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I. DENSITY FUNCTIONAL THEORY

In the present work the orientational degrees of free-
dom of the particles are treated within the Zwanzig model
[1], hence a particular orientation can be identified with
a number i = 1, ..., 6 (cf. Tab. S1).

i L W T

1 x y z
2 z x y
3 y z x
4 x z y
5 y x z
6 z y x

TABLE S1. Enumeration of the orientational configurations
of a hard cuboid within the Zwanzig model. Each configura-
tion i is identified with the directions (x, y, z) along which the
particle axes (L,W, T ) are aligned.

According to density functional theory it is possible to
express the free energy of a system as a functional of the
single-particle density ραi (r) of particles with orientation
i (i = 1, ..., 6) belonging to species α (α = 1, ...,M) as [2]

F [ρ]

kBT
=

∫
dr
∑
α,i

ραi (r)
[
ln(ραi (r)Λ3

α)−1
]

+
Fex[ρ]

kBT
, (S1)

where for brevity

∑
i

≡
6∑
i=1

,
∑
α

≡
M∑
α=1

,

∫
dr ≡

∫
V

dr.

The excess term Fex[ρ] has in general a non-trivial de-
pendence on ραi (r). For short-range potentials it is al-
ways possible to express Fex[ρ] as a virial series in the
single-particle density. Therefore, by truncating the se-
ries at second-virial order and thus disregarding higher-
order contributions, one obtains

Fex[ρ]

kBT
= −1

2

∫
dr dr′

∑
α,α′,i,i′

fαα
′

ii′ (r− r′)ραi (r)ρα
′

i′ (r′),

(S2)

where the Mayer function fαα
′

ii′ (r) is defined in terms of

the pairwise interaction potential uαα
′

ii′ (r) as

fαα
′

ii′ (r) = exp

[
−u

αα′

ii′ (r)

kBT

]
− 1. (S3)

The single-particle density ραi (r) is related to the number
of particles Nα through the normalization condition

∫
dr
∑
i

ραi (r) = Nα = xαN. (S4)

For hard cuboids the interaction potential, which ex-
presses the impenetrability of the particles, is

uαα
′

ii′ (r)

kBT
=


∞ if |x| < (Xα

i +Xα′

i′ )

and |y| < (Y αi + Y α
′

i′ )

and |z| < (Zαi + Zα
′

i′ );

0 otherwise.

(S5)

According to the index notation defined in Tab. S1, the
6-dimensional vectors Xα, Yα and Zα of species α are
given in terms of the dimension of the particles by

Xα = 1
2 (Lα,Wα, Tα, Lα,Wα, Tα),

Yα = 1
2 (Wα, Tα, Lα, Tα, Lα,Wα),

Zα = 1
2 (Tα, Lα,Wα,Wα, Tα, Lα).

(S6)

The main goal of this work is to study the stability
of spatially homogeneous phases (i.e. isotropic and ne-
matic). In order to simplify the problem we therefore
neglect spatial modulations in the single-particle density
by imposing ραi (r) = ραi . Consequently, Eq. (S1) be-
comes

F
V kBT

=
∑
α,i

ραi

[
ln(ραi Λ3

α)− 1
]

+
1

2

∑
α,α′,i,i′

Eαα
′

ii′ ρ
α
i ρ

α′

i′ ,

(S7)
which is the restricted orientation version of the Onsager
free energy [3]. The matrix Eαα

′

ii′ in Eq. (S7) is the ex-
cluded volume between two particles belonging to species
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α and α′ with orientations i and i′ interacting through
the potential Eq. (S5)

Eαα
′

ii′ = 8(Xα
i +Xα′

i′ )(Y αi + Y α
′

i′ )(Zαi + Zα
′

i′ ). (S8)

In the homogeneous case the normalization condition Eq.
(S4) becomes

∑
i

ραi = xαn. (S9)

The single-particle density at equilibrium is the one
which minimizes Eq. (S7) with the constraints of Eq.
(S8) for all α = 1, ...,M , hence it is found by solving the
Euler-Lagrange equation

ραi =

xαn exp

(
− 1

2

∑
α′,i′ E

αα′

ii′ ρ
α′

i′

)
∑
i′′ exp

(
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2

∑
α′,i′ E

αα′
i′′i′ρ

α′
i′

) , (S10)

which is achieved by standard numerical (iterative) tech-
niques.

II. NEMATIC-SMECTIC BIFURCATION

While studying the homogeneous equilibrium phases of
the system, we are also interested in estimating their up-
per bound in the phase diagram, where spatially inhomo-
geneous phases tend to be thermodynamically favored.
Bifurcation theory [4, 5] provides a way to investigate
the limit of stability of a particular phase.

