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In this supplementary material, we give a full description of the model of binary systems of semi-
flexible rods, using an Onsager-type second-virial approach for a segmented-chain model. We also
present results for the convergence of the equation of state for fd virus particles, and the properties
of fd virus particles of various flexibilities. Finally, we compare our predicted phase diagrams for
binary fd virus mixtures with those obtained experimentally.

I. THEORY

A. Free-energy minimization and phase diagrams

In the Onsager theory of nematic liquid crystals [1], the isotropic-nematic (I-N) phase transition of a one-component
system of rigid rods is driven by competition between two entropies. One is similar to entropy of mixing, arising from
the mixing of particles of different orientations. The other arises from the excluded volume interactions of the particles.
These are expressed via the Helmholtz free energy, F , and for monodisperse rigid particles the solutions to this are
well known (see e.g. [2, 3]). Extending the theory to mixtures requires the addition of an extra mixing term to
the Helmholtz free energy [4, 5]. Flexibility may be incorporated in numerous ways (see e.g. [6–10]), and in this
supplementary material, we build on the work of Wessels and Mulder [6] to describe binary systems of semi-flexible
rods.
We consider a suspension of Ni semi-flexible rods of species i = 1, 2 with contour lengths Li, in a volume V at

temperature T . Following Wessels and Mulder [6] we model a rod of species i as a chain of Mi rod-like segments of
length li = Li/Mi and diameter Di ≪ li. Denoting the orientation of the m-th segment by a unit-vector ωm (with
1 ≤ m ≤ Mi), we write the bending energy of a chain of species i with orientation Ω = {ω1, . . . , ωMi

} as

Ui(Ω) =

Mi−1
∑

m=1

ui(ωm, ωm+1) = −
Pi

li

Mi−1
∑

m=1

ωm · ωm+1, (1)

where the stiffness is described in terms of the persistence length Pi [6]. Here and below we use thermal energy units
by setting kBT = 1. The state of the suspension is characterized by the orientation distributions functions (ODFs)

fi(Ω), which satisfy the normalization condition
∫

dΩfi(Ω) = 1 where dΩ =
∏Mi

m=1
dωm. Denoting the total number

of rods by N = N1 +N2, the density by ρ = N/V , and the mole fraction of species i by xi = Ni/N , we can write the
variational free-energy functional F [f1, f2] of this system within an Onsager-like second virial approximation as

F [f1, f2]

N
= ln(Bρ)− 1 + x1 lnx1 + x2 lnx2 (2)

+
2

∑

i=1

xi

∫

fi(Ω)
(

ln(4πfi(Ω)) + Ui(Ω)
)

dΩ

+
ρ

2

2
∑

i,j=1

xixj

∫

fi(Ω)fj(Ω
′)Kij(Ω,Ω′)dΩdΩ′.

The first line of Eq. (2) represents the translational and the mixing ideal-gas contributions (with B = π
4
D1L

2
1, a

constant), the second line denotes the orientation entropy and bending energy, and the third line the excluded volume
interactions given by
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Kij(Ω,Ω′) =

Mi
∑

m=1

Mj
∑

m′=1

kij(ωm, ωm′)

= lilj(Di +Dj)

Mi
∑

m=1

Mj
∑

m′=1

| sin γ(ωm, ωm′)|, (3)

with γ(ωm, ωm′) = arccos(ωm · ωm′) the angle between chain segments [6] m and m′. The free-energy functional of
Eq. (2) is a two-component generalization of the one-component segmented-chain functional of Ref.[6], and for Mi = 1
and Ui ≡ 0 it reduces to the Onsager functional for binary mixtures of rigid rods [4, 11].
At a given thermodynamic state point, the equilibrium ODFs minimize F and therefore satisfy the Euler-Lagrange

equations δ(F − µiNi)/δfi(Ω) = 0 for i = 1, 2, with µi the chemical potential-like Lagrange multiplier that ensures a
proper normalization. This gives rise to

fi(Ω) =
exp(−Ui(Ω)− Vi(Ω))

Qi
; (4)

