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INTERFACIAL ADSORPTION OF A TRUNCATED CUBE

In this section we consider the adsorption of a single truncated (nano)cube at a flat toluene-air interface using a
theoretical model based on surface-tension arguments. We apply a model similar to that of P. Pieranski, who analysed
the strength of adsorption of spherical colloids at liquid-gas and liquid-liquid interfaces [1].

The Model for the Truncated Cubes

To describe the experimental system, we consider a truncated cube which, in its initial configuration, is given by
the set of vertices

{v(q)} =
PD

(
(±1,±(1− q),±(1− q))T

)
√

4(
√

3q2 + 6
√

2q(1− q) + 6(1− q)2)
, (1)

where q ∈ [0, 1] is the truncation parameter, ‘T ’ indicates transposition, PD is a permutation operation that generates
all permutations of each element in the set of 8 vertices spanned by the ±-operations (which are allowed to act
independently of each other). By letting PD act we obtain 48 vertices. Subsequent deletion of all duplicates reduces
this set to the desired total of 24 vertices for a truncated cube with 6 {100}, 12 {110}, and 8 {111} facets. The
expression in the denominator ensures that the truncated cube is normalized to unit surface area. By changing the
value of q the truncated cube deforms smoothly from a cube (q = 0) to an octahedron (q = 1) via a cuboctahedron
(q =

√
2/(
√

2 + 1) ≈ 0.586), also see Fig. 1a, which shows our model for various levels of truncation. We restrict
ourselves to q ∈ [0, 0.6] in the following.
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FIG. 1. (a) The truncated cube model for several values of the truncation parameter q ∈ [0, 1]. (b) A schematic representation
of the model for q = 0.30 which shows the truncated cube in its initial configuration, i.e., the normals of the {100} facets are
axis-aligned and its centre coincides with the origin. We also indicated the azimuthal angle ψ and the polar angle φ. To keep
the picture clear, we did not show the interface or the height z, which is zero in this case. (c) The three types of facets: (red)
a {100} facet, (green) a {110} facet, and (blue) a {111} facet. The figure also shows the corresponding cosine of the contact
angle cos θi, with i = 1, 2, 3, that is used to describe the surface properties of the respective facets.

In its initial configuration the truncated cube has the normals of its {100} facets aligned with the axes of a standard
Cartesian coordinate frame and its centre coincides with the origin. When this truncated cube is brought into contact
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with a flat undeformed liquid-gas or liquid-liquid interface, the system can be described by four parameters: (i) the
size of the particle, which is given by the multiplicative factor s that acts on the vertices in Eq. (1); (ii) the height z
of the particle with respect to the interface (as measured along the z-axis), which we locate at z = 0 (xy-plane); (iii)
rotation by the azimuthal angle ψ (around the z-axis); and (iv) rotation by the polar angle φ (around the y-axis).
The angles are indicated in Fig. 1b. We assume that the truncated cube is first scaled by s, then rotated by ψ
and subsequently by φ, and finally it is translated by z. Due to the symmetry properties of the truncated cube we
can restrict ourselves to ψ ∈ [0, π/4] and φ ∈ [0, π/2]. Even for this restricted range there are several instances of
duplicate orientations, e.g., ψ ∈ [0, π/4] and φ = 0 gives essentially the same configuration as ψ = 0 and φ = π/2.
These duplicate configurations are taken into account via congruence in our analysis.

The Free Energy of Adsorption

In the experiments there is an indication that the surface properties of the different facets can vary with the
particle concentration, see the main text. Effectively, the ligand covering of the various facets is influenced by the
ligand concentration in the ethylene glycol via adsorption-desorption equilibria. To describe this in our model, we
assume that the different crystal planes, i.e., the {100}, {110}, and {111} facets, have surface properties that can vary
independently of each other, but are otherwise the same for facets of the same type. In this system the free energy of
adsorption F can be written as

