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We report a numerical study on the phase behaviour of a ‘patch–anti-patch’

model for particles with tetrahedrally arranged attractive spots. In particular, we

compute the phase equilibria between the fluid and a low density diamond cubic

(DC) crystal for different realizations of the patch–anti-patch interaction. By

increasing the ‘specificity’ of the patches, i.e. lowering the number of

corresponding attractive ‘anti-patches’ to a given patch, we find that the

metastability gap between the DC freezing boundary and the liquid–gas critical

point widens considerably. We argue that this effect of interaction specificity is

relevant for the description of protein phase diagrams, as patch–anti-patch

interactions can stabilise relatively open, ordered structures.
1 Introduction

Growing sufficiently high-quality protein crystals for use in X-ray crystallography is
still a bottleneck to structure determination in protein science. Indeed, only a small
fraction of all globular proteins crystallize readily and most that do, do so under
conditions that are non-physiological: at high salt concentrations or in presence of
a high depletant concentration.1

The poor crystallizability of proteins is usually attributed to two main causes.
First of all, proteins might have directional interactions that are not compatible
with simple crystal lattices.2 In this context, it is interesting to note that the typical
space groups of protein crystals are rather different form those of simple molecular
crystals. There are 65 space groups compatible with crystal structures of chiral
macromolecules, yet one-third of all protein crystals form in a single space group,
P212121. Conversely, many space groups that are common for simple molecular
crystals have never been observed in protein crystals. The number of degrees of
freedom for packing a low-symmetry molecule in different space groups seems to
be the key: proteins crystallize preferentially in space groups where it is easier to
achieve connectivity.3 Secondly, kinetically trapped phases such as aggregates and
gels that are frequently seen experimentally in protein suspensions, are enhanced
by anisotropic, specific interactions and the formation of such structurally arrested
states is likely to suppress the nucleation of protein crystals.4–6

Until recently, the search for suitable crystallization conditions was mainly based
on trial and error.7 In the last two decades there have been several attempts to tackle
the problem of protein crystallization in a more systematic manner, trying to
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understand the subtle interplay between protein interactions and their equilibrium
phase diagram. In a seminal paper, George and Wilson8 were able to rationalize
the observed crystallization region for proteins: solvent conditions that were known
to promote crystallization could be related to a particular range of the second
osmotic virial coefficients B2 of the protein solution. Hence, interactions should
be attractive enough to promote crystallization, while not being so large that they
result in disordered aggregation.9 Colloidal models for globular proteins have also
revealed that the fluid–fluid coexistence line might become metastable with respect
to the solid–fluid boundary for a sufficiently small range of the attraction and
that the presence of a metastable fluid–fluid critical point can lower substantially
the free-energy barrier for nucleation of a crystalline germ and, thus, indirectly
promote crystallization.10 At the same time, the competition between glassy and
crystal phases has been extensively investigated both in systems of purely hard
spheres11 and in systems of particles with short-ranged attraction.12

These investigations of the sphero-symmetric potential properties suggest that
good knowledge of the equilibrium phase diagram is a prerequisite for materials
design or protein crystal predictions. Such information is essential to predict not
only if, but also how rapidly, a given crystal structure will assemble. A particular
crystal structure may look promising on paper, but such information is irrelevant if
it is not stable with respect to the liquid phase in the experimentally accessible
temperature-density range. Similarly, even when an optimized interaction has
been identified to produce a given crystal structure that is thermodynamically
stable, the nucleation rate of the crystal might be so small that effective production
of the crystal is impossible. To take a simple example, a suspension of mono-
disperse colloids brought to a sufficiently high density will form beautiful, irides-
cent crystals but the rate at which these crystals form has been shown to depend
strongly on the steepness of the repulsive forces that act between the colloids:
charged colloids with a soft, long-ranged repulsion tend for instance to crystallize
much faster than hard-sphere colloids at the same supersaturation.13 Kinetic effects
are even more dramatic when it comes to proteins and their highly directional
interactions.
Approaches based on orientationally averaged isotropic potentials have enriched

