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Due to remarkable advances in colloid synthesis techniques, systems of squares and cubes, once an
academic abstraction for theorists and simulators, are nowadays an experimental reality. By means of
a free minimization of the free-energy functional, we apply fundamental measure theory to analyze
the phase behavior of parallel hard squares and hard cubes. We compare our results with those ob-
tained by the traditional approach based on the Gaussian parameterization, finding small deviations
and good overall agreement between the two methods. For hard squares, our predictions feature at in-
termediate packing fraction a smectic phase, which is however expected to be unstable due to thermal
fluctuations. Due to this inconsistency, we cannot determine unambiguously the prediction of the the-
ory for the expected fluid-to-crystal transition of parallel hard squares, but we deduce two alternative
scenarios: (i) a second-order transition with a coexisting vacancy-rich crystal or (ii) a higher-density
first-order transition with a coexisting crystal characterized by a lower vacancy concentration. In
accordance with previous studies, a second-order transition with a high vacancy concentration is pre-
dicted for hard cubes. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754836]

I. INTRODUCTION

Hard spheres represent the simplest and most versatile
model for the description of molecular and colloidal many-
particles systems. This statement is particularly true since
1957, when Wood and Jacobson1 and Alder and Wainwright2

demonstrated that hard spheres undergo a fluid-to-crystal
transition, and therefore that hard interactions alone can ac-
count for freezing.

Systems of hard cubes, on the other hand, were consid-
ered as mere toy models until only a few years ago. The rea-
son for this is evident: no molecule or macromolecular aggre-
gate found in nature is known to be reasonably approximated
by this shape. However, the interaction between parallel hard
cubes is the second-simplest hard interaction one can imagine
after the hard spheres. Its simplicity made this model a perfect
object of study for theory and simulation.

Early studies on the equation of state of parallel hard
squares (D = 2 dimensions) and cubes (D = 3) date back
to the dawn of computer simulation in the 1950s.3, 4 Soon af-
ter, the question regarding the high-packing phase behavior
of the models arose. For parallel hard squares, a transition
from the fluid to a square-lattice crystal (with quasi-long-
range order) was found,5, 6 but its character, whether con-
tinuous or discontinuous, has been a matter of debate ever
since.7–10 Conversely, the stability of a “brick-wall” smectic
phase with one-dimensional ordering in rows (or columns)
was suggested to exist for parallel hard squares, but the sta-
bility of this peculiar state was soon ruled out.11 Similarly,
parallel hard cubes manifest a fluid-to-crystal transition with
a well-established second-order character12 and no stable
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phase with lower translational symmetry than the crystal is
expected.13

In the mid-1990s, while the interest of the liquid-state
community was focusing on mixtures of hard spheres, hard
cubes were rediscovered. By means of computer simulation
Dijkstra et al. showed evidence of a demixing transition in a
binary system of parallel hard cubes on a lattice, thus demon-
strating that additive hard interactions can induce an entropy-
driven fluid-fluid phase separation.14, 15 These results moti-
vated Cuesta and Martínez-Ratón to face the problem by
means of density functional theory. Following the pioneer-
ing approach developed by Rosenfeld for hard spheres,16 they
developed a fundamental measure theory (FMT)17 formalism
aimed at describing both the homogeneous and inhomoge-
neous phase behavior of mixtures of squares and cubes.18, 19

Since the early work on hard squares and cubes, the
progress in colloidal particles synthesis has been enormous. In
particular, colloidal suspensions of micron-sized cubes20 and
quasi-two-dimensional square platelets21 have been recently
produced and analyzed. These experimental advances led to a
renewed interest in the model, and at present more complex
aspects like the role of orientational degrees of freedom, the
addition of dipolar interactions, the roundedness of the shape,
and the effect of vacancies in the freezing mechanism con-
stitute objects of intense research.22–27 Far from being a toy
model or a mere academic exercise, squares and cubes have
therefore gained a key role as model systems of non-spherical
colloidal particles.

