ij,
and φij are the inclination and azimuth angles of the bond
rij = ri − rj (where ri (rj ) denotes the position of particle
i (j)) connecting the centers of particle i and its neighbor j,
and Ylm(θ ij, φij) are the spherical harmonics with m ∈ [−l, l].
The neighbors of particle i are defined as all particles within
a certain cut-off distance rc from particle i.

We used these sets of bond-orientational order parame-
ters to calculate three different order parameters. The local
bond-orientational order parameter ql(i) is calculated in the
following way:47

ql(i) =
√√√√ 4π

2l + 1

l∑
m=−l

|qlm(i)|2, (12)

where qlm(i) is defined in Eq. (11). We can average each of the
members of the set from Eq. (11) over the central particle and
its neighbors, to obtain for each particle i a set of averaged
bond-orientational order parameters q̄lm(i):

q̄lm(i) = 1

Nb(i) + 1

Nb(i)∑
j=0

qlm(j ), (13)

where the sum runs over all the neighbors of particle i
plus the particle i itself. From these sets of averaged bond-
orientational order parameters, we obtain an averaged local
bond-orientational order parameter q̄l(i):48

q̄l(i) =
√√√√ 4π

2l + 1

l∑
m=−l

|q̄lm(i)|2. (14)

Finally, the correlation between the sets of bond-orientational
order parameters for each pair of neighboring particles can be
written as

cl(ij ) =
∑l

m=−l
qlm(i)q∗

lm(j )(∑l

m=−l
|qlm(i)|2

)1/2 (∑l

m=−l
|qlm(j )|2

)1/2 ,

(15)
where qlm(i) is defined in Eq. (11) and q∗

lm(j ) is the complex
conjugate of qlm(j). Crystalline particles are defined as parti-
cles with more than a certain number nc of connected neigh-
bors, where a connected neighbor is a neighbor j to particle i
for which cl(ij) exceeds a threshold value cc.49 For our analy-
sis we chose l = 6, rc = 1.5ρ−1/3 (with ρ = N/V the number

density of the particles, and ρ−1/3 the characteristic interpar-
ticle distance), cc = 0.6, and nc = 8. We use this order pa-
rameter for calculating the fraction of crystalline particles in
the system (the crystalline fraction is 1.0 in a perfect bulk fcc
or bcc crystal, and close to 0.0 in a fluid), and for calculat-
ing the average crystallinity of a particle during a part of the
simulation, which is the fraction of time that the particle is
crystalline during that part of the simulation.

In order to determine whether certain arrangements of
particles were liquid or glassy we also looked at particle
dynamics, without taking interparticle hydrodynamic effects
into account, as measured by particle diffusion. The mean
square displacement from the initial (ideal) lattice positions
at a certain point τ in the simulation is given by

〈�r(τ )2〉 = 1

N

N∑
i=1

(ri(τ ) − ri(0))2, (16)

where ri(τ ) is the position of particle i at time τ and ri(0) the
initial (ideal) lattice position of particle i.

III. RESULTS AND DISCUSSION

We studied the following combinations of the Yukawa
potential parameters: for the weakly charged particles with
reference contact value βε̄ = 20 we studied κσ̄ -values in
the range 3.3–10, corresponding to screening lengths (κσ̄ )−1

in the range 0.30–0.10; for the more highly charged parti-
cles with βε̄ = 81 we studied κσ̄ -values in the range 2.5–
10, corresponding to screening lengths (κσ̄ )−1 in the range
0.40–0.10. In Fig. 1 we plotted some of the pair potentials for
two reference particles with diameter σ̄ . For each polydisper-
sity, we calculated the crystalline fraction and the mean square
displacement from the initial lattice positions over a range of
packing fractions. We found qualitatively different behavior
for the weakly and more highly charged particles; below we
will discuss the results for both.