our understanding of the general features of protein phase diagrams, and addressed,
via ad-hoc coarse-grained models, the fluid phase behaviour of solutions of globular
proteins more quantitatively.14–16 However, they fail to predict quantitatively the
fluid–solid equilibrium. In fact, isotropic interactions favor densely packed crystal
phases of high symmetry such as face-centered cubic (FCC), body-centered cubic
(BCC) or hexagonal close-packed (HCP), whereas protein crystals are typically
much more open, with around 7 contacts on average per protein.4 Clearly, where
crystal structures are concerned, the patchiness of protein surfaces that is essential
for their biological role, leads to strong directionality of the associated interactions
that cannot simply be averaged out.
Patchy—or aeolotopic—models, which can be used to describe the directional

nature of protein interactions have now been studied for a decade.2,5,17 The first
numerical studies of the Kern-Frenkel ‘‘patchy’’ potential have revealed that the
fluid–fluid coexistence curve can be shifted to lower temperature by making the
patches smaller or by decreasing the number of patches, and that anisotropy
can stabilize multiple solid phases.18–20 Investigations of a slightly different model
in which each attractive spot is involved in not more than a single-bonded inter-
action have demonstrated that, by diminishing the number of bonded nearest
neighbors, it is possible to generate liquid states (i.e., states with temperature
T lower than the liquid–gas critical temperature) with a very low, and eventually
vanishing, packing fractions; a situation that cannot be realized with spherically
interacting particles.21 The resulting increase of the region of stability of the liquid
phase is expected to favor considerably the formation of stable equilibrium gels at
low densities.

View Article 
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Here, we study a slightly different class of patchy models in which each patch of a
given particle interacts with a subsetNa of theNp complementary anti-patches on the
other particles. The introduction of such ‘patch–anti-patch’ (p-ap) models2,20,22 was
motivated by studies that compute the different contributions to the protein’s
osmotic second virial coefficients based on atomistic structural information23,24

and has been used in other systems, such as supramolecular polymers.25 The main
contribution to the overall protein–protein interaction can be attributed to a small
number of complementary, highly attractive configurations. The high-affinity
configurations, denoted as ‘patch–anti-patch’ pairs,22 result from complementary,
opposing surface regions of the proteins in a particular arrangement.26 Since the
highest-energy bonds are formed by patch–anti-patch contacts, they are expected
to play a fundamental role in protein aggregation and crystallization.
For a given protein structure, one can construct a coarse-grained patch–anti-

patch model starting from atomistic structural information.22 This approach would
make it possible to arrive at a fair prediction of the full phase diagram of that specific
protein. However, the objective of the present work is to derive some generic features
of the p-ap model—in particular the similarities and differences with the better-
known p-p models. We therefore focus on the p-ap version of the tetrahedral
Kern-Frenkel patchy-sphere model. The phase diagrams of tetrahedral patchy parti-
cles have been determined by computer simulations.27–29 These studies revealed the
existence of an open, low density, diamond cubic (DC) and a diamond hexagonal
(DH) crystals were found. The free-energy barriers to nucleate DC and/or DH crys-
tals were calculated for different widths of the tetrahedral patches.
Knowledge of the phase behaviour of this reference system allows us to focus on

the effects of higher patch specificity on the phase behaviour. From a geometric
viewpoint, a fully bonded DC crystal can be satisfied by the patch-patch and the
patch–anti-patch tetrahedral models, therefore both will have the same potential
energy at zero temperature. However, from an entropic perspective, the two models
are very different: N2 different bonds can be formed between a pair of particles with
N patches, whilst there are onlyN possible bonds between a pair of patch–anti-patch
particles. The question is how highly specific, directional interactions modify the
stability of the various crystal phases with respect to the liquid and the vapor.
The remainder of this paper is structured as follows. In Section 2 the tetrahedral

patch–anti-patch model is defined. Section 3 gives a brief outline of the different
Monte Carlo methods that we used to compute the free energy and phase equilibria
of the liquid and the solid phases. In this section, we report the phase diagrams of the
patch-patch p-p and the patch–anti-patch p-ap tetrahedral model and discuss the
implications of our findings.