Besides the development of new theories,28, 29 the in-
creasing attention towards the self-assembly of non-spherical
particles requires a detailed analysis of the capabilities of the
existing ones. The aim of this paper is to reinvestigate the
prediction of fundamental measure theory as formulated in
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Ref. 18 for the phase behavior of parallel hard squares and
cubes. The focus of our attention points to the freezing
transition and the structure of the high-density inhomoge-
neous phases. In particular, by exploiting present-day com-
puter power, we improve previous analyses on the subject
by performing a free minimization of the density functional,
and compare our results with those obtained by means of
the widely applied Gaussian parameterization of the single-
particle density. We observe good overall agreement between
the two methods, the main drawbacks of the Gaussian param-
eterization being (i) a systematic albeit small underestima-
tion of the equilibrium vacancy concentration in the crystal
and (ii) the lack of anisotropy of the crystal density peaks at
high enough density. Furthermore, to the best of our knowl-
edge this work constitutes the first density-functional theory
study of the hard-square system. We show that the fundamen-
tal measure theory surprisingly predicts a smectic phase ab-
sent in computer simulation and suggests that, in analogy with
the hard-cube system, vacancies can play a crucial role in the
freezing transition.

II. DENSITY FUNCTIONAL THEORY

The density-functional theory route to the equilibrium
properties of a many-body system consists of expressing the
intrinsic Helmholtz free energy F as a functional of the
single-particle density ρ(r).30 When considering a system
composed of a single species of particles having only transla-
tional (and no rotational) degrees of freedom in D dimensions,
the free-energy functional reads

βF[ρ] =
∫

dDr ρ(r){log[ρ(r)�3] − 1} + βF exc[ρ], (1)

where r is a D-dimensional vector, β = (kBT)−1 is the in-
verse temperature in units of the Boltzmann constant, � the
thermal wavelength, and the integrals are performed over the
(D-dimensional) volume V occupied by the system. The first
term in the right-hand side of Eq. (1) denotes the ideal-gas
contribution, while the second describes the excess contribu-
tion due to particle-particle interactions.

A. Fundamental measure theory (FMT)

The excess free-energy functional F exc in Eq. (1) is the
non-trivial element of the theory: it contains the free-energy
dependence on the inter-particle interactions and it can not be
calculated exactly in general.

Various methods to systematically estimate this func-
tional dependence have been developed. For hard spheres, the
undoubtedly most successful approach is that of fundamental
measure theory. According to FMT, the excess free energy is
written as

βF exc[ρ] =
∫

dDr �(D)({nα(r)}), (2)

where {nα(r)} is a set of weighted densities, labeled by α,
obtained as convolutions between the single-particle density

and a set of corresponding weight functions wα(r),

nα(r) =
∫

dDr′ ρ(r′)wα(r − r′). (3)

The functional dependence of �(D)
({nα}) is determined by

extrapolating from known limiting cases, such as the homo-
geneous bulk equation of state, the low-density second-virial
behavior, and the dimensional crossover to highly confined
conditions.17

For hard parallel squares (D = 2) and cubes (D = 3) with
side σ , the FMT functional was determined by Cuesta and
Martínez-Ratón in Ref. 18. In what follows, we report the ex-
plicit expression of �(D)

({nα}) for the single-component case.
Following Ref. 18, we introduce the auxiliary functions

τ (x) = 	

(
σ

2
− |x|

)
, ζ (x) = 1

2
δ

(
σ

2
− |x|

)
, (4)

defined for x ∈ R.
For parallel squares the weight functions are

w0(r) = ζ (x)ζ (y), (5a)

w1(r) = (ζ (x)τ (y), τ (x)ζ (y)), (5b)

w2(r) = τ (x)τ (y), (5c)

where we note that w1 has a vector character. The functional
dependence of the excess free energy of parallel cubes is given
by

�(2) = −n0 log(1 − n2) + n
(x)
1 n

(y)
1

1 − n2
. (6)

For parallel cubes the weight functions are

w0(r) = ζ (x)ζ (y)ζ (z), (7a)

w1(r) = (τ (x)ζ (y)ζ (z), ζ (x)τ (y)ζ (z), ζ (x)ζ (y)τ (z)), (7b)

w2(r) = (ζ (x)τ (y)τ (z), τ (x)ζ (y)τ (z), τ (x)τ (y)ζ (z)), (7c)

w3(r) = τ (x)τ (y)τ (z), (7d)

and

�(3) = −n0 log(1 − n3) + n1 · n2

1 − n3
+ n

(x)
2 n

(y)
2 n

(z)
2

(1 − n3)2
. (8)

B. Functional minimization

Once an explicit expression for the functional depen-
dence of F exc on the single-particle density ρ(r) is estab-
lished, the equilibrium Helmholtz free energy F (T , V,N)
of N particles at temperature T in a volume V (area A for
D = 2) is obtained as the minimum of Eq. (1) with respect to
ρ(r) under the constraint that∫

dDr ρ(r) = N. (9)

In the case of hard-core interactions between the particles, the
system is athermal and its thermodynamic state is completely
identified by the packing fraction η = Nvp/V , where vp

= σ 3 is the particle’s volume (for D = 2 dimensions,
η = Nap/A and ap = σ 2).