Vi(Ω) = ρ

2
∑

j=1

xj

∫

Kij(Ω,Ω′)fj(Ω
′)dΩ′, (5)

where Vi(Ω) can be seen as a self-consistent field acting on all segments of a chain, and Qi is a partition function-like
normalization factor. Explicitly solving Eqs. (4) and (5) for state points of interest would be prohibitively expensive
computationally because of the high-dimensional angular Ω-grids that would be required in the case when Mi ≫ 1.
Instead, we formally evaluate the functional F of Eq. (2) in its minimum by inserting the solutions fi of Eqs. (4) and
(5) to find the equilibrium free energy

Feq

N
= ln(Bρ)− 1 + x1 ln

x1

Q1

+ x2 ln
x2

Q2

−
1

2
ρ

2
∑

i,j

xixj

Mi
∑

m=1

Mj
∑

m′=1

∫

kij(ω, ω
′)fi,m(ω)fj,m′(ω′)dωdω′, (6)

where fi,m(ω) is the ODF of the m-th segment (m = 1, . . . ,Mi) of a chain of species i = 1, 2 defined by

fi,m(ωm) =

∫

fi(Ω)dω1 . . . dωm−1dωm+1 . . . dωMi
. (7)

Eq. (6) implies that the thermodynamics does not require the full solutions fi(Ω) but in fact only the Mi single-
segment distributions fi,m(ω) and the normalization factors Qi, for which an efficient iterative recursion scheme, that
exploits the connectivity of the chain, can be set up as follows.

Eqs. (3) and (5) allow us to write Vi(Ω) =
∑Mi

m=1
vi(ωm) with the same selfconsistent field

vi(ωm) = ρ

2
∑

j=1

Mj
∑

m′=1

xj

∫

kij(ωm, ωm′)fj,m′(ωm′)dωm′ , (8)

for all segments of chains of the same species. As a consequence, Eq. (4) combined with Eq. (7) can be written as

fi,m(ω) =
1

Qi
qi,m(ω) exp[−vi(ω)]qi,M−m+1(ω), (9)

with the partial-chain partition function

qi,m(ωm) =

∫ m−1
∏

n=1

exp[−vi(ωn)− ui(ωn, ωn+1)]dωn. (10)
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In the formulation of Eq. (9) the m-th segment ODF is seen as the statistical weight exp(−vi(ω)) of that segment
in the (selfconsistent) field vi(ω), combined with the weights qi,m and qi,M−m+1 of the two sub-chains from segment
m± 1 to the two chain ends, respectively. Interestingly, the connectivity of the chain allows us to rewrite Eq. (10) as
the recursion relation

qi,m(ω) =

∫

qi,m−1(ω
′) exp[−vi(ω

′)− ui(ω
′, ω)]dω′ (11)

such that a loop can be set up that (i) starts with a guess for vi(ω) for i = 1, 2, (ii) solves for qi,m(ω) for all i = 1, 2
and m = 1, . . .Mi using Eq. (11) together with qi,1(ω) ≡ 1, (iii) computes fi,m(ω) and the normalization factor Qi

from Eq. (9), (iv) recalculates vi(ω) using Eq. (8) and repeats (ii)-(iv) until convergence is found. Note that this
scheme only requires an angular grid for ω, which in the light of the azimuthal and up-down symmetry of the isotropic
and nematic phases of interest here, reduces to a single grid for the polar angle θ ∈ (0, π/2). The only difference
with Onsager-type theories for rigid-rod mixtures is the additional calculation and storage of qi,m(ω) for 1 ≤ m ≤ Mi

here. With the ODFs known, Feq may be calculated from Eq. (6). The osmotic pressure is then calculated from

Π = ρ2
∂Feq/N

∂ρ . For a binary system, phase behavior is most easily analyzed using the Gibbs free energy per particle,

g̃(x,Π) =
Feq

N + Π

ρ . By fixing Π, g̃ may be calculated as a function of x2 (with x1 = 1−x2), and performing a common

tangent construction allows for the prediction of coexisting phases [4, 5, 12]. For the special case of a monodisperse
system, we simply set x2 = 0.