2 Model

To explore the effect of the patch specificity on the equilibrium phase behaviour, we
consider the Kern-Frenkel model with four patches (a ¼ 1 to 4) placed in a tetrahe-
dral arrangement on the surface of the particle as shown in Fig. 1. In addition, every
patch p has a label a such that pa only interacts with pa. We examine three realiza-
tions of this tetrahedral patchy-sphere model:
(a) a ‘patch-patch’ model (p-p) where pa ¼ 1 for all a and all patches on particle

i interact with all patches of particle j (Fig. 1a).
(b) a ‘patch–anti-patch’ model (p-ap1) where every particle has four identifiable

patches labelled pa ¼ a; therefore a patch interacts only with a single (Na ¼ 1)
complementary anti-patch on other particles (Fig. 1b).
(c) an intermediate model (p-ap2) where every particle has two patches labelled 1

and two labelled 2 (p1 ¼ p2 ¼ 1 and p3 ¼ p4 ¼ 2); hence each patch hasNa ¼ 2 comple-
mentary anti-patches (Fig. 1c).
In these models, two patchy particles i and j, located at ri and rj respectively, feel

an attraction given by

View Article 
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Fig. 1 Schematical view of the three different patchy models studied. Note that the shape of
the patches is not precisely the shape of the Kern-Frenkel patches, and is only meant to identify
the patch location. A patch on a particle interacts only with a complementary patch of the same
color on another particle. (a) usual ‘patch-patch’ model (p-p) where all 4 patches on particle
i interact with all patches on particle j. (b) ‘patch–anti-patch’ model (p-ap1) where every particle
has four identifiable patches (pa ¼ {1, 2, 3, 4}) (c) intermediate ‘patch–anti-patch’ model (p-ap2)
where every particle has two distinct patch (anti-patch) types (pa ¼ {1, 1, 2, 2}).
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upatchði; jÞ ¼ usw
�
rij
� X4

a;b¼1

dpa ;pbF
�
rij; p̂

a
i

�
F

�
rji; p̂

b
j

�
(1)

where rij ¼ rj � ri, p̂
a
i is the normalized vector pointing from the center of particle i

towards patch a on the same particle, dpa,pb is the Kronecker delta function which is
equal to one if patch a and b are complementary patches (pa ¼ pb), and usw is a
square-well potential of hard diameter s, range d and depth 3. The reduced temper-
ature T is expressed in units 3/kB, where kB is Boltzmann’s constant. The reduced
pressure P and the number density r will be expressed in units 3/s3 and 1/s3 respec-
tively. The function F(rkl,p

a) is defined as

Fðr; pÞ ¼
(
�1 if r̂$p̂\cosðqmÞ
0 otherwise

(2)

with k̂ a normalized vector in the direction of k.
We study the patchy models for cos(qm) ¼ 0.94 and d ¼ 0.24s, parameters that

ensure that no two patches on one particle can bind to the same patch on another
particle. The equilibrium phase diagram and nucleation barriers of the usual
‘patch-patch’ realization with this set of parameters have been reported by Saika-
Voivod et al.30 It is worth noting that the p-ap1 model can qualified as ‘chiral’ since
there are two different ways to choose the label of the last two patches once the label
of the first two have been fixed. Here, we study one realization of the p-ap1 model,
but it would be interesting to investigate if solutions with different mixing ratio of
the two p-ap1 ‘enantiomeric’ forms have different phase behaviors.
3 Methods and results

In this section we examine the effect of the patch specificity on the equation of state
of the liquid, the liquid–gas coexistence, and the equilibrium phase diagram.
3.1 Equation of state of the liquid phase

The equations of state for the liquid were calculated using isobaric NPT Monte
Carlo simulations31 ofN¼ 512 particles, and using the second order virial expansion
at very low density. The reduced second virial coefficient of the KF model reads:18

B2

BHS
2

¼ 1� c2
h
ð1þ d=sÞ3�1

i�
e3=kBT � 1

�
(3)
12 | Faraday Discuss., 2012, 159, 9–21 This journal is ª The Royal Society of Chemistry 2012
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with BHS
2 ¼ (2/3)ps3 the second virial coefficient of hard spheres and c the fraction of

the particle surface covered by the Np attractive patches and is given by

cp�p ¼
ffiffiffiffiffiffi
N2

p

q
ð1� cosðqmÞ=2Þ: (4)

The B2 of the two p-ap models have the same functional form but with covering
ratios

cp�apNa ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
Np Na

p ð1� cosðqmÞ=2Þ; (5)

that account for the Np*Na (Na ¼ 1,2) possible patch–anti-patch pairs that can form
between two particles, instead of N2

ps for the fully patchy case. Equations of state for
the p-p and the p-ap1 models are shown in Fig. 2 together with their compressibility
factor Z ¼ bP/r and B2 expansion at low density.

