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Relaxation dynamics in the columnar liquid crystal phase of hard platelets

Alessandro Patti,†*a Simone Belli,b Ren�e van Roijb and Marjolein Dijkstraa

Received 5th November 2010, Accepted 13th January 2011

DOI: 10.1039/c0sm01265c
We perform Monte Carlo simulations to analyze the equilibrium dynamics and the long-time structural

relaxation decay of columnar liquid crystals of disk-like colloidal particles. In the wake of recent studies

on the columnar mesophase of hard calamitic (rod-like) colloids, we now focus on the diffusion of their

discotic counterparts, here modeled as oblate hard spherocylinders. These systems exhibit a non-

Gaussian column-to-column diffusion due to the combined action of transient cages and periodic free-

energy barriers. We find that at fixed packing fraction the barrier height increases with decreasing

particle thickness, resulting into a more heterogeneous and non-Gaussian dynamics for thinner

platelets, and reducing the inter-column diffusion coefficient. Moreover, we observe the characteristic

two-step relaxation decay of the structure in the plane perpendicular to the column axis. By contrast,

the in-column dynamics is similar to the typical single-file diffusion of one-dimensional dense fluids,

with a relatively fast decay of the correlation functions.
1. Introduction

Although the formation of liquid crystals of discotic particles

had already been predicted in the 1920s,1 theoretically investi-

gated since the 1950s,2–5 and experimentally hypothesised in the

1960s,6 the first unequivocal evidence of their existence is

significantly more recent and due to Chandrasekhar and co-

workers.7 Their seminal work on the hexaesters of benzene dis-

closed an exciting and fascinating field in liquid crystal research,

adding new potential applications to those already offered by

liquid crystals of calamitic (rod-like) molecules. These authors

observed a novel mesophase in which the molecules were

arranged on top of each other, forming oriented stacks and

determining the well-known columnar (Col) liquid crystal phase.

The Col phase is generally classified by considering the stacking

of the molecules inside each column, and the long-range

arrangement of the two-dimensional (2D) inter-column lattice.8–12

Depending on the in-column interactions, the mesogens can be

aligned, tilted, or irregularly stacked with respect to the column

axis. In any of these three cases, due to the lack of an appreciable

long-range translational order, the columns are regarded as one-

dimensional (1D) fluids. As far as the inter-column order is

concerned, the Col phase can show a rectangular, oblique, or

hexagonal 2D symmetry, with the columns parallel to each other.
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Therefore, the columnar phase behaves as a crystal in the

direction of the lattice vectors.

Columnar liquid crystals of discotic platelets (CLCDs) are

gaining an increasing relevance in technological applications

whether their scale is tens of Angstroms (molecular scale) or

hundreds of nanometres (colloidal scale). Understanding their

equilibrium and out-of-equilibrium aggregation behavior is also

an interesting challenge for fundamental research on stacking

phenomena. The most common and frequently investigated

molecular CLCDs are formed by mesogens, such as tripheny-

lenes13–15 or hexabenzocoronenes,16–18 with a rather rigid central

aromatic core surrounded by flexible peripheral alkyl chains

bonded to the edges.11,19 Both the core and the side chains can be

tailored to control and eventually to improve the functional

properties of the material.16,20 Remarkably, the spontaneous

supramolecular self-assembly in ordered columnar aggregates

increases the mobility of electrons and charge carriers through

the cores and along the stacked arrangements.21,22 Due to the

insulating effect of the lateral hydrocarbon chains, the interac-

tions established between neighboring mesogens within the same

column are significantly stronger than those between mesogens

of contiguous columns,23,24 and a (quasi) 1D charge transport is

observed.25–27 As a consequence of this peculiar behavior, the

conducting properties of CLCDs offer the advantage to improve

the performance of electronic, optoelectronic, and photovoltaic

devices, such as solar cells and plastic organic field-effect tran-

sistors.28–35 In all these applications, the liquid crystalline prop-

erties of CLCDs, and in particular their fluid-like dynamics along

the columns, are of fundamental importance in the self-healing of

eventual structural defects, such as grain boundaries, which

might hamper the charge diffusion by trapping the charge

carriers.20,36
Soft Matter, 2011, 7, 3533–3545 | 3533
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On the colloidal scale, CLCDs have recently been used by

Mourad et al. as templating agents for the synthesis of ordered

macroporous silica structures.37 Motivated by the necessity to

prepare hexagonally-packed materials with larger pores than

those synthesized in the 1990s with surfactants (MCM-41)38 or

block copolymers (SBA-15),39 these authors used CLCDs of

colloidal gibbsite platelets to generate ordered silica materials

with pore diameters in the macroporous range (50–1000 nm),

that is well above the usual pore sizes achieved with amphiphilic

templates. Colloidal gibbsite platelets, which show a rich phase

behavior,40 were also used to show the formation of columnar

liquid crystals in highly polydisperse systems,41 and they are able

to aggregate in nematic droplets (tactoids) under the influence of

a magnetic field.42 Laponite clay platelets have been the object of

interesting discussions regarding the characterization of their

aggregation state at high densities.43–47

For the time being, the amount of experimental research

devoted to analyze the properties and improve the technological

applications of CLCDs overwhelms the number of computa-

tional investigations, which have mostly focused on the behavior

of platelets in the isotropic or nematic phase.48–58 In fact, discotic

mesogens are rather complex organic molecules and many of

them are required to properly simulate the phase and aggregation

behavior as well as the dynamics in the Col mesophase. Atomistic

models provide a worthwhile tool to access the details of liquid

crystals at the molecular level, but they are too computationally

demanding to handle more than some tens of mesogens during

an appropriate time interval. The first molecular dynamics

simulations, published almost twenty years ago, limited their

analysis to few tens of molecules and to a too short time interval

(100–200 ps).59,60 Due to the long time scales involved in the

relaxation dynamics of these systems, only longer simulations

can guarantee the independence of the results on the starting

configurations. More recently, Cinacchi et al. carried out a more

reliable 10 ns atomistic simulation of 80 discotic molecules to

study the structure and translational dynamics of the columnar

mesophase of a triphenylene.61 Andrienko et al. adopted the

united atom approach to simulate, for a time of 100 ns, 160

discotic molecules stacked in columns of ten molecules each, with

hexagonal or rectangular arrangement as initial configurations.62

Cristinziano and Lelj performed molecular dynamics simulations

at atomistic level to study the transition from isotropic to

columnar phase of a metal-porphyrazine complex.63 They

analyzed the organization of 64 mesogens in the columns with

particular focus on the conformation of their side chains during

the phase transition.

The prevailing perception, also underlined by the authors of

Ref. 62, is that atomistic simulations cannot supply a compre-

hensive picture of the dynamics in the Col mesophase, because of

the limited time and length scales they can achieve. However,

their output can be of fundamental importance to improve the

accuracy of the approximations made in coarse-grained (CG)

models.64 CG models, where a number of atoms are arranged

together in a simplified fashion, have extensively and efficiently

been used to describe the phase behavior65–68 and the relaxation

dynamics69–72 of liquid crystals of rod-like particles. An efficient

CG model for CLCDs has been proposed and developed in the

last two years by Cuetos and Mart�ınez-Haya to investigate the

phase behavior of fluids of rigid discotic particles with hard or
3534 | Soft Matter, 2011, 7, 3533–3545
soft interactions.73–75 Their oblate hard spherocylinder (OHSC)

model overcomes the limits of the ellipsoidal and cut-sphere (CS)

models in the analysis of the Col mesophase. More specifically,