A. Weakly charged particles

First we consider the case of weakly charged particles
(ψ0 ≈ 23 mV). Despite their low surface potential, parti-
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FIG. 1. Pair potentials for two reference particles with diameter σ̄ for four
different combinations of Yukawa potential parameters βε̄ and κσ̄ .
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FIG. 2. Crystalline fraction versus packing fraction η of a system of particles which interact with a hard-core repulsive Yukawa pair potential with reference
contact value βε̄ = 20 and (a) κσ̄ = 3.3, (b) 4.0, (c) 6.7, and (d) 10 after a simulation of 2 × 104 Monte Carlo cycles, starting from a bcc (κσ̄ = 3.3 and 4.0)
or fcc (κσ̄ = 6.7 and 10) crystal structure, for different polydispersities s in the range 0.00–0.10 as labeled.

cles will hardly ever come into contact with their hard cores,
as the size of the particles makes that βε̄ = 20. Figure 2
presents the crystalline fraction versus packing fraction for
κσ̄ = 3.3, 4.0, 6.7, and 10. We started our simulation with a
bcc phase for κσ̄ = 3.3 and 4.0, while an fcc phase was used
for κσ̄ = 6.7 and 10, chosen to match the stable crystalline
phase of the monodisperse system at the packing fraction of
the crystal-fluid transition.4 Due to hysteresis the crystal-fluid
transition for the monodisperse system ηCF(0) was found at
slightly lower packing fraction than in the equilibrium phase
diagram, e.g., for κσ̄ = 3.3 we find ηCF(0) ≈ 0.26 versus
ηCF(0) ≈ 0.28 in the phase diagram obtained from free en-
ergy calculations using Monte Carlo simulations.4, 32 Hystere-
sis was also found for the polydisperse systems with κσ̄ = 3.3
and 10, when comparing to results on systems with very simi-
lar potential parameters from Ref. 32. For systems with poly-
dispersity above 0.10 (values tried were 0.13 and 0.15) it
was not possible to obtain a fully crystalline starting con-
figuration within a reasonable number of attempts. From the
plots in Fig. 2 we see that the crystal-fluid transition shifts to
higher packing fractions with increasing polydispersity. This
shift is present for all κσ̄ -values in the range 3.3–10, but
the shift is larger if the particles are softer (smaller κσ̄ or
larger screening length (κσ̄ )−1). To illustrate this, we plot-
ted in Fig. 3 for four different κσ̄ -values the shift in packing
fraction, defined as

�η(s) = ηCF(s) − ηCF(0), (17)

where ηCF(s) and ηCF(0) are the packing fraction of the
crystal-fluid transition for polydispersity s and for the
monodisperse system (with s = 0), respectively. We took
for ηCF(s) and ηCF(0) the values of the packing fraction at
which the (interpolated) crystalline fraction equals 0.80. From
Fig. 3 it is clear that the shift of the crystal-fluid transition
with increasing polydispersity is larger for softer particles.
The initial crystal type (bcc or fcc) does not appear to qual-
itatively influence the shift. We assume that a packing frac-
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FIG. 3. Shift in packing fraction of the crystal-fluid transition �η(s) (as de-
fined in Eq. (17)) with size polydispersity s of a system of hard-core repulsive
Yukawa particles with reference contact value βε̄ = 20 and κσ̄ = 3.3, 4.0,
6.7, and 10 as labeled.
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FIG. 4. Crystalline fraction versus packing fraction η of a hard-core repulsive Yukawa system with reference contact value βε̄ = 81 and (a) κσ̄ = 2.5, (b) 3.3,
(c) 6.7, and (d) 10 after a simulation of 2 × 104 Monte Carlo cycles, starting from a bcc (κσ̄ = 2.5 and 3.3) or fcc (κσ̄ = 6.7 and 10) crystal structure, for
different polydispersities s in the range 0.00–0.15 as labeled. The arrows indicate the edge of the plateau for s = 0.13 and may be used for comparison with
Figs. 7 and 8.

tion corresponding to a crystalline fraction of 0.80 lies in
the coexistence gap and take it as a measure for the packing
fraction at which the crystal-fluid transition would occur in
quenched equilibrium where fractionation is not allowed for.
We wish to remark here that different simulation techniques
that allow for fractionation are required to determine the equi-
librium phase behavior of polydisperse systems (see, e.g.,
Refs. 22, 23, 50, and 51). It is tempting to speculate that a
longer-range potential gives rise to a larger effective polydis-
persity, which would explain the larger shift of the crystal-
fluid packing fraction with polydispersity.