View Article 
3.2 Liquid–gas coexistence

The liquid–gas phase coexistences were calculated using a Grand Canonical
Wang-Landau based scheme32 proposed by Ganzenmuller and Camp33 and are
presented in Fig. 3. Given the reduction in the effective coverage of the particles
when considering patch–anti-patch interactions, the critical point of the liquid–
gas coexistence curve gets shifted towards lower temperatures as expected, while
the critical density is almost unaffected. Interestingly, the liquid–gas phase bound-
aries of the p-p and the p-ap models collapse on top of each other when plotted as
a function of the reduced second virial coefficient defined by eqn (3) and (5). This
observation suggests that there may be a generalised law of corresponding
states34,35 for patchy particles that share the same distribution of patches (here
tetrahedral) but with a different number of corresponding anti-patchs to a given
patch. This observation is potentially useful because it suggests that knowledge
of the liquid–gas phase coexistence of the fully patchy model will be sufficient
to predict the coexistence for other patch–anti-patch realizations. One could
envisage inverting this argument as a method to classify ‘‘similarity’’ in protein–
protein interactions.
Fig. 2 (left) Fluid equations of state for the patch-patch p-p (squares) and the patch–anti-
patch p-ap1 (dots) models at T ¼ 0.2. The Monte Carlo results (symbols) are shown together
with the virial expansion up to B2 (dashed curves). (right) Corresponding compressibility

factor Z ¼ bP
r

at low density as obtained from MC simulations and B2 expansions for the

two models.

This journal is ª The Royal Society of Chemistry 2012 Faraday Discuss., 2012, 159, 9–21 | 13
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Fig. 3 (left) Liquid–gas coexistence curves for the patch-patch (squares) and the patch–anti-
patch models p-ap1 (dots) and p-ap2 (diamonds) in the r–T plane. Small stars indicate the loca-
tion of the critical points. The critical temperatures is reduced due to a lower effective coverage
of the patchy particles when increasing the specificity of the patches from p-p to p-ap1; the crit-
ical densities are almost unaffected. (right) Liquid–gas coexistence boundary of the three
models collapse on top of each other when mapped onto their reduced second virial coefficients
B2(T)/B

HS
s .
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3.3 Phase diagrams

To calculate the phase diagrams for the three models, we first calculate the Helm-
holtz free energies of the potential phases, and then use common tangent construc-
tions to determine the coexistence regions.

3.3.1 Gas free energy. The Helmholtz free energy of the gas is given by31

bFðrÞ
N

¼ bFidðrÞ
N

þ b

ðr
0

dr0
Pðr0Þ � r0=b

r2
(6)

where Fid is the ideal gas free energy. To determine the equation of state, P(r), we
used NPT Monte Carlo simulations with 512 particles.

3.3.2 Fluid free energy. The free energy of the fluid at density r is calculated by
thermodynamic integration using the hard sphere fluid as a reference system; hence
the potential used for the thermodynamic integration is

Uliq(l) ¼ UHS + lUpatch. (7)

where l is the coupling parameter, UHS is the hard sphere potential and Upatch is the
potential associated with the patches given by

Upatch ¼ 1

2

XN
i;j¼1

upatchði; jÞ: (8)

Thus, for l¼ 0 the system reduces to a hard sphere fluid and for l¼ 1 we have the
full potential energy. The free energy of the fluid is then given by31

Fliq ¼ FHS þ
ð1
0

dl

	
vUliqðlÞ

vl



l

(9)

where FHS is the free energy of the hard sphere fluid, which has been determined
previously by Speedy,36 and zl denotes an ensemble average for a system with
14 | Faraday Discuss., 2012, 159, 9–21 This journal is ª The Royal Society of Chemistry 2012
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potential energy U(l). The integrand was measured using NVT Monte Carlo simu-
lations with N ¼ 512 particles, and the integral was evaluated using a 20 point
Gauss–Legendre quadrature.
Using the free energy determined at a reference density F(r0), the free energy as a

function of density F(r) can be determined using the equation of state. In this case,
the free energy is given by31

bFðrÞ
N

¼ bFðr0Þ
N

þ b

ðr
r0

dr0
Pðr0Þ
ðr0Þ2 (10)

where
bFðr0Þ

N
is the free energy at a reference density r0. The equation of state P(r)

was determined using Monte Carlo NPT simulations with N ¼ 512 particles.