We may also calculate the nematic order parameter Si,m of the m-th segment of a chain of species i as

Si,m =

∫

dωfi,m(ω)P2(ω · n), (12)

where P2(ω · n) is the second Legendre polynomial, and n is the nematic director. We define the nematic order of a
rod as the average nematic order along the chain

Si =
1

Mi

Mi
∑

m=1

Si,m. (13)

B. Effective length

The calculation of the effective length goes as follows. We define the mean square effective length L2
e,i as

L2
e,i = l2i

Mi
∑

m=1

Mi
∑

m′=1

〈ωm · ωm′〉

= l2i

Mi
∑

m=1

Mi
∑

m′=1

∫

(ω · ω′)fi,m,m′(ω, ω′)dωdω′, (14)

where we are summing the squares of the average length projections of all chain segments m′ along the director of all
segments m. Here, fi,m,m′(ω, ω′) is the pair orientational distribution function (PDF) defined by

fi,m,m′(ω, ω′) =

∫

fi(Ω)δ(ωm − ω)δ(ωm′ − ω′)dΩ, (15)

where we are integrating out all other degrees of freedom from fi(Ω) except those of segments m and m′. Note that
fi,m,m′(ω, ω′) is the probability that a chain of species i is in a configuration with the m-th and m′-th segment having
orientations ω and ω′, simultaneously. Inserting Eq. (4) into Eq. (15), and using Eqs. (8) and (10), we find that

fi,m,m′(ω, ω′) =
1

Qi
qi,m(ω) exp[−vi(ω)]Qi,m,m′(ω, ω′) exp[−vi(ω

′)]qi,M−m′+1(ω
′), (16)
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with the same notation as before. Here Qi,m,m′(ω, ω′) is the partial chain partition function that takes into account
the effect of the chain segments that link segment m and segment m′. For neighboring segments m′ = m+1 we have
Qi,m,m′(ω, ω′) = exp[−ui(ω, ω

′)], and for m′ = m+ 2 . . .M , it follows the recursion relation

Qi,m,m′(ω, ω′) =

∫

dω′′Qi,m,m′
−1(ω, ω

′′) exp[−vi(ω
′′)] exp[−ui(ω

′′, ω′)]. (17)

By construction, each pair orientation distribution function also obeys the normalization condition
∫

fi,m,m′(ω, ω′)dωdω′ =
1. As we already know the ODFs, and hence qi,m(ω) and vi(ω), from our phase diagram calculations, the calculation
of the PDFs and Le,i is relatively straightforward. We use Le,i to calculate the diameter De,i required for rigid rods
to have the same excluded volume as our flexible rods, at the same state point, obtaining the effective shape of the
rods.

II. FD VIRUS PARAMETERS AND VALUES

In order to accurately describe semi-flexible rods, we must ensure that we are in the continuum limit. That is, we
must use a sufficient number of chain segments to ensure that our results capture the physics of a continuous chain.
We do this by checking the convergence of our results with increasing Mi at fixed Pi, by adapting li = Li/Mi. We
shall now examine the one-component system fd virus system, and hence we drop the subscript i. In Fig. 1, we show
the isotropic (I) and nematic (N) equation of state of a one-component fd virus system, for various M values, starting
from the rigid-rod limit M = 1. Clearly, the isotropic branch is independent of M , while the nematic branch strongly
depends on M . The I-N coexistence, which is represented by the jump, shows a phase transition that shifts to higher
ρ and Π upon increasing M , reaching a well-defined continuum limit in the pressure regime of interest for M ≥ 15.
Coexistence is found at ΠB = 29.54.
Varying the stiffness of semi-flexible rods can have a large effect on the properties of the nematic phase at coexistence.

Fig. 2 shows the equation of state for bio-engineered fd virus particles of various persistence lengths. We see that
coexistence is found at much lower densities (and osmotic pressures) for stiff rods than for flexible ones, in agreement
with Refs. [6–10].
We may also calculate the nematic order parameter of each chain segment in a rod from Eq. (12). Fig. 3 shows