B. More highly charged particles

Figure 4 shows the crystalline fraction versus packing
fraction for more highly charged particles (ψ0 ≈ 46 mV) with
βε̄ = 81 and κσ̄ = 2.5, 3.3, 6.7, and 10. We started our sim-
ulation with a bcc phase for κσ̄ = 2.5 and 3.3, while an fcc
phase was used for κσ̄ = 6.7 and 10, chosen to match the sta-
ble crystalline phase of the monodisperse system at the pack-
ing fraction of the crystal-fluid transition.4 Comparing these
plots to Fig. 2 for βε̄ = 20, we see a much weaker shift in the
crystal-fluid transition with increasing polydispersity. Up to
s = 0.10 we hardly see a shift at all, while for higher polydis-
persities the shift, if present, is much smaller than in the case
of weakly charged particles. For the weakly charged parti-
cles melting takes place at relatively high packing fraction; the

characteristic interparticle distance at the crystal-fluid transi-
tion is thus smaller than for the more highly charged particles.
It seems likely that for the case of weakly charged particles,
the crystal lattice can therefore not accommodate an equally
broad spread in sizes as for the case of more highly charged
particles, which seems a possible reason for the larger shift
of the crystal-fluid packing fraction for the case of weakly
charged particles.

The crystal-fluid transition for βε̄ = 81 occurred at
lower packing fractions than for βε̄ = 20, which allowed
us to investigate higher polydispersities and higher packing
fractions relative to the packing fraction of the monodis-
perse crystal-fluid transition. In this region we observed
something not found for the weakly charged systems: for
s = 0.13 and 0.15 only parts of the system became disor-
dered, while the remaining parts stayed crystalline. After run-
ning the simulations for 2 × 105 cycles (ten times the length
of the initial run) the crystalline fraction for s = 0.13 was still
at the same value, and the crystalline fraction for s = 0.15 had
only slightly decreased (for analysis confirming that the disor-
dered parts did not display long-time self-diffusion and hence
were not fluid, see below). The crystalline fraction at which
the system seems to stabilize is lower for higher polydisper-
sity (e.g., for κσ̄ = 2.5 this crystalline fraction is ∼0.80 for
s = 0.13 and ∼0.30 for s = 0.15), but is for a given polydis-
persity approximately the same over a whole range of packing
fractions. For all other κσ̄ -values we observed the same phe-
nomenon, with the crystalline fraction at which the system
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FIG. 5. Snapshot after 2 × 104 Monte Carlo cycles of a hard-core repulsive
Yukawa system with reference contact value βε̄ = 81, κσ̄ = 2.5, η = 0.20,
and s = 0.15. The color of a particle indicates (a) the average crystallinity
in a series of six configurations between 1.5 × 104 and 2 × 104 Monte
Carlo cycles, (b) the average local bond-orientational order parameter q̄6(i)
(Eq. (14)) after 2 × 104 MC cycles, (c) local bond-orientational order param-
eter q6(i) (Eq. (12)) after 2 × 104 MC cycles, and (d) the square displacement
from the particle’s ideal lattice position �ri (τ )2/σ̄ 2 = (ri (τ ) − ri (0))2/σ̄ 2

for τ = 2 × 104 Monte Carlo cycles.

stabilizes decreasing with increasing κσ̄ to ∼0.25 and ∼0.05,
respectively, for s = 0.13 and 0.15 (for κσ̄ = 10).

