I. SUPPLEMENTARY MATERIAL
A. C/Fortran implementation of the SANN scheme

Hereby, we propose the C (SANN.c) and Fortran (SANN.f) implementation of the SANN

scheme.

B. SANN.c

/%

x @file sann.c

x @author van Meel, Filion, Valeriani, Frenkel

x Qdate November 2011

x @Qbrief Sample implementation of the SANN algorithm in C

*/

/%

x @struct NbData

x @brief Defines an {index,distance} pair for use as neighbour data
i/

struct NbData

{

int id; // Id of neighbour particle

double distance; // Distance to neighbour particle

}s

/%

x @brief Compares the distance of two neighbours for use in ’qgsort’
% @param nbl Pointer to first neighbour’s NbData

x @param nb2 Pointer to second neighbour’s NbData

*

o

@retval Returns negative if less, positive otherwise

int nbLess(const void xnbl, const void xnb2)

{
//
//

//
//

//
//

*

*/

cast ’'const void’ pointer to ’const NbData’ pointer for
both neighbours

NbData #pnbl = (const NbDatax) nbl;

NbData *pnb2 = (const NbDatax) nb2;

If first distance is smaller than second distance return
negative value

if (pnbl—>distance < pnb2—>distance) return —1;

Forget about ’'equal’ when using floating point numbers...
Return positive value for ’greater than’

return 1;

@brief Computes the SANN set of nearest neighbours for a given particle
@param id Id of particle who’s neighbours are to be computed

@param neighbours NbData array to receive mneighbour {id, distance} pairs
@param radius Pointer to double to receive SANN radius

@Qretval Number of neighbours computed by SANN, (—1) on error

int computeSANN (int id, NbData xneighbours, double xradius)

{

double distanceSum; // sum of neighbour distances
int count; // number of all potential neighbours available

int i; // a loop variable

//Step 1:
// Get number and {id,distance} pairs of all potential neighbours.
// In this example we use a Verlet neighbour list with a
// large —enough cutoff distance for this task. SANN then chooses
// its mneighbours from this set.

count = computeVerletNeighbors(id, neighbours);

// If there are not enough neighbours available, report an error

if (count < 3) return —1;

// Step 2:
// Sort neighbours according to their distance in increasing order.
// In this example we use a ’'quicksort’ algorithm for this task,

// which exists in the standard C library stdlib.h
gsort (neighbours, count, sizeof(NbData), nbLess);

// Step 3 / 4:
// Start with 3 neighbours (it ’s the minimum number of
// neighbours possible)

distanceSum = 0;

for (i=0; i<3; ++i)

{
// Add neighbour distance to sum

distanceSum += nbData|i]|. distance;

}

// Set SANN radius to distanceSum / (i — 2)

xradius = distanceSum ;

// Step 4 / b:
// [teratively include further neighbours until finished , which is if
// the SANN radius is smaller than the distance to the next neighbour

while ((i < count) && (radius > neighbours|i|. distance))

{

// Add neighbour distance to sum

distanceSum += neighbours|i]. distance;
// Compute new SANN radius

xradius = distanceSum / (i — 2.0);
// increase the SANN number of neighbours

TEEE

// If there were not enough neighbours for the algorithm to converge,
// report an error

if (i — count) return —1;

// Step 6:
// Return the number of SANN neighbours.
// Note: the SANN radius has already been stored in the

//pointer ’radius’,

/) which was provided as parameter to the function

return 1i;

// end—of—file

C. SANN.f

subroutine SANN

! Fortran implementation of the SANN algorithm

! van Meel, Filion, Valeriani and Frenkel November (2011)

declare all variable used in the subroutine

implicit none

npart = total number of particles in the system
integer npart

m — tentative number of neighbours

integer i,j,k,m

countneighbors = number of neighbours of particle i
integer countneighbors(1000)

neighbor — list of neighbours of particles i
integer mneighbor(1000,100)

sortneighbor = sorted neighbours

integer sortneighbor(1000,100)
selectedneighbors = list of selected mneighbours
integer selectedneighbors(1000,100)

Nb — final number of neighbours of particle i
integer Nb(1000)

edge of the simulation box

double precision box

distance = list of distances between each
neighbour of particle i and particle i

double precision distance(1000,100)
distancesorted = sorted distances

double precision distancesorted (1000,100)

R(m) as in Eq.3 in the manuscript

double precision rm,rml

x,y,z component of every particle i

double precision x(1000),y(1000),z(1000)

distance between particle i and particle j
double precision dr
cutoff distance to identify all potential neighbours

double precision rcutoff

Step 1:
first we identify the particles within a cutoff radius rcutoff
do i=1,npart
loop over all particles different from i
do j =1,npart
if (j.ne.i)then
compute x,y,z component of the distance between particle i and j
ax = x(j) — x(i)
dy = y(j) — y(i)
dz = z(j) — z(i)
applying periodic boundary conditions
dx=dx—nint (dx/box)*box
dy—dy—nint (dy/box)*box
dz=dz—nint (dz/box)= box
compute distance dr between particle i and j
dr = sqrt (dxxdx+dy*dy+dzxdz)
identify neighbours that are within a cutoff (rcutoff)
if (dr.1t.rcutoff)then
j is a mneighbour of i
countneighbors(i) = countneighbors(i) + 1
build a list of neighbours
neighbor (i, countneighbors(i))= j
create a list with the distance between i and j
distance (i, countneighbors(i))=dr

endif

endif
enddo
enddo

Step 2:
for every particle i sort all (countneighbors)
neighbours (neighbor) according to their
distances (distance) and create a new list of
particle i’s (sortneighbor)
and a new sorted list of distances (distancesorted)
do i=1,npart

call sort(i,countneighbors ,distance ,neighbor

sortneighbor ,distancesorted)

enddo

do i=1,npart
Step 3:
start with 3 neighbours
m — 3
Step 4:
compute R(m) as in Eq.3
rm — 0
do k=1m
rm = rm + distancesorted (i,k)
enddo
rm = rm/(m—2)
compute 1 (m+1)
do j = 1,countneighbors(1i)
rml = 0
do k=1m

rml — rml + distancesorted (i,k)

enddo
rml = rml/(m—2)
Step 5:
if rm > rml
if (rm.ge.rml)then
rm = rml
increase m
m = m+1
else
Step 6:
if rm < rml, m is the final number of neighbours
exit
endif
enddo
the final number of neighbours is m = Nb(1i)
and the neighbours are selectedneighbors
Nb(i) = m
do j=1,Nb(1i)
selectedneighbors(i,j) = sortneighbor(i,j)
enddo
enddo

return

end

rrrrrerrrrrrrrrrrrrrrrrrrrrrrrrrrr