the nematic order parameter S at a distance r ∈ [0, L] along the rod in the nematic phase at bulk coexistence for
fd virus particles of various persistence lengths. We see that rigid rods are more ordered at coexistence than flexible
rods, despite phase coexistence being found at a lower density. The chain segments in the middle of the rods are also
found to be more ordered than the end segments, in agreement with earlier bifurcation findings in Ref. [6].
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FIG. 1. Convergence of equation of state in ρB − ΠB representation, for increasing number of chain segments M for fd virus
parameters L = 0.88µm, D = 6.6nm and P = 2.2µm. We find that M = 15 is within the continuum limit for the fd virus.
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FIG. 2. Equation of state in ρB−ΠB representation, for fd virus dimensions L = 0.88µm, D = 6.6nm and varying persistence
length P .
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FIG. 3. Nematic order parameter S of fd virus particles of various persistence lengths in the nematic phase at bulk coexistence,
at a distance r ∈ [0, L] along the rod. The densities of the nematic phase at coexistence are: ρB = 4.19, ρB = 4.27, ρB = 4.42,
ρB = 5.45, ρB = 7.17 and ρB = 11.30 for P → ∞ (rigid-rod), P = 12µm, P = 6.5µm, P = 2.2µm, P = 1.1µm and
P = 0.55µm, respectively.

III. COMPARISON TO EXPERIMENTAL DATA

In this section, we compare predicted phase diagrams for binary fd virus mixtures using both rigid and semi-flexible
rods to those found experimentally in Ref. [13]. We also give details of how we convert our results from the number
density ρ to concentrations in mg/ml.

Fig. 4 shows predicted phase diagrams for fd virus particles (L1 = L2 = 0.88µm, D1 = 6.6nm and P1 = P2 = 2.2µm)
found using rigid rods (where M1 = M2 = 1) and semi-flexible rods (with M1 = M2 = 15), and those found
experimentally in Ref. [13]. In each case, we show one phase diagram where only I-N coexistence is found (low
diameter ratio d), one where, in addition to I-N coexistence, N-N coexistence is observed (mid-d), and one where I-N
and N-N coexistence and an I-N-N triple point are found (large d). As can be seen, at low d, both sets of theoretical
predictions and the experimental results show only I-N coexistence, while at large d, each show I-N coexistence, with
an N-N demixing region which begins from an I-N-N triple point. At mid-d all three show I-N and N-N demixing,
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however, while both the theoretical predictions using semi-flexible rods and the experimental results show the N-N
region beginning from a lower critical point, the predictions when using rigid rods show the N-N region to begin from
an I-N-N triple point and ending in an upper critical point. Our results thus strongly suggest that flexibility is the
key to understanding the bulk phase behavior of these systems.
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FIG. 4. Phase diagrams for mixtures of bare (thin) fd virus particles (species 1) and PEG-coated (thick) ones (species 2), with
diameter various ratios (see plots). Top row shows theoretical results for rigid rods (M1 = M2 = 1), the middle row shows
theoretical results for semi-flexible rods (with M1 = M2 = 15), and the bottom row shows experimental results from Ref. [13].
The lighter colored areas indicate the two-phase regions with tie-lines connecting coexisting state-points; triangles denote I-N-N
and I-I-N triple points.

In order to convert between the number densities ρi = Ni/V that we predict theoretically and the concentrations
found experimentally, we use the molecular weights of the fd virus Mfd and of the polymer used as the coating,
polyethylene glycol (PEG), MPEG (given in Ref. [13] as Mfd = 1.64 × 107g/mol and MPEG = 20000g/mol) to
calculate the mass of both the thin and thick rods (m1 and m2 respectively). These are given by

m1 =
Mfd

NA
; (18)

m2 =
Mfd +NPEGMPEG

NA
, (19)

where the factor NPEG in the second line is the number of PEGs coated onto the fd virus particles (given as 200± 30
in Ref. [13]), and NA is the Avogadro constant. We may then convert between the number density ρi and the
concentration ci in mg/ml by

ci = ρimi. (20)

In order to produce the dimensionless density ρiB, we must calculate B = BE = π
4
D1L

2
1 for the experimental

systems. To take into account the electrostatic interactions of the fd virus such that it may be considered as a hard
rod, Ref. [13] defines the diameter D1 of the bare fd virus as an effective diameter Deff which decreases with increasing
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ionic strength [14]. We therefore calculate the scaling factor as BE = π
4
DeffL

2
1 where L1 = 0.88µm, the fd virus

length. We may then compare our theoretical results expressed in ρiB units against experimental results expressed
in identical dimensionless units as ρiB = ciBE/mi.
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