We took a closer look at several of the configurations
where the crystalline fraction reached a plateau for a range of
packing fractions. Figure 5 shows four times the same snap-
shot after 2 × 104 cycles of a configuration with βε̄ = 81,
κσ̄ = 2.5, s = 0.15, and η = 0.20. For Fig. 5(a) we calcu-
lated the crystallinity for each particle as described in Sec.
II for a series of six configurations between 1.5 × 104 and
2 × 104 Monte Carlo cycles (crystallinity = 1 for a crystalline
particle, 0 for a non-crystalline particle) and determined the
average crystallinity; black particles have low crystallinity,
while yellow (light gray) particles have high crystallinity. In
Fig. 5(b) each particle’s color indicates for the configura-
tion after 2 × 104 cycles whether its average local bond-
orientational order parameter q̄6 is low (black) or high (yel-
low/light gray). In Fig. 5(c) we show the same, but for the
non-averaged local bond-orientational order parameter q6. In
the fourth snapshot, Fig. 5(d), a particle’s color is determined
by the square of the displacement �ri(τ )2 = (ri(τ ) − ri(0))2

from its ideal initial lattice position: small (black) or large
(yellow/light gray).

From the average crystallinity of each particle (Fig. 5(a))
we see that in this snapshot, and also the other snapshots we
looked at, the crystalline particles and non-crystalline parti-
cles are in different domains. We observed strong correla-
tion between the average crystallinity and the average local
order parameter q̄6 of each particle: Fig. 5(b) shows simi-
lar domains. Less correlation is found between the average

crystallinity and the non-averaged local bond-orientational or-
der parameter q6: there are large fluctuations in the value of
q6 within a domain (Fig. 5(c)). This means that an individ-
ual particle within an ordered domain does not necessarily
have a high q6 itself. However, the probability of finding a
particle with a high q6-value is higher in a domain consist-
ing of particles with high average crystallinity and high q̄6.
The correlation between the square displacement �ri(τ )2 and
average crystallinity is present, but also not very strong: the
mean square displacement 〈�r(τ )2〉 (Eq. (16)) is smaller in
crystalline domains than non-crystalline domains, but we find
large fluctuations in the square displacement �ri(τ )2 of indi-
vidual particles within a domain.

C. Terminal polydispersity

We determined three size distributions for the final con-
figuration of each run (after 2 × 104 MC cycles): one for the
total system, a second for the most-disordered particles, and
a third for the most-ordered particles. Particles are labeled
“most-disordered” or “most-ordered” by calculating the av-
erage crystallinity as described in Sec. II. A most-disordered
particle is crystalline in at most one out of six configurations
and a most-ordered particle in at least five out of six configura-
tions between 1.5 × 104 and 2 × 104 Monte Carlo cycles. The
diameters were sampled from a continuous log-normal dis-
tribution; the calculated polydispersities for the sampled size
distributions for the total system were very close to (within
∼1% from) the polydispersity of the continuous distribution.

In Fig. 6 we plotted the three size distributions aver-
aged over five simulations (for better statistics) with βε̄ = 81,
κσ̄ = 2.5, s = 0.15, and η = 0.20. The most-disordered size
distribution (dashed red line) has a peak slightly, but signifi-
cantly, more to the left (at smaller size) than the most-ordered
size distribution (solid blue line). The most-disordered size
distribution is also broader (has a higher polydispersity)
than the most-ordered size distribution. Size distributions for

p(
σ)

σ/σ-

all
ordered
disord.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.6 0.8 1.0 1.2 1.4 1.6

FIG. 6. Normalized probability distribution functions p(σ ) of the particle
diameter σ for βε̄ = 81, κσ̄ = 2.5, s = 0.15, and η = 0.20 (55% most-
disordered particles, 25% most-ordered particles). Filled gray curve: all par-
ticles, solid blue line: most-ordered particles (particles that are crystalline in
at least five out of six configurations between 1.5 × 104 and 2 × 104 Monte
Carlo cycles), dashed red line: most-disordered particles (particles that are
crystalline in at most one out of six configurations between 1.5 × 104 and
2 × 104 Monte Carlo cycles).
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configurations at different packing fractions show similar
characteristics, as do the distributions for s = 0.13. Probably,
local differences in polydispersity determine whether the sys-
tem stays crystalline or becomes disordered, with a higher lo-
cal polydispersity destabilizing the crystal structure and caus-
ing the system to become locally disordered.