F (z, ψ, φ) = γ12(A− S12) + γ1tS1t + γ1bS1b + γ2tS2t + γ2bS2b + γ3tS3t + γ3bS3b, (2)

where γ12 is the liquid-air interfacial tension, A is the total surface area of the interface, S12 is the surface area
excluded from the interface by the presence of the colloid, γit is the surface tension between facets of type i (i = 1, 2,
3) and the top medium, Sit is the total surface area of the facets of type i in contact with the top medium, γib is the
surface tension between facets of type i and the bottom medium, and Sib is the total surface area of the facets of type i
in contact with the bottom medium. Note that we have made the dependence of S12, Sit, and Sib on (z, ψ, φ) implicit.
In this model the microscopic degrees of freedom of the solvent molecules were integrated out to give surface tensions.
We further assumed that the interface is not deformed by the presence of the particle: capillary deformation by
gravity, electrostatic effects, or contact-angle requirements. These are strong simplifications, but there are too many
unknowns regarding the experimental system to justify a more extended model. In this light, the results obtained
in the next section should be seen as an indication of the possible behaviour of a truncated cube at a liquid-air or
liquid-liquid interface, rather than a full theoretical description of the phenomenology in the experimental system.
We will come back to the quality of these results in the discussion.

To simplify the calculations we can reduce Eq. (2) by subtracting a constant contribution to the free energy of
adsorption

F ′(z, ψ, φ) = F (z, ψ, φ)− [γ12A+ γ1b(S1t + S1b) + γ2b(S2t + S2b) + γ3b(S3t + S3b)] ; (3)

= (γ1t − γ1b)S1t + (γ2t − γ2b)S2t + (γ3t − γ3b)S3t − γ12S12; (4)

= γ12 [cos θ1S1t + cos θ2S2t + cos θ3S3t − S12] , (5)

where we set the shifted free energy F ′ to zero when the colloid is completely immersed in the bottom medium. In
the last step [Eq. (5)] we used Young’s equation [2]

γit = γ12 cos θi + γib, (6)

with θi the contact angle corresponding to the (type i facet - top medium - bottom medium) three-phase contact.
Figure 1c shows the correspondence between the different contact angles and the various facets: the surface properties
of the {100} facets are described by θ1, those of {110} facets by θ2, and those of the {111} facets by θ3. Note that
the θi are determined by material properties, whereas ψ and φ are variables in our theory. Using the above equations
we can now write the dimensionless free energy of adsorption as

f(z, ψ, φ) ≡ F ′(z, ψ, φ)

γ12S
; (7)

= cos θ1r1t + cos θ2r2t + cos θ3r3t − r12, (8)

with rit ≡ Sit/S and r12 ≡ S12/S. Note that the dependence of f on the level of truncation q and the surface
properties and media (via the contact angles θi) is implicit in Eq. (7). Moreover, Eq. (7) is independent of the size s
of the particle.
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FIG. 2. The free energy of adsorption f for a truncated cube model with q = 0.30 and cos θi = 0, for i = 1, 2, 3. Note that this
choice for the contact angles ensures that adsorption is completely determined by excluded surface area considerations, also
see Eq. (7). (a) A contour plot of the three-dimensional (3D) free-energy landscape: f as a function of the adsorption depth
z, the azimuthal angle ψ, and the polar angle φ. The top and bottom red surface indicate for which z value the truncated
cube just touches the interface, for a given ψ and φ. From blue to red the contours give f = −0.05, −0.10, −0.15, −0.20,
and −0.22. The location of the free-energy minimum is indicated using a black dot. For this particular system we find that
f(z, ψ, φ)min ≈ −0.24 and that (z, ψ, φ)min ≈ (0.00, 0.25π, 0.30π). (b) The truncated cube in its equilibrium position; one of
the {111} facets is pointing in the direction of the z-axis. The translucent blue square indicates the interface. (c) A side view
of the truncated cube in this equilibrium position, the thick black line indicates the interface.

For a given q, θ1, θ2, and θ3, Eq. (7) gives rise to a three-dimensional (3D) free energy of adsorption landscape, see
Fig. 2 for an example. This landscape was established by numerically determining the values of r1t, r2t, r3t, and r12 on
a (z, ψ, φ) grid, which can be easily accomplished using the triangular-tessellation technique described in Refs. [3, 4].
In the case of a faceted particle our technique’s results are exact. The normalization in Eq. (1) allows us to directly
obtain the fractional values rit and r12. In the following we take z ∈ [−0.4, 0.4], ψ ∈ [0, π/4], and φ ∈ [0, π/2] with
100 equidistant steps for each of these parameters. Whenever s = 1, the radius of a circumscribed sphere for our
truncated cube is always smaller than 0.4. This implies that our choice of z ∈ [−0.4, 0.4] always samples the full range
of adsorption configurations.