The condition of thermodynamic stability of a phase
described by the single-particle density ραi (r) requires
that the system corresponds to a minimum of the free
energy F , i.e. a stationary point that satisfies

∫
dr dr′

∑
α,α′,i,i′

δ2F

δραi (r)δρα
′
i′ (r′)

δραi (r)δρα
′

i′ (r′) > 0,

(S11)
for any arbitrary perturbation δραi (r). By inserting the
functional expression Eq. (S1) into Eq. (S11), one finds
that the reference phase (described by ραi (r)) ceases to
be stable at the smallest density n = N/V at which a
perturbation δραi (r) exists such that

δραi (r) = ραi (r)

∫
dr′
∑
α′,i′

fαα
′

ii′ (r− r′)δρα
′

i′ (r′). (S12)

Here we are interested in calculating the limit of stabil-
ity of the (uniaxial or biaxial) nematic phase with respect
to smectic fluctuations. With this in mind, in Eq. (S12)
we neglect spatial modulations in the reference phase, i.e.

ραi (r) = ραi , and a positional dependence of the fluctu-
ations only along the z direction, i.e. δραi (r) = δραi (z).
After some rearranging Eq. (S12) becomes

σαi (z) =
∑
α′,i′

∫
dz′Qαα

′

ii′ (z − z′)σα
′

i′ (z′), (S13)

where σαi (z) = δραi (z)/
√
ραi and

Qαα
′

ii′ (z) =
√
ραi ρ

α′
i′

∫
dx dy fαα

′

ii′ (r), (S14)

a symmetric (Hermitean) kernel. By inserting the ex-
plicit form of the inter-particle potential (cf. Eq. (S3)
and (S5)) into Eq. (S14), we obtain

Qαα
′

ii′ (z) =


−4
√
ραi ρ

α′
i′ (Xα

i +Xα′

i′ )(Y αi + Y α
′

i′ )

if |z| < (Zαi + Zα
′

i′ );

0 otherwise.

(S15)
Eq. (S13) can be more conveniently solved in Fourier
space, where it reads

σ̂αi (q) =
∑
α′,i′

Q̂αα
′

ii′ (q)σ̂α
′

i′ (q), (S16)

with

Q̂αα
′

ii′ (q) = −
√
ραi ρ

α′
i′ E

αα′

ii′ j0
(
q(Zαi + Zα

′

i′ )
)
, (S17)

and j0(x) = sin(x)/x.
In conclusion, the limit of stability of the nematic

phase with respect to smectic fluctuations can be numer-
ically found as the minimum packing fraction η∗ at which
there exists a wave vector q∗ such that the 6M×6M ma-
trix with entries Q̂αα

′

ii′ (q∗) has a unit eigenvalue. The pe-
riodicity of the corresponding bifurcating smectic phase
is given by λ∗ = 2π/q∗.

III. NEARLY SECOND-ORDER CHARACTER
OF THE IN± TRANSITION

When dealing with mixtures, the phase diagram is con-
veniently expressed in terms of the osmotic pressure P
vs. the mole fraction xα of M − 1 components. In this
way it is possible to visualize the coexistence of phases
characterized by a different composition with respect to
the parent distribution. This phenomenon, called demix-
ing or fractionation, is a consequence of the first-order
character of the transition.

Here we analyze demixing in a binary mixture of
cuboids parameterized as in Eq. (3) with L/T = 9.07,
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FIG. S1. (a) Phase diagram of a binary mixture of hard
cuboids in terms of the reduced osmotic pressure P ∗ =
PLWT/(kBT ) vs. mole fraction of the first species x1. (b)-
(d) I (red solid line), N+ (blue dotted line) and N− (green
dashed line) branches of the Gibbs free energy per particle
g = G/N at (b) P ∗ = 0.6, (c) P ∗ = 1.1 and (d) P ∗ = 1.5.
A straight line with slope a = ∂g/∂x1|x1=xI = ∂g/∂x1|x1=xN

(with xI and xN the compositions of the coexisting isotropic
and nematic phases) was subtracted in each case to enhance
the visualization of the common tangent construction.

W/T = 2.96 and s = 0.2. In Fig. S1(a) we report the
phase diagram for such a system as a function of the mole
fraction x1 of the larger species. The expected first-order
character of the INU transitions is not detectable at this
scale (see below), whereas the NUNB transitions appear
to be second order. At three different values of the re-
duced pressure P ∗ = PLWT/(kBT ) we calculated the
isotropic and uniaxial nematic branches of the Gibbs free
energy per particle g(P, x1) = G(P,N1, N2)/(kBT (N1 +
N2)). The coexistence between the two phases is given
by a common tangent construction, which allows to eval-
uate the difference in composition ∆x1 of the coexisting
phases. The results are reported in Fig. S1(b)-(d) for
P ∗ = 0.6, 1.1 and 1.5, respectively. In the three cases,
two of which describe a IN+ and one a IN− transition,
∆x1 ≈ 10−5 and can therefore be neglected. The situa-
tion does not change when one considers different values
of the bidispersity parameter s.