Whether a configuration is disordered or crystalline de-
pends on our definitions; however, it is clear that above a cer-
tain polydispersity a long-range ordered configuration or crys-
tal cannot be formed regardless of the definition. If the system
had time to fractionate this is presumably what would even-
tually happen; however, given the slow dynamics in solid and
glassy states, it is probably still useful to determine a value of
the quenched polydispersity, i.e., with no fractionation taken
into account, above which crystallization does not occur. It
should be kept in mind that the way the initial crystal config-
urations are chosen can also be seen as selecting systems that
are already slightly fractionated.

In a system with a higher polydispersity a larger part of
the configuration is locally destabilized by fluctuations in the
polydispersity, which explains why we find a larger fraction
of disordered particles in the configurations with s = 0.15
than in the configurations with s = 0.13. As mentioned above,
the crystalline fraction at which the system stabilizes is for
a given polydispersity approximately the same over a range
of packing fractions. This can be explained if we note that
the fraction of particles in the system that experiences the lo-
cal polydispersity to be larger than some terminal polydisper-
sity (and therefore becomes disordered) is independent of the
packing fraction in the system, and assume that significant

reentrant melting does not yet happen in this range of packing
fractions.

To verify this explanation further, we calculated the poly-
dispersity for the most-disordered and most-ordered particles
in the systems with overall polydispersity s = 0.13 and 0.15.
For the final configuration of each run (after 2 × 104 MC
cycles) we calculated the polydispersity of the size distribu-
tion for the most-disordered particles and the polydispersity
of the size distribution for the most-ordered particles. We av-
eraged for each state point the obtained polydispersity val-
ues for the five independent runs. The results are shown in
Fig. 7, where we plotted, for overall polydispersity s = 0.13,
the polydispersity versus packing fraction in the total system,
in the most-disordered parts and in the most-ordered parts of
the system. The polydispersity in the most-ordered parts is
significantly lower than in the most-disordered parts. We also
note that the polydispersities in the most-ordered and most-
disordered parts of the system are similar over the range of
packing fractions for which the system seems to stabilize at
a certain crystalline fraction (i.e., the range of packing frac-
tions where the plot for s = 0.13 in Fig. 4 forms a plateau).
For systems with s = 0.15 we find for the polydispersity of
the most-ordered particles values similar to those for systems
with s = 0.13.

The polydispersity of the most-ordered parts can be re-
garded as a measure for the terminal polydispersity, since the
homogeneous crystal phase is no longer stable if the local
polydispersity of the system is higher than this value. This
terminal polydispersity decreases with increasing κσ̄ from
∼0.12 for κσ̄ = 2.5 to ∼0.105 for κσ̄ = 10. We expect softer
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FIG. 7. Polydispersity s versus packing fraction η of the most-ordered and most-disordered parts of hard-core repulsive Yukawa systems with reference contact
value βε̄ = 81 and an overall polydispersity s = 0.13. For (a) κσ̄ = 2.5, (b) 3.3, (c) 6.7, and (d) 10 after a simulation of 2 × 104 Monte Carlo cycles, starting
from a bcc (κσ̄ = 2.5 and 3.3) or fcc (κσ̄ = 6.7 and 10) crystal structure. The arrows indicate the same state points as in Fig. 4.
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particles (with κσ̄ < 2.5) to have an even higher terminal
polydispersity. These values are in good agreement with the
estimated terminal polydispersity (0.125 < s < 0.13 for pa-
rameters close to βε̄ = 81 and κσ̄ = 3.3) as obtained from
free energy calculations.32 We take the trend observed for
our values for the terminal polydispersity as an indication of
what might be found for more reliable terminal polydispersi-
ties that could be measured using simulations that can achieve
equilibrium.22