The thermodynamic equilibrium is assumed in the minimum of the free-energy landscape, i.e., the z, ψ, and φ
combination for which f has the lowest value; we will denote this minimum as (z, ψ, φ)min. This point can be easily
approximated by searching through our free-energy landscape on a grid for the (z, ψ, φ) combination that gives the
lowest value of f . The density of grid points (1003) allows us to approach the actual minimum (z, ψ, φ)min to within a
sufficient level of precision to justify further analysis. Note that the presence of metastable minima in the free energy
of adsorption is not taken into consideration by analysing the lowest free-energy value only.

Results of our Theoretical Study

An advantage of our model is that the rit and r12 only have to be determined only once for a given q in order
to establish f(z, ψ, φ) for different values of θi. To probe the effect of different surface patterning on (z, ψ, φ)min, or
equivalently different ligand concentrations on the facets, we varied cos θi ∈ [−1, 1] in equidistant steps of 0.03.

Figure 3 shows the distribution of (z, ψ, φ)min in the 3D (z, ψ, φ) landscape upon varying the contact angles for
q = 0.30. Note that the distribution of (z, ψ, φ)min is not homogeneous. In fact, an analysis of our results shows that
the equilibrium orientations of the truncated cube can be roughly divided into three categories: (i) the normal of one
of the {100} facets is pointing in the direction of the z-axis, (ii) the normal of one of the {110} facets is pointing in
the direction of the z-axis, and (iii) the normal of one of the {111} facets is pointing in the direction of the z-axis, also
see Fig. 4. We refer to these three configurations as the ‘prototypical’ configurations. This rough division assumes
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FIG. 3. The distribution of equilibrium adsorption configurations (z, ψ, φ)min (black dots) obtained by varying cos θi ∈ [−1, 1]
(i = 1, 2, 3) in equidistant steps of 0.03 for a truncated cube with q = 0.30. Note that the distribution of (z, ψ, φ)min is not
homogeneous, only a few of the possible values of (z, ψ, φ) are assumed. The red, green, and blue translucent boxes indicate to
which ‘prototypical’ configuration we assign these (z, ψ, φ)min points. Configurations in the red boxes correspond to adsorption
with the normal of one of the {100} facets pointing in the direction of the z-axis, configurations in the green box correspond
to adsorption with the normal of one of the {110} facets pointing in the direction of the z-axis, and configurations in the blue
box correspond to the normal of one of the {111} facets pointing in the direction of the z-axis; also see Fig. 4, which uses the
same colour coding. The two red boxes accommodate a single congruence class.

that, for instance, the state where the particle is adsorbed at depth z is equivalent to the one where it is adsorbed at
depth −z. Moreover, we assume that |ψ′ − ψ| < 0.03π and |φ′ − φ| < 0.03π constitute the same configuration, where
ψ′ and φ′ are the angles corresponding to the prototypical orientation of one of the three categories. The tolerance in
the depth z is considered on a case-by-case basis.

Working backwards we can now find the three values of cos θi for which the truncated cube is in one of the
prototypical equilibrium configurations, see Fig. 4, which shows this correspondence. Here we only give cos θ1,
cos θ2 ∈ [−1, 1] and cos θ3 ∈ [0, 1], since the graph is point symmetric in the origin, which can be easily shown by
considering the signs of the cos terms in Eq. (7). We find that the {100}-prototypical equilibrium configuration is
the most common and there is a slightly greater number of {111} than {110} equilibrium configurations. However, it
should be noted that interpreting the graph on the basis of surface area alone can be misleading, since θi & 150◦ and
θi . 30◦ represent atypical values of the contact values, i.e., | cos θ| . 0.87 is reasonable.

Following the approach that we employed for q = 0.30, we can study the influence of the surface properties of the
different types of facet as a function of the level of truncation q, also see Figs. 5 - 8. Note that for q = 0 there are
only two types of equilibrium configuration, one where one of the {100} facets is pointing upward, and one where one
of the ‘{110} facets’ is pointing upward. The first can be explained by the particle minimizing its contact area with
the unfavoured medium, whilst still excluding a piece of the interface (thereby lowering its free energy). The second
arises when there is a limited difference between the two media; the colloid can lower the free energy by excluding
the maximum amount of surface area from the interface. N.B., for a cube (q = 0) the two prototypical configurations
are the only two possible configurations within the confines of our model, i.e., there is no spread in the (z, ψ, φ)min.

