- SUPPORTING INFORMATION -

Structural and magnetic properties of NiC_x and NiN_x (x = 0 to 1/3) solid solutions from first-principles calculations

C.M. Fang, M.H.F. Sluiter, M.A. van Huis, H.W. Zandbergen

Table S1. Calculated dimensions of the calculation supercells for dilute C/N atoms in fcc and hcp lattices with C/N atoms at octahedral sites. The corresponding structures are displayed in Fig. S1.

figure Composition	lattice/stacking	Parameters (Å)
S-1c) Ni ₃₂ C	fcc/	a = 7.097
S-1c) Ni ₃₂ N	fcc/	a = 7.489
S-1a) Ni ₅₄ C	hex_fcc/abcabc	a = 7.505
		c = 12.261
S-1a) Ni ₅₄ N	hex_fcc/abcabc	a = 7.506
		c = 12.261
S-1b) Ni ₅₄ C	hcp/ababab	a = 7.489
		c = 12.346
S-1b) Ni ₅₄ N	hcp/ababab	a = 7.489
		c = 12.346
S-1f) $Ni_{32}C_2$	Fcc (C far away from	a = 7.142
	each other)	

Table S2. Calculated local electronic configurations (EC, electrons), local magnetic configuration (MC, μ_B), and total magnetic moments (M, μ_B) at the Ni sites as nearest neighbors (NN, shell_1), and the next nearest neighbors (NNN, shell_2). The results for pure fcc-Ni metal are included for the sake of comparison.

Ni sites	Ni ₃₂ C	Ni ₃₂ N
Shell_1	EC: $4s^{0.565} 4p^{0.685} 3d^{8.534}$	EC: 4s ^{0.549} 4p ^{0.669} 3d ^{8.513}
X-6Ni	MC: $4s^{-0.01} 4p^{-0.02} 3d^{0.25}$	MC: $4s^{-0.01} 4p^{-0.02} 3d^{0.24}$
	Moment: 0.23	Moment: 0.22
Shell_2	EC: $4s^{0.552} 4p^{0.584} 3d^{8.468}$	EC: $4s^{0.552} 4p^{0.582} 3d^{8.468}$
X-8Ni	MC: $4s^{-0.01} 4p^{-0.02} 3d^{0.64}$	MC: $4s^{-0.01} 4p^{-0.02} 3d^{0.66}$
	M: 0.61	M: 0.63
pure fcc-Ni	EC: $4s^{0.566} 4p^{0.609} 3d^{8.464}$	
	MC: $4s^{-0.01} 4p^{-0.03} 3d^{0.67}$	
	Moment: 0.63	

Supplementary Figure S1 (a-i): Schematics of supercells used for different NiX $_y$ (X = C/N) phases. The blue spheres represent Ni atoms, the green spheres C/N atoms.

Figure S1a: hex_fcc/abcabc_Ni₅₄X

Figure S1c: fcc-Ni₃₂X_oct

Figure S1b: hcp/ababab_Ni₅₄X

Figure S1d: fcc-Ni₂X_tetra

Figure S1e: fcc-Ni₃₂X₂_close

Figure S1f: $fcc-Ni_{32}X_2$ _far

Figure S1g: fcc-Ni₃₂X₄ (Ni₈X)

Figure S1h: fcc-N $i_{32}X_8$ (N i_4X)

Figure S1i: hcp-Ni₂₄X₉, Striped green indicates C atoms at b sites