D. Slow dynamics

Figure 8 shows the mean square displacement from
the initial ideal lattice positions versus packing fraction for
βε̄ = 81, κσ̄ = 2.5, and a range of polydispersities s. From
this plot we see that in all systems that stay completely or
partly crystalline, particles do not move over a distance larger
than the typical particle diameter during the length of the sim-
ulation. This means that the dynamics in the system does not
allow for local fluctuations in the polydispersity to change
during the simulation and that the disordered parts in these
systems are therefore essentially glassy, i.e., the particles dis-
play no long-time self-diffusion and are disordered. This is
illustrated further in Fig. 9, which shows the trajectories for
25 neighboring particles during a simulation of 2 × 105 cy-
cles for the state point with βε̄ = 81, κσ̄ = 2.5, s = 0.15, and
η = 0.20. Most particles are confined to the cage formed by
their neighbors during the length of the simulation, whereby
some stay on their lattice position, while others are moved
from their original position due to local distortion of the lat-
tice. A few particles move from their lattice point and displace
one of their neighbors, which then in turn hops to the lattice
point of another neighbor or simply becomes part of a disor-
dered part of the system. Most of these hopping movements
and lattice distortions seem to occur early in the simulation,
which is consistent with the observation that increasing the
simulation length from 2 × 104 to 2 × 105 cycles does not
significantly change the crystalline fraction in the system.
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FIG. 8. Mean square displacement 〈�r(τ )2〉 from the ideal lattice position
(Eq. (16)) versus packing fraction η for reference contact value βε̄ = 81 and
κσ̄ = 2.5 after a simulation of 2 × 104 Monte Carlo cycles, starting from a
bcc crystal structure, for different polydispersities s in the range 0.00–0.15 as
labeled. The arrow indicates the same state point as in Fig. 4(a).
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FIG. 9. 2D projections of 3D trajectories during 2 × 105 Monte Carlo cycles
of 25 particles from a configuration with βε̄ = 81, κσ̄ = 2.5, s = 0.15, and
η = 0.20. The initial configuration is a perfect bcc crystal; the initial positions
of the particles are indicated by solid red symbols. Initially, the 25 particles
are in two parallel {100} planes: 16 particles (solid red circles and solid red
squares) in one plane occupy the corners of 3 × 3 unit cells, 9 particles (solid
red triangles and solid red diamonds) in the second plane are in the centers
of the unit cells. The end positions after 2 × 105 MC cycles are indicated
by empty red symbols (again circles, squares, triangles and diamonds; for
each particle we used a symbol of the same shape to indicate the initial and
end position). The trajectories are shown with four different colours (black,
blue, green, and cyan, which correspond to the circles, squares, triangles, and
diamonds, respectively).

IV. CONCLUSION

We investigated the effect of size polydispersity on the
crystal-fluid transition in hard-core repulsive Yukawa sys-
tems. We observe a shift to higher packing fraction of the
crystal-fluid transition of bulk crystals upon increasing the
polydispersity, which is more pronounced for weakly charged
particles (βε̄ = 20) compared to more highly charged parti-
cles (βε̄ = 81), and also for larger Debye screening length.
For βε̄ = 81 at high polydispersities (s ≥ 0.13; values used:
s = 0.13 and 0.15) and high packing fractions, parts of the
system that were initially crystalline became amorphous, in-
dicating for these systems a terminal polydispersity beyond
which the homogeneous crystal phase was no longer sta-
ble. For βε̄ = 20 we could not obtain crystalline systems for
s = 0.13 and 0.15 for the packing fraction range of interest,
providing a more direct indication that these values are above
the terminal polydispersity.

We did not explicitly allow for size fractionation of the
system other than the fractionation that “naturally” occurred
within the system, although it should be kept in mind that the
way the initial crystal configurations are chosen can also be
seen as selecting systems that are already slightly fraction-
ated. Due to the rather slow dynamics, we can only observe
an onset to further fractionation because of the way the start-
ing configuration was selected: the size distribution for “most-
ordered” particles was narrower than the overall (imposed)
size distribution. Note, that this is precisely the situation that
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prevails in experimental systems: as in our simulations, the
size distribution imposed by the particle synthesis can only
fractionate to the extent allowed for by the system’s dynam-
ics. In this sense, the simulations closely resemble the exper-
imental situation.

Free energy calculations in which fractionation is in-
cluded, could give a better insight in the equilibrium phases
of the hard-core repulsive Yukawa system. Those have been
performed for the case of hard spheres, but not yet for the
softer Yukawa system, which is more difficult to probe due to
its much larger parameter space.
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