Supplementary Material I: Addition order and speed

Besides the preparation method described in the Methods section, variations on this method were used as well. These are the reverse addition (addition of PPi to Fe), injection addition and the simultaneous addition. For the injection method, one component was dissolved in 145 ml water and placed in a 250 ml round bottom flask (rbf). The other component was dissolved in 5 ml and injected directly into the solution using a syringe. In the simultaneous slow addition method, 50 ml water was added to a 250 ml rbf and the Fe(III) and PPi were dissolved in 50 ml water each. The two solutions were added drop wise to the rbf in about 15 minutes. For the simultaneous injection addition, the rbf was filled with 140 ml water. The Fe and PPi were dissolved in 5 ml water each and simultaneously injected into the water. Final concentrations of Fe and PPi were identical for all reaction methods. All used methods are summarized in Table S1.
	Table S1. Preparation methods.

	
	Code
	VFe

(ml)
	VPPi

(ml)
	Vwater*

(ml)
	Method
	[Fe]**

(mmol)
	[PPi]**

(mmol)

	Fe to PPi (used Methods)
	N
	50
	100
	0
	Drop wise (15 min)
	0.857
	0.643

	PPi to Fe
	P
	100
	50
	
	
	
	

	Fe inject
	Fi
	145
	5
	
	Syringe (inject)
	
	

	PPi inject
	Pi
	5
	145
	
	
	
	

	Simultaneous slow
	Ss
	50
	50
	50
	Drop wise (15 min)
	
	

	Simultaneous inject
	Si
	5
	5
	140
	Syringe (inject)
	
	


*Vwater indicates the volume of water added to the rbf in case of the simultaneous addition method.

**Concentration in final volume.

(Cryo-)TEM analysis of the prepared dispersions yield similar images for all preparation methods except for the Ss method, which shows more compact clusters and lack the smaller nanoparticles, see figure S1c. In the cryo-TEM images the clusters again resemble those found in the other preparation methods, but the smaller particles are still missing, figure 1d.
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Figure S1. Dry-TEM (a) and cryo-TEM (b) images of the Ss system. No small 5 nm particles are observed in the background.

One day after preparation a clear difference in dispersion stability can be seen between samples of the different preparation methods, see figure S2. DLS analysis reflects this difference: N, Pi and Si yield stable dispersions with cluster sizes around 200 nm while P and Ss are completely sedimented with cluster sizes too large and polydisperse to be accurately determined, see Table S2. Fi shows different behavior in that the cluster size is around 200 nm immediately after preparation, but after one day the dispersion has completely sedimented and cluster size has grown to 1200 nm. All samples show high polydispersity in cluster size (>30%), correlation functions always showed smooth curves with no discontinuities or anomalous noise unless noted otherwise (not shown). Ultrasonication of the samples during or after preparation yields no difference in cluster size. Zeta potentials are around -40 mV at pH 3.6 for all samples.
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Figure S2.Dispersions of all preparation methods, one day after preparation.

	Table S2 DLS diameter freshly after preparation

	Code
	Size fresh 

(nm)
	Size after one day

(nm)

	N
	200
	200

	P
	3000*
	**

	Fi
	230 
	1200*

	Pi
	210
	210

	Ss
	6000*
	**

	Si
	310
	320


*Indicative value. Particles too large and polydisperse for reliable analysis

**Not analyzed

Supplementary Material II: Schulze-Hardy rule and calculation of interaction potentials
The SHR states that the concentration of electrolyte needed to critically destabilize a dispersion inversely scales with ion valence to the power six[1]. Plotting the ccc’s found in section 1.3 (Figure 4a-c) in a log-log fashion in Figure S4 we find a slope of -5.5 ((), in close agreement with the SHR (red line). Verwey and Overbeek have shown the DLVO theory to be consistent with the Schulze-Hardy rule[1, 2]. From their work on the stability of colloids they found that the critical coagulation concentration ccc (in molar) can be calculated by
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[S1]

in which kB is the Boltzmann constant, T absolute temperature, ε the permittivity of the solvent, Nav Avogadro’s number, e the elementary charge, v the valence of the electrolyte, A the Hamaker constant (in Joules) and
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[S2]

with [image: image8.png]Yo



 the surface potential in mV. In the case of high surface potential ([image: image10.png]Uy =