Although Landau-de Gennes theory predicts the INU
transition to be first order [6], we have just shown that
its discontinuous character can be safely neglected for
the binary mixture of boardlike particles we consider in
this work. In our opinion, this fact is tightly related to
the shape of the particles close to the ν = 0 value. In
fact, when considering a monodisperse system, the closer
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FIG. S2. Phase diagram of a monodisperse system of hard
cuboids as a function of the shape parameter ν = L/W −
W/T (with L/T = 9.07 fixed and W/T variable). The solid
lines indicate phase boundaries as calculated by minimizing
the Onsager-Zwanzig functional, the dashed line indicates the
limit of stability of the nematic with respect to the smectic
phase and the open circle the Landau tetracritical point. The
inset highlights the first order character of the INU transition
and how this tends to become continuous by approaching ν =
0.

ν is to zero the weaker is the first-order character of the
INU transition (see also Sec. IV). This fact allows us
to assume that for an arbitrary number of components
of volume-polydisperse cuboids close to ν = 0 the INU
transition can be approximated as continuous. As a con-
sequence, we can neglect demixing in the phase behavior
analysis reported in Fig. 4, thus reducing enormously the
complexity of the problem.

IV. MONODISPERSE SYSTEM OF HARD
CUBOIDS

The main goal of the present work is to investigate how
polydispersity affects the phase behavior, and in partic-
ular the stability, of the NB phase in a system of hard
cuboids. For this reason, it is instructive to study what
the theoretical framework described in Sec. I predicts
in the monodisperse case M = 1. In particular, we will
focus here on the role of the particles dimensions on the
phase behavior of the system.

In Fig. S2 we report the phase diagram of a monodis-
perse system of hard cuboids as a function of the as-
pect ratio W/T at fixed L/T = 9.07. Consequently,
by varying W/T one varies the shape parameter ν =
L/W −W/T , in such a way that by crossing the point
ν = 0 one expects a transition from plate- to rod-like
behavior. This is precisely what Fig. S2 shows, where
the phase separation lines are calculated by minimizing
the Onsager-Zwanzig functional Eq. (S7) with the con-
straint of Eq. (S9) for each value of the packing fraction
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FIG. S3. Orientation distribution function of a monodisperse
system of hard cuboids as a function of the packing fraction η
obtained by minimization of the Onsager-Zwanzig functional
Eq. (S7) for M = 1. The cuboids have dimensions L/T =
9.07 and (a) W/T = 3.04, (b) W/T = 3.01, (c) W/T = 2.99,
(d) W/T = 2.96. The different lines indicate the probability
of a particular orientation i = 1, ..., 6 (cf. Tab. S1). The
dashed vertical line shows the limit of stability of the nematic
phases with respect to the smectic.

η. Moreover, bifurcation theory (cf. Sec. II) provides
a way to estimate the upper limit of stability of homo-
geneous phases with respect to the smectic (dashed line
in Fig. S2). Fig. S2 shows that to observe a stable NB
phase, the shape of the particles should be designed with
extremely high precision in a small ν-regime about ν = 0.
In fact, for L = 9.07T the NB phase disappears unless
2.96T < W < 3.08T . This is due both to the tight cusp-
like shape of the NUNB transition line and to the pre-
empting character of inhomogeneous phases. Analogous
results can be obtained by varying the shape parameter
through L/T , while keeping W/T fixed (not shown). Fi-
nally, in the inset of Fig. S2 (note the different scale)
we show the first order character of the INU transition,
which tends to become second-order by approaching the
critical point at ν = 0.

For the sake of completeness, in Fig. S3 we report the
orientation distribution function pi, which is the proba-

bility of a given orientation i = 1, ..., 6 as a function of
the packing fraction η for different values of the shape
parameter ν. In the monodisperse case this function co-
incides with the single-particle density divided by the
number density: pi = ρi/n. The values of the orien-
tation distribution function characterize the symmetry
of the corresponding phase. In fact, at a given packing
fraction η in Fig. S3 one can have one of the following
possibilities:

• the probabilities pi are all the same, i.e. pi = 1/6
(isotropic I phase);

• the probabilities pi are coupled two-by-two, demon-
strating the presence of a symmetry axis (uniaxial
nematic NU phase);

• the probabilities pi are different between each oth-
ers (biaxial nematic NB phase).

Moreover, in the uniaxial nematic case one can further
distinguish two situations:

N the two more probable orientations have the short-
est axis aligned along the same direction (uniaxial
nematic oblate N− phase);

N the two more probable orientations have the longest
axis aligned along the same direction (uniaxial ne-
matic prolate N+ phase).

This classification is easily generalized to the multi-
component case. With this in mind, one can observe
the difference in the orientation distribution function
when ν = −0.06 < 0 (W/T = 3.04, Fig. S3(a)),
ν = 0 (W/T = 3.01, Fig. S3(b)) and ν = 0.04 > 0
(W/T = 2.99, Fig. S3(c)). The vertical dashed line
indicates the limit of stability with respect to smectic
fluctuations as given by bifurcation theory. Finally, Fig.
S3(d) shows the predicted orientation distribution func-
tion when the experimental value W/T = 2.96 is consid-
ered [7], and highlights how according to the model the
NB phase is expected to be preempted by inhomogeneous
phases.
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