Downloaded 08 Jan 2013 to 131.211.45.36. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



124506-3 Belli, Dijkstra, and van Roij J. Chem. Phys. 137, 124506 (2012)

The numerically easiest way to solve the functional min-
imization problem consists of expressing the single-particle
density in terms of a limited number of variational parame-
ters. After inserting this ansatz into the free energy, the lat-
ter is minimized with respect to the variational parameters to
obtain an estimate of the free energy at equilibrium. This ap-
proach has been widely applied in studying the freezing tran-
sition of hard spheres, where the single-particle density was
parameterized as a sum of Gaussian functions centered on the
lattice sites of the expected stable crystal phase (Gaussian pa-
rameterization or ansatz).31–33 In this paper, we investigate
the freezing transition of squares and cubes into square and
simple-cubic crystal phases, for which the Gaussian ansatz
can be expressed as

ργ,λ(r) = η
( λ

σ

)D(γ

π

)D
2

∑
n∈ZD

exp[−γ (r − λn)2]. (10)

In Eq. (10), the variational parameters are half of the inverse
variance γ and the lattice constant λ. Note that the lattice con-
stant λ is related to the vacancy concentration of the crys-
tal xvac = (Nsites − N )/Nsites through xvac = 1 − η(λ/σ )D ,
where Nsites is the total number of sites.

An alternative to the Gaussian parameterization that is
particularly relevant for the description of detailed charac-
teristics of the density distribution (e.g., the anisotropy of
its peaks) consists of the numerical solution of the Euler-
Lagrange equation associated with the minimization problem
(free minimization).34–37 By performing a functional differ-
entiation of Eq. (1) and imposing the constraint of Eq. (9),
one finds that the equilibrium ρ(r) satisfies the following self-
consistency equation:

ρ(r) = N exp
[
−δβF exc

δρ(r)

]{∫
dDr′ exp

[
−δβF exc

δρ(r′)

]}−1

.

(11)

At high packing fraction η one expects the free energy to
be minimized by inhomogeneous solutions characterized by
spatial modulations of ρ(r) along one or more directions. In
practice, these spatial modulations must be inserted explicitly
into Eq. (11) by means of a Fourier series expansion. There-
fore, the single particle density of a phase characterized by a
d-dimensional spontaneous breaking of the translational sym-
metry is obtained by solving the following equation:

ρ(s) = η
λd

σD
exp

[
−δβF exc

δρ(s)

]{∫
�

dds′ exp
[
−δβF exc

δρ(s′)

]}−1

,

(12)

where s ∈ � is a d-dimensional vector, � = [ − λ/2, λ/2]d, and
λ is the periodicity of the inhomogeneous solution (assumed
to be the same along all the d directions). The minimiza-
tion procedure consists of (i) solving Eq. (12) at fixed λ and
(ii) identifying the value of λ that minimizes the free energy
Eq. (1). For hard squares (D = 2), we will see that Eq. (12)
describes smectic (Sm, d = 1) and square crystal (X, d = 2)
phases; for hard cubes (D = 3), Eq. (12) accounts for smectic
(Sm, d = 1), columnar (Col, d = 2), and simple-cubic crystal
(X, d = 3) ordering.