For small levels of truncation q = 0.15, see Fig. 6, the division into two prototypical equilibrium configurations ({100}
and {110}) remains. The spread of the (z, ψ, φ)min around these configurations increases. The surface properties of
the {110} facets have a small influence on the configurations that are assumed by the truncated cubes, as can be seen
in Fig. 6. However, the presence of {111} facets do not seem to affect the equilibrium configurations sufficiently to
cause the third prototypical configuration to appear.

Further truncation of the cube, see Fig. 4 for the q = 0.30 and Fig. 7 for the q = 0.45 result, respectively, appears
to promote the {111} prototypical configuration. It is likely that a greater level of truncation destabilizes the the
{110} configuration in favour of the {111} configuration, because the maximum amount of surface area that can be
excluded from the interface in either configuration becomes comparable. This hypothesis was confirmed by considering
truncated cubes with homogeneous surface properties, as well as other ways of truncating a cube [5].

However, when the level of truncation is great, see Fig. 8 for the q = 0.60 result, the truncated cube becomes rather
spherical. This implies that there is no longer a limited number of favoured orientations on the basis of excluded
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FIG. 4. The equilibrium configurations that present themselves for a truncated cube with truncation level q = 0.30 as a
function of its surface properties. The sub-plots show four cos θ3 slices: top, cos θ3 = 0.0 (left) and cos θ3 = 0.3 (right); bottom,
cos θ3 = 0.6 (left) and cos θ3 = 0.9 (right). These indicate the prototypical equilibrium configuration that is assumed by the
truncated cube as a function of cos θ1 and cos θ2. (legend) The three equilibrium configurations and associated colour code:
(red) the normal of one of the {100} facets is pointing in the direction of the z-axis, (green) the normal of one of the {110}
facets is pointing in the direction of the z-axis, and (blue) the normal of one of the {111} facets is pointing in the direction of
the z-axis.

surface area arguments. As can be appreciated from Fig. 8 this results in a more coarse distribution of ‘prototypical’
equilibrium configurations, as well as the appearance of three more configurations.

Discussion and Outlook

Let us first consider the likelihood of interfacial adsorption. For a spherical particle with homogeneous surface
properties the minimum difference in free energy ∆F between the adsorbed and desorbed state is easily shown to be
given by ∆F = πa2γ12(1 − | cos θ|)2. Here, a is the radius of the sphere, θ is the (air/liquid)-sphere-liquid contact
angle, and γ12 is the interfacial surface tension. We can use this value to estimate what the strength of adsorption
for our nanocrystals might be.

We assume that the nanocrystals are at the air/toluene interface, based on previous experimental observations for
similar systems [6, 7]. The surface tension of the air/toluene interface is given by γ12 ≈ 2.8 · 10−2 Nm−1 [8]. Note
that finite values of cos θ lower ∆F . However, for realistic values of θ this reduction in ∆F is no more than a factor
of 10, with the maximum in ∆F assumed when cos θ = 0. The smaller nanocrystals, which have a diameter of 5.4
nm, therefore adsorb to the interface with at most ∆F ≈ 1 · 102 kBT, where kB is Boltzmann’s constant and T is the
temperature. The larger nanocrystals, which have diameter of 9.9 nm, adsorb with at most ∆F ≈ 5 · 102 kBT. This
simple estimate gives some ab initio justification of the applicability of our theoretical results to the experimental
system. Under ideal circumstances there will be a strong influence of the interface on the nanoparticles, which drives
these towards their equilibrium adsorption configuration. It should, however, be mentioned that these estimates do
not factor into account surface-tension lowering effects such as the presence of surfactants at the interface or pollutants
in the toluene.

Our results indicate that the three experimentally observed configurations can be explained within the framework of
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FIG. 5. The equilibrium configurations that present themselves for a cube (q = 0) as a function of its surface properties.
The sub-plots indicate the (prototypical) equilibrium configuration that is assumed by the cube as a function of cos θ1 and
cos θ2, for various cos θ3 values. (legend) The two equilibrium configurations and associated colour code. Note that the type of
configuration only depends on the surface properties of the red {100} facets, as expected for this level of truncation.

adsorption-desorption equilibria for the ligand concentration on the various facets. Indeed, upon varying the surface
properties of the three types of facet - by modifying the contact angle - we theoretically found the possible equilibrium
adsorption configurations to coincide with the orientations of the particles in the superstructures that formed at the
interface. Moreover, it was experimentally observed that the level of truncation for the larger nanocrystals (9.9 nm)
was less than that for the smaller variety (5.4 nm). This could explain the fact that the honeycomb structures were
only observed for the smaller nanocrystals, since the {111} adsorption configuration does not occur for smaller levels
of truncation, within the confines of our model.