 100 mV), [image: image12.png]


 and therefore [image: image14.png]


 in agreement with the SHR. Equation [S1] is the solution of the combination of the van der Waals attraction coulombic repulsion, which can be done analytically in the limit that r>>D. However, the limits [image: image16.png]Uy =



 100 mV and r>>D do not hold for our system, as zeta potentials are around 40 mV and r[image: image18.png]


D as we will show. Calculations have been done in literature for small particles at larger separation distances (large [image: image20.png]


)[3, 4], showing that the full treatment of the repulsion and attraction potentials will result in a radius dependent ccc. Here we compare the results of the ‘simplified’ ccc as written in formula [S1] with three numerical solutions. All of these solutions use same full attraction potential:
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[S3]

where [image: image24.png]


, r the particle radius and x the center-to-center distance between two particles, see Figure S3[1]. The more commonly used abbreviated form [image: image26.png]—Ar/12D



 is again only valid for r>>D.
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Figure S3. The three size variables r (radius), x (center-to-center distance) and D (surface-to-surface distance).

The three repulsion potentials used for our calculations are:

1. The full repulsion commonly used for calculation of the ccc; a screened potential with r>>D
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[S4]

with ρ the ionic strength in particles per m3, D the distance between the particle surfaces ([image: image31.png]


) and [image: image33.png]


 the inverse Debye length[2]
2. The screened potential at low surface potential without the assumption that r>>D:
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[S5]

3. An approximate solution for two spheres at large [image: image37.png]


 and moderate to high surface potentials[4]
[image: image39.png]


 


[image: image41.png]





[image: image43.png]




[S6]
For each of these interactions, the surface potential [image: image45.png]Yo



 is approximated by the experimental zeta potential for each valence from Table 1 and the total interaction is solved for [image: image47.png]


 and D simultaneously by numerically solving urep+uatt=0 and d/dD(urep+uatt)=0  [1, 2]. As can be seen from the results, the deviation for smaller particles between the different full calculations is negligible in the log-log plot, while the models do differ significantly from the simplified form, see Figure S4. Using the Hamaker as a fitting parameter when fitting the solutions to the experimental data we find it to be roughly 25 kBT (1.0·10-19 J).  
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Figure S4. Log-log plot of the critical coagulation concentration versus ion valence, which will yield a straight line of slope -6 in the case of Schulze-Hardy behaviour (solid line). Our experiments result in a slope of -5.5 ((). Theoretical values as calculated from Verwey and Overbeek (() and the numerical solutions of the full potentials ((, ( and () find a Hamaker constant of 25 kBT (1.0·10-19  J). 

As was mentioned above, the numerical solutions of the combined attractive and repulsive potentials (e.g. solving eqn. [S3] and [S5]) are radius dependent, as the radius will only cancel when using the assumptions necessary for the analytic solution (resulting in eqn. [S1]). This radius dependence is illustrated in Figure S5, where we calculate the ccc for particles of various sizes by numerical solution of eqn. [S3] and [S6]. At radii larger than 100 nm the radius dependence is negligible: we return to the limit of r>>D and the value of the ccc converges. However, at smaller radii the deviation becomes significant: the slopes of the calculated values are -1.5 and -2.4 for the 5 and 20 nm particles, respectively. Therefore, the results in Figure S4 were calculated using a particle radius of 130 nm. However, this does not agree to the TEM images which show particles of 5 and 20 nm, see Figure 1. Apparently the size of the aggregates is the physically relevant length scale in this system, not the size of the primary particles as would have been expected. One possible explanation would be that the ccc is dominated by the cluster-cluster interactions, not the particle-particle interactions. The growth process on the other hand (as discussed in sections 1.4 and 1.5 of the main text) is controlled by the particle-particle interactions.
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Figure S5. Log-log plot of the ccc as a function of the particle radius, obtained by numerical solution of eqn. [S3] and [S6]. The other repulsion potentials give similar results.
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