A numerical solution of Eq. (12) on a grid of points is
expected to offer a better description of the single particle
density, and therefore a lower minimum free energy, than by
minimizing the free energy by means of the Gaussian ansatz
Eq. (10). We develop a Picard algorithm to solve Eq. (12),
where all the convolutions involved in the FMT formalism
are handled by means of fast Fourier transforms.38 Moreover,
the minimization with respect to the lattice spacing λ is per-
formed using the Brent algorithm.39

III. RESULTS

A. Parallel hard squares (D = 2)

When considering the high-density phase behavior,
monodisperse squares (as well as cubes in D = 3 dimensions)
possess a peculiar property. Unlike other regular polygons
(e.g., regular triangles, pentagons, hexagons,..., and disks),
squares do not have a well-defined “locked-in” configuration
at close packing. In other words, besides the two-dimensional
ordered square crystal (X), any other configuration with rows
(or columns) shifted with respect to one another completely
fills the plane. Therefore, also a smectic phase (Sm), charac-
terized by positional ordering along one direction only, should
in principle be considered as a candidate stable phase (see
Fig. 1(a)). The higher degeneracy of Sm configurations with
respect to X configurations suggests a higher entropy of the
former with respect to the latter. However, in low-dimensional
systems thermal fluctuations from equilibrium can play a rel-
evant role in destroying long-range order, leading to so-called
Landau-Peierls instabilities.41 In particular, for short-range
interactions proper crystals do not exist in D = 2 dimen-
sions, since positional ordering can in this case have at most
quasi-long-range character.42 The situation is even more dra-
matic when considering smectic phases, where thermal fluc-
tuations make the correlation between layers decay exponen-
tially with the distance.43 This means that in D = 2 dimen-
sions we do not expect smectic ordering to be stable at all.
Computer simulations of both parallel8 and freely-rotating40

hard squares, where only a direct fluid-to-crystal phase tran-
sition was observed without any smectic state, confirm this
picture.

We report in Fig. 1(b) the phase diagram of parallel hard
squares, as obtained by freely minimizing the FMT func-
tional with respect to the single-particle density ρ(r) includ-
ing vacancies. Despite the above-mentioned considerations on
the effect of fluctuations, we approximate the single-particle
density of the X phase by assuming long-range order (cf.
Eqs. (10) and (12)). A similar approximation was recently ap-
plied for the description of the freezing transition in two-
dimensional hard disks, showing remarkably good agreement
with computer simulations.37 We also include in our calcula-
tions the possibility of long-range Sm ordering, which is how-
ever expected to be Landau-Peierls unstable. The free-energy
dependence of the fluid, smectic, and crystal phases on the
packing fraction is reported in Figs. 1(c) and 1(d) for two den-
sity intervals. Note that this representation allows for common
tangent construction to identify coexisting states. Surpris-
ingly, FMT predicts a second-order fluid-to-smectic transition
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FIG. 1. (a) Pictorial representation of (from left to right) the fluid, smectic
(Sm), and square crystal (X) phases of parallel hard squares. (b) Phase dia-
gram of parallel hard squares according to FMT, to be compared with the
simulation value of Ref. 10 for the fluid-to-crystal transition packing fraction
(vertical arrow). The (Sm) interval highlights the states where the (Peierls-
Landau unstable) smectic phase is predicted to be the stable phase. (c) FMT
prediction for the free energy per unity area F/A of fluid (dotted green), Sm
(dashed blue), and X (solid red lines) phases in the proximity of the second-
order fluid-to-smectic (black circle). (d) The first-order smectic-to-crystal
transition.

at η* = 0.538 (Fig. 1(c)) and a weakly first-order smectic-to-
crystal transition with bulk coexisting densities ηSm = 0.726
and ηX = 0.730 (Fig. 1(d)). The picture does not change ap-
preciably by minimizing the free energy within the Gaussian
ansatz, giving the sole effect of slightly displacing the alleged
Sm − X transition (ηSm = 0.750 and ηX = 0.756, not shown).
As already pointed out, theoretical considerations and sim-
ulation results rule out the possibility of stable smectic or-
dering in the thermodynamic limit. Therefore, we must con-
clude that the smectic phase is an artifact due to the mean-
field character of the fundamental measure theory, which is
unable to take fully into account the role of long-wavelength
fluctuations from equilibrium. On the other hand, the question
whether the fluid or the crystal is the stable phase in the range
of allegedly smectic stability (striped region in Fig. 1(b)) is
open. We address this point, as well as possible conditions of
smectic stability, in the final discussion of Sec. IV.
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FIG. 2. FMT results for (a) the vacancy concentration and (b) the root-mean-
squared deviation from the average position (in units of the lattice constant
λ) of the square crystal phase of parallel hard squares. Solid lines correspond
to values calculated by free minimization of the FMT functional, whereas
dashed lines indicate those obtained through the Gaussian ansatz.