We therefore propose the following explanation for our observations. At low concentrations of the truncated
cubes the adsorption-desorption equilibrium for the ligands covering the facets is shifted towards the ligands being
preferentially adsorbed in the ethylene glycol. When the truncated particles come together there is irreversible and
disordered aggregation. However, for higher particle concentrations the equilibrium shifts to a sufficiently high ligand
covering of the facets that immediate aggregation is prevented. Moreover, we believe that for these systems the
surface properties of the nanoparticles are such that the equilibrium adsorption configuration is of the {100} or the
{110} type, where the latter is preferentially assumed for lower particle concentrations. These configurations lead
to the formation of two-dimensional (2D) rod-like ({110}) and square assemblies ({100}) by oriented attachment via
the {100} facets, respectively. That is to say, for the {100}-like configuration, four of the {100} facets are oriented
perpendicular to the interface, allowing for oriented attachment via these facets in the plane of the interface, which
gives rise to square structures. For the {110} configuration, only two (opposing) {100} facets are perpendicular to
the interface, allowing for oriented attachment that results in linear structures. Upon increasing the nanoparticle
concentration from low to intermediate values, the ligand adsorption/desorption equilibria are shifted resulting in a
different nanoparticle surface pattern. This surface pattern leads to preferential adsorption at the interface of the
{111} type and subsequent oriented attachment via the (now) exposed {110} facets of the particles into honey-comb
superstructures. The latter situation does not, however, occur when the level of truncation is too small to allow for
the {111} configuration to be stable.

It is important to note that our results (and the conclusions we based on these) were obtained using a simple model
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FIG. 6. The equilibrium configurations that present themselves for a truncated cube with truncation level q = 0.15 as a
function of its surface properties. The sub-plots indicate the (prototypical) equilibrium configuration that is assumed by the
truncated cube as a function of cos θ1 and cos θ2, for various cos θ3 values. (legend) The two equilibrium configurations and
associated colour code. Note that there is a small dependence on the surface properties of the {110} facets (cos θ2) for this
level of truncation. However, the surface properties of the {111} facets do not appear to play a role.

for the adsorption of a particle at a liquid-liquid or liquid-air interface. We leave a full investigation of the experimental
phenomenology by theoretical or simulation means as an open problem for future study. An interesting question
for such a study to answer is if a simple model that incorporates particle-concentration-based ligand adsorption-
desorption equilibria, is capable of capturing the shift from the {100} towards the {111} equilibrium configuration,
whilst at the same time showing a lower ligand covering of the facets which we believe to mediate the oriented
attachment. A conformation of this shift would give strong support for our hypothesis that the interface and ligand
adsorption/desorption play a crucial role in determining the structure of the assemblies that we observed to form by
oriented attachment.
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FIG. 7. The equilibrium configurations that present themselves for a truncated cube with truncation level q = 0.45 as a function
of its surface properties. The sub-plots indicate the prototypical equilibrium configuration that is assumed by the truncated
cube as a function of cos θ1 and cos θ2, for various cos θ3 values. (legend) The three equilibrium configurations and associated
colour code.
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FIG. 8. The equilibrium configurations that present themselves for a truncated cube with truncation level q = 0.60 as a function
of its surface properties. The sub-plots indicate the prototypical equilibrium configuration that is assumed by the truncated
cube as a function of cos θ1 and cos θ2, for various cos θ3 values. (legend) The six prototypical equilibrium configurations and
associated colour codes. (red) one of the {100} facets is pointing in the direction of the z-axis, (green) one of the {110} facets
is pointing in the direction of the z-axis, (blue) one of the {111} facets is pointing in the direction of the z-axis, (yellow) the
{210} ‘facet’ is pointing in the direction of the z-axis, (magenta) the {221} ‘facet’ is pointing in the direction of the z-axis, and
(cyan) the {321} ‘facet’ is pointing in the direction of the z-axis. The white points in the sub-plots indicate for which cos θi
combinations we were unable to assign a prototypical equilibrium configuration.