3.3.3 Solid free energies. Previous work on this model had identified three
possible solid phases: face-centered-cubic, body-centered-cubic, and diamond. All
three crystal structures are fully bonded, although the bonding in the FCC system
does not have patches pointing directly towards each other. Snapshots of the three
crystal phases, and their bonding is shown in Fig. 4.
We are specifically interested in the stability of the low density crystal phase, i.e.

the diamond phase, and we will only examine the stability of the diamond and the
associated bcc phases in the remainder of this paper. It should be noted that the
FCC crystal will be stable for high densities (and hence, pressures). and the stable
region will be strongly limited by the fact that the particles cannot rotate signifi-
cantly while remaining bonded.

View Article 
Fig. 4 Three possible fully bonded solid phases for the thetrahedral patch–anti-patch model
p-ap1: (a) cubic diamond (DC), (b) body-centered-cubic (BCC) and face-centered-cubic
(FCC). Different patch realizations of DC exist (e.g. a and a0) while BCC is the result of two
inter-penetrating DC lattices (darker and lighter red respectively in b). Note also in c) that
patches cannot exactly aligned in the fully bonded FCC and therefore the angular stability
range of this crystal is reduced. The particles and patches are not drawn to size.

This journal is ª The Royal Society of Chemistry 2012 Faraday Discuss., 2012, 159, 9–21 | 15
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In the case of the patch-patch model, there is trivially a single realization of the
diamond, BCC and FCC phases. However, in the patch–anti-patch case, it is
possible for the particles to be slocated on lattice sites, but with a different bonding
structure. As shown in Fig. 4, in the case of diamond, there are at least two ways to
bond this system. Further examinations of the system show that there are indeed a
large number of different ways to bond the system, however, as soon as the orienta-
tions of the particles in a single plane are determined, there are no remaining degrees
of freedom for the other particle in the system. Hence, this contribution to the free
energy per particle will be of the form bFbond/N ¼ 1/N log (CN2/3), where C is a
constant; this ‘‘surface’’ term vanishes for large N and hence will be set to zero for
the remainder of this paper. This is also the case for the BCC and FCC phases.
In the p-ap2 system, however, the situation is significantly different: the possibility

of locally rearranging the bond identities adds extensively to the total entropy of the
crystal phases. As each bond arrangement has the same energy, all possible bonding
configurations are equally likely, and the entropy associated with rearranging the
bonds can be calculated by estimating the number of possible bond configurations
in the system:

bdFbond ¼ �logNconf. (11)

The set of configurations in which the system is fully bonded can be sampled by
starting from a ‘blank’ diamond crystal lattice, where the patches are not assigned
an identity yet, and generating a bonded configuration according to the following
scheme:
1. Select the first blank patch on the first particle in the system that still has blank

patches.
2. Randomly assign one of the two possible identities to the selected patch.
3. If any blank patch is bonded with a non-blank patch, assign it the same identity

as the patch it is bonded to.
4. If any particle already has two patches with the same identity, give all remaining

patches the other identity.
5. Repeat steps 3 and 4 until the system no longer changes.
6. If there are any blank patches remaining, and no particles with more than two

patches of the same kind, start again from step 1.
This strategy results in either a fully-bonded configuration, or a configuration

with invalid particles (i.e. the wrong number of patches of each type). Since at
each iteration of the algorithm there are only two choices, and each set of choices
will result in a different configuration, this algorithm can be seen as a random
walk in a binary tree, ending up at a specific configuration c after taking d(c) deci-
sions. The probability P(c) of finding a specific configuration c is then given by:

P(c) ¼ 2�d(c). (12)

As a result, the total number of configurations can be calculated by:

Nconf ¼
X
c

f ðcÞ ¼
X
c

PðcÞ2dðcÞf ðcÞ ¼ �
2dðcÞf ðcÞ〉; (13)

where f(c) is a function that equals 1 if a configuration is fully bonded, and 0 if it is
invalid. The sum is taken over all possible configurations, and the angular brackets
denote averaging over a set of configurations resulting from random walks through
the binary tree, as described above.
Thus, the number of fully bonded configuration for a fixed system size can be

calculated by sampling a large number of randomly generated configurations. Of
course, the number of valid configurations is highly dependent on the number of
particles. To estimate the contribution of the bonding entropy in the thermodynamic
limit, we calculated the bonding free energy for a range of system sizes and