In order to further investigate the properties of the crys-
tal, we report the dependence of the vacancy concentration
(Fig. 2(a)) and the root-mean-squared deviation from the av-
erage position in the unit cell, also known as Lindemann pa-
rameter (Fig. 2(b)), on the packing fraction. At the second-
order transition at η = 0.538, the vacancy concentration is
xvac � 15%, and xvac reduces monotonically with η. This
value is appreciably higher than that predicted for hard disks
xvac � 2%,37 in analogy to the D = 3 dimensional case of
hard-cubes and hard-spheres systems, where the vacancy con-
centration at the fluid-coexistence in the former is two or-
ders of magnitude higher than in the latter.22, 27, 36 Not unlike
the case of hard cubes,22 these results suggest that vacancies
can play an important role in stabilizing (quasi-long-range)
crystal order in systems of hard squares. Moreover, Fig. 2(a)
highlights a systematic, albeit small, underestimation of the
vacancy concentration at intermediate packing fraction when
the Gaussian ansatz is applied. On the other hand, no appre-
ciable difference with the root-mean-squared deviation calcu-
lated by free minimization is observed in Fig. 2(b). In both
cases, at the second-order transition the Lindemann parame-
ter assumes a value close to 0.4, remarkably higher than that
of 0.15 expected at melting for three-dimensional systems,44

and decays to zero towards close packing.
We complete our analysis of the crystal phase by studying

the evolution of the single-particle density from the freezing-
transition region, where ρ(x, y) is still appreciably non-zero
at the edge of the Wigner-Seitz cell, to the confined regime
at higher density. In Figs. 3(a), 3(c), and 3(e), we report
the functional dependence of the equilibrium single-particle
density inside the unit cell at packing fraction η = 0.55, 0.65,
and 0.75, respectively. In order to ease the analysis, we plot
on the right of each figure (Figs. 3(b), 3(d), and 3(f)) a section
of the corresponding ρ(x, y) along the crystallographic
directions [10] and [11]. These graphs are represented in
logarithmic scale as a function of r2 to highlight Gaussian be-
havior (straight lines). As expected, the section along the [10]
direction, connecting nearest-neighbor sites, is systematically
bigger than that along the [11] direction for both the freely
minimized (solid lines) and Gaussian-parameterized (dashed
lines) profiles. At the lowest packing fraction, the peak of
the density distribution is smeared out on the unit cell. As a
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FIG. 3. Single-particle density ρ(x, y) in the unit cell of the square crys-
tal phase obtained through FMT free minimization at packing fraction
(a) η = 0.55, (c) η = 0.65, and (e) η = 0.75. On the right column [(b), (d),
and (f)], we report the section of the single-particle density along the [10]
(red lines) and [11] (blue lines) crystallographic directions. The graphs are
expressed in log-scale as a function of the squared distance from the cen-
ter of the unit cell. The dashed lines represent the corresponding functional
dependence obtained through the Gaussian ansatz.

consequence, the single-particle density in the Gaussian
parameterization shows relevant deviations from the Gaus-
sian distribution due to the overlap of the peaks centered on
neighboring cells. In this way, the tails of the neighboring
lattice sites allow to properly account for the anisotropy
of the density peak, thus leading to a marked difference
between the [10] and [11] profiles, similar to the case of free
minimization (Fig. 3(b)). This overlap is weaker at higher
packing fraction, where the confinement is stronger; hence,
the Gaussian ansatz fails to reproduce the anisotropy of the
distribution in this regime (Figs. 3(d) and 3(f)). However,
these deviations occur on a density scale a few orders of
magnitude smaller than the peak value, and therefore their
relevance is quantitatively limited.

B. Parallel hard cubes (D = 3)

Here we compare the predictions of FMT for parallel
hard cubes, extensively studied in the past by means of the
Gaussian parameterization,13, 19, 27 with our results based on
the free minimization of the functional. Since the formulation
by Cuesta and Martínez-Ratón,18 FMT is known to correctly
predict two significant properties of the freezing transition of
the model:19 (i) its second-order character and (ii) the role of
vacancies in stabilizing the crystal.

The second-order fluid-to-crystal transition, which is
known to become first-order when the rotational degrees of

η

simul.

(a)

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

fluid X

βF
σ3 /V

  -
 3

.9
 η

η

(b) fluid
Sm
Col

X

 0.3  0.31  0.32  0.33  0.34  0.35

FIG. 4. (a) Phase diagram of parallel hard cubes according to FMT, to be
compared with the simulation result of Ref. 27 for the fluid-to-crystal (X)
transition packing fraction (vertical arrow). (b) FMT prediction for the free
energy per unit volume βF/V of fluid (dotted green), crystal (solid red), and
the metastable columnar (Col, dashed blue), and smectic (Sm, dotted-dashed
orange) phases in the proximity of the second-order freezing transition (black
circle).

freedom are taken into account,12 is predicted to occur at
η = 0.314. As in the case of parallel squares, this value ap-
preciably underestimates the simulation result of η = 0.46927

(see Fig. 4(a)). Also in analogy with parallel hard squares,
parallel cubes lack a “locked-in” configuration at close pack-
ing. By means of a bifurcation analysis of the FMT functional
and computer simulations, Groh and Mulder addressed the
question about the stability of columnar order, and showed
it to be metastable. In contrast to hard squares, smectic and
columnar solutions are in the three-dimensional case always
metastable with respect to the crystal. This finding, which
results directly from our free minimization scheme, is eas-
ily verified by comparing the free-energy curves of smectic,
columnar, and crystal phases as a function of the packing frac-
tion in Fig. 4(b).

The remarkably high concentration of vacancies at
the freezing transition, xvac � 30%, is a known feature of
the theory (cf. Fig. 5(a)).13, 19 Despite this value being three
orders of magnitude higher than that measured for hard
spheres,36 it was shown to be compatible with computer sim-
ulations of both parallel (xvac = 13%27) and freely-rotating
(xvac = 6.4%22) hard cubes, thus highlighting the essen-
tial role of vacancies in stabilizing the simple-cubic crys-
tal. Within the free minimization of the FMT functional, the
vacancy concentration at bulk coexistence does not change
with respect to the Gaussian ansatz result. Nonetheless, an
inspection of Fig. 5(a), reporting xvac as a function of the
packing fraction η, shows that the Gaussian ansatz tends
to underestimate this property at intermediate packing frac-
tions. Therefore, in this regime the free minimization im-
proves the Gaussian ansatz data by furnishing results closer
to those of computer simulation.27 However, if we focus on
the root-mean-squared deviation from the average lattice site
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FIG. 5. FMT results for (a) the vacancy concentration and (b) the root-mean-
squared deviation from the average position (in units of the lattice constant
λ) of the simple-cubic crystal phase of parallel hard cubes. Solid lines cor-
respond to values calculated by free minimization of the FMT functional,
whereas dashed lines indicate those obtained through the Gaussian ansatz.

(Lindemann parameter), reported as a function of η in
Fig. 5(b), we do not observe any appreciable deviation from
the known dependence calculated by means of the Gaussian
ansatz.

Finally, in Fig. 6 we represent sections of the equilibrium
single-particle density ρ(x, y, z) at packing fraction η = 0.32
((a) and (b)), 0.50 ((c) and (d)), and 0.70 ((e) and (f)) and we
compare them with the corresponding Gaussian ansatz solu-
tion (dashed lines). The graphs on the left ((a), (c), and (e))
show sections along the crystallographic directions [100] (red
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FIG. 6. FMT prediction for the single-particle density of parallel hard cubes.
The graphs on the left show sections of ρ(x, y, z) along the crystallographic
directions [100] (red lines), [110] (green lines), and [111] (blue lines) at pack-
ing fraction (a) η = 0.32, (c) 0.50, and (e) 0.70 calculated by means of free
minimization of the functional (solid lines) and the Gaussian ansatz (dashed
lines). The right graphs represent the corresponding absolute difference be-
tween the free minimization solution and the Gaussian ansatz for the three
packing fractions ((b)η = 0.32, (d) 0.50, and (f) 0.70) and the three crystal-
lographic directions considered.

lines), [110] (green lines), and [111] (blue lines); to ease the
comparison, we report on the right of each graph ((b), (d), and
(f)) the absolute difference of these sections between the two
minimization methods. In the three cases, the cubic symmetry
of the freely-minimized solution is evident by the hierarchy in
values of the single particle density along the three crystallo-
graphic directions. In analogy with the parallel square sys-
tem, at low enough packing fraction there is good quantitative
agreement between the two methods, since the overlap be-
tween neighboring peaks within the Gaussian ansatz allows to
reproduce the anisotropy of the single-particle distribution. At
higher packing fraction, deviations from the Gaussian-ansatz
solution are evident, but limited to the low-density region of
the unit cell.