View Article 
16 | Faraday Discuss., 2012, 159, 9–21 This journal is ª The Royal Society of Chemistry 2012
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extrapolated the result to an infinitely large system, starting from either a completely
blank crystal, or one where only particles in a cube-shaped region were blanked. For
each system size, we sampled at least 105 configurations. The resulting extrapolation
is shown in Fig. 5, and yields a bonding entropy of bFbond/N ¼ �0.34kBT per
particle. While accurately sampling the number of configurations requires a large
number of runs, we find that changes of around 0.05kBT in the bonding entropy
do not significantly affect the phase diagram for the p-ap2 system. Apart from local
rearrangements, we expect the strongest contribution to the entropy for large
systems to be either plane defects (for the fully free crystal), or surface effects (for
the crystal with constrained boundaries). For both of these, the entropic contribu-
tion to the total free energy should be proportional to N2/3. Thus, the
leading finite-size correction term for the free energy per particle will be on the
order of N�1/3.
To calculate the complete free energies of the diamond and bcc solid phases we

again used thermodynamic integration. In this case, we choose an Einstein crystal
with a fixed center of mass and constrained orientation of the particles as the refer-
ence state:

U(l) ¼ UHS + (1 � l)Upatch + lUEin + lUrot (14)

where UHS is the hard sphere potential, UEin is the typical Einstein term which
attaches particles to their ‘‘ideal’’ lattice sites denoted r0i and is given by

UEin ¼
XN
i¼0

ðri � r0i Þ2;

and the fourth term ties the orientation of the particles to their ‘‘ideal’’ orientation;
Urot is given by

bUp�p
rot ¼

XN
i¼1

min
ksl

n
2� signðca;kÞc2a;k dpa ;pk � signðcb;lÞc2b;ldpb ;pl

o
(15)

where ca,k ¼ p̂ki $p̂
a,0
i , p̂a,0i is the ‘‘ideal’’ direction for patch a on particle i, and a and b

correspond to two, nonidentical patches. In the tetrahedral case, any two patches are
sufficient since all patches are not colinear. In a more general case, such as for

View Article 
Fig. 5 Bonding entropy per particle as a function of the system size, both for a fully free
system (circles), and a system where the bond identity for the particles at the edge is fixed
(squares). The lines are linear fits, leading to an estimate of bdFbond/N ¼ �0.34 in the thermo-
dynamic limit.
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patches arranged in an octahedral symmetry, two non-colinear patches would need
to be chosen. In the patch-antipatch case (p-ap1), Urot simplifies to

bUp�ap
rot ¼

XN
i¼1

�
2� signðca;aÞc2a;a � signðcb;bÞc2b;b

�
: (16)

The free energy of the non-interacting system consists of the free energy of the
Einstein crystal (Fein) for symmetric particles with a fixed center of mass plus the
non-interacting rotational free energy (Frot). The expression for an Einstein crystal
with a fixed center of mass is given by37

bFCM
ein

N
¼ �3

2
ln
2p

l
� 3

2N
ln

l

2p
þ lnr

N
� 2

lnN

N
(17)

while the rotational free energy is19

bFrot

N
¼ �ln

�Ð
dU expð�blUrotÞÐ

dU


: (18)

Note that FCM
Ein does not depend on the choice of model, i.e. patch-patch or patch–

anti-patch. However, Frot does depend on the model.
The full free energy of the system is given by

bFðrÞ
N

¼ bFCM
ein

N
þ bFrot

N
þ bFint

N
þ bFbond

N
(19)

where

bFint

N
¼ �b

N

ð �
UEin þUrot �Upatch〉ldl: (20)

Recall that bFbond/N is non-zero only in the p-ap2 case. As in ref. 37, we calculate
the integral in eqn (20) using 20 point Gauss–Legendre quadrature in combination
with NVT MC simulations.

3.3.4 Phase coexistence. The phase diagrams of the three models presented in
Fig. 6 summarize the effect of the interaction specificity on the equilibrium phase
diagram of a colloidal model that include both a liquid–gas (L-G) and a fluid-dia-
mond coexistence. The main result of our investigation is that, while the L-G bound-
aries shift towards lower temperatures when increasing the specificity of the patches
from p-p to p-ap1, the fluid-DC coexistence is less affected and does not follow the
L-G critical point. The result is a large metastability gap that opens up between
the liquid–gas critical temperature and the fluid-DC melting temperature at the crit-
ical density when increasing the specificity ot the interaction. The metastability gap
M that measures the degree of metastability is usually the driving force for crystal
nucleation at the critical point:

M ¼ Tx � Tc

Tc

(21)

with Tx the freezing temperature of the solid (here DC) at the critical density and Tc

the metastable L-G critical temperature.
In the case of isotropic potentials, Tc decreases faster than Tx upon reducing the

interaction range and hence M increases as the range l gets narrower, making crys-
tallization just above or just below the critical point possible. However, Romano
et al.27 observed that for the the tetrahedral patch-patch model, the thermodynamic
driving force for crystallisation at the critical point increases only slightly with
decreasing l. As a consequence, low-valence p-p particles have to be cooled well

View Article 
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Fig. 6 Phase diagrams of the patch-patch and patch–anti-patch models. The fluid, diamond-
cubic (DC) and body-centered-cubic BCC phases were considered. Increasing the specificity of
the interaction from p-p to p-ap1 enlarges the metastability gapM between the liquid–gas (G-L)
critical temperature and the Fluid-DC melting temperature at the critical density. Dotted lines
are guide to the eye for the boundary of the different phases and dashed lines account for phase
coexistence.

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ite

it 
U

tr
ec

ht
 o

n 
27

 N
ov

em
be

r 
20

12
Pu

bl
is

he
d 

on
 0

7 
Ju

ne
 2

01
2 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
2F

D
20

07
0H

View Article Online
below the critical temperature before there is a pronounced thermodynamic driving
force for crystallisation. Yet, the viscosity of the (highly networked) liquid phase of
patchy particles will increase very strongly with decreasing temperature and hence,
when crystal nucleation becomes thermodynamically allowed it will be kinetically
suppressed.
Surprisingly – and potentially relevant for real proteins – crystal nucleation in a

system with the more specific p-ap interactions can occur in a regime close to the
L-G critical point and is therefore more likely to be kinetically accessible: making
the patchy interactions more specific opens up a gap between the freezing curve
and the L-G coexistence region, in the same way that decreasing the range of attrac-
tion does for isotropic potentials.
There is, however, an important difference between the phases that crystallise in

the isotropic and the p-ap case: the patch–anti-patch models that we consider freeze
into low-density crystals, whilst purely isotropic interactions crystallize into densely
packed phases. This observation seems highly relevant for protein crystallisation.
We note that our results are also consistent with the phase diagrams obtained in a
recent study on the effect of specific and non-specific interaction for the crystalliza-
tion of a 2D model model of the SbpA surface-layer protein.38

The existence of a large metastability gap between the L-G and the Fluid-DC
coexistence curves for p-ap models has important implications for the conditions
under which crystal nucleation can take place: in the ‘‘symmetric’’ (patch-patch)
case, the DC crystal can only nucleate from a fluid with a density that is close to
that of the crystal phase. However, for the p-ap system it should be possible to
nucleate the DC crystal from a low density fluid, which is the normal condition
for protein crystallisation. Of course, thermodynamic driving force is not the whole
story: as a liquid gets more supercooled, it will become more viscous and hence the
kinetic pre factor for the nucleation rate would go down with supercooling.
However, at the critical point, all patchy systems that we studied have the same
This journal is ª The Royal Society of Chemistry 2012 Faraday Discuss., 2012, 159, 9–21 | 19
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reduced B2 and this would suggest that the ease with which a bond can be broken in
the liquid is the same for the p-p and p-apmodels. If we assume that the time scale for
bond breaking determines viscosity, then we expect the different patchy liquids to
have very similar viscosities near Tc—however, we did not test this.
Of course, the structure of real proteins is such that they do not crystallize into DC

structures.3 They do, however, crystallise into open crystal structures. We believe
that the tetrahedral patch–anti-patch model studied here gives valuable insights
into their phase diagram and provides a better insight in the origin of the metasta-
bility gap that is typically found in real protein solutions: importantly, the
short range of the attraction is not the whole story—anisotropy and specificity are
important.
Many simulation papers on colloidal self assembly idly invoke the relevance of

their results for the design of photonic band-gap materials. Although the authors
are reluctant to join this bandwagon, the present study may actually be of real rele-
vance for the strategies to make colloidal crystals with a diamond structure. Our
message is: it is not enough to make patchy colloids with tetrahedral symmetry—
rather, one should make tetrahedral colloids where some or all 4 patches have a
different functionality (something that could, for instance, be achieved with DNA
functionalization).
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