IV. DISCUSSION AND CONCLUSIONS

By means of fundamental measure theory we inves-
tigate the phase behavior of single-component systems of
parallel hard squares (in D = 2 dimensions) and cubes
(D = 3). Our attention focuses on the predictions for the
freezing transition and the properties of the crystal phase. In
density-functional theory, the typical approach for describing
crystal phases is based on the parameterization of the single-
particle density by a sum of Gaussian functions centered on
the lattice sites. We compare these predictions with a more
accurate free-minimization method, where the single-particle
density is evaluated on a grid of points.

Despite its simplicity, we conclude that for both squares
and cubes the Gaussian parameterization works remarkably
well. Apart from some inadequacy of the Gaussian ansatz
in describing the anisotropy of the single-particle density of
the crystal, the main deviations between the two minimiza-
tion methods lie in the expected vacancy concentrations of the
square and simple-cubic crystals, which appears to be slightly
underestimated by the Gaussian ansatz. On the other hand, as
already noticed for cubes, FMT suffers from a serious inabil-
ity to give quantitatively reliable values for the freezing pack-
ing fraction. However, improvement in this direction can be
achieved only by a reformulation of the theory itself, as the
numerical minimization is performed exactly. The develop-
ment of FMT for hard-spheres from the original version by
Rosenfeld suggests that fruitful approaches could involve the
addition of new (tensorial) weight functions45 or the use of an
equation of state as an input of the theory in order to improve
over the scaled particle theory approximation.33, 46

For the three-dimensional system of parallel hard cubes,
our results coincide with previous FMT analysis based on
the Gaussian parameterization and indicate a second-order
vacancy-rich fluid-to-crystal transition. For the parallel hard-
square system, this work constitutes to the best of our knowl-
edge the first analysis based on density-functional theory. In
contrast with previous simulation studies, fundamental mea-
sure theory predicts a stable smectic phase in between the
low-density fluid and the high-density square crystal. How-
ever, by taking into account the effect of long-wavelength
thermal fluctuations, one can show the one-dimensional
smectic ordering to be unstable. Therefore, we deduce that
the mean-field character of the theory, which is unable to
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properly take into account the role of fluctuations from equi-
librium, is the element to be blamed for this artifact. When
big enough simulation boxes are considered, computer simu-
lations with periodic boundary conditions confirm the picture
of an unstable smectic phase.40 However, it is interesting to
notice that, when the simulation box is small enough, ordering
of the squares in parallel layers was observed.40 On the basis
of these observations, it is tempting to conclude that, when
long-wavelength fluctuations can be neglected, the behavior
of the system coincides with the predictions of FMT, showing
a stable smectic phase. In other words, we expect parallel-
squares systems to develop intermediate smectic states in fi-
nite size systems and under the effect of confining walls.

For what concerns the original problem regarding the
phase behavior of parallel hard squares in the thermodynamic
limit, the conclusions we can draw are more limited. On the
basis of our theoretical results we do not have enough ele-
ments to deduce which of the two phases, either the fluid
or the crystal, is the stable one in the density range where
the theory predicts a stable smectic. In fact, if we simply ne-
glected the smectic solution of FMT, we would find a second-
order freezing transition at η* = 0.538; on the other hand,
if we kept the smectic solution while deducing it to be struc-
turally indistinguishable from the fluid due to the fluctuations-
induced short-range correlations between smectic layers, we
would obtain a first-order freezing transition with coexisting
densities ηfluid = 0.726 and ηX = 0.730. Since we do not have
any prescription to choose between these two alternative sce-
narios, we cannot conclude whether the theory predicts a low-
density second-order freezing transition with a high vacancy
concentration in the crystal, or a higher-density weakly first-
order freezing with a lower vacancy concentration.

Although FMT is well-known to incorporate short-range
correlations accurately, this study brings to the front a
shortcoming of FMT as regards the incorporation of long-
wavelength fluctuations. We hope that this study stimulates
new developments in this direction, perhaps along (some of)
the lines of hierarchical reference theory47, 48 to reconcile
short- and long-range correlations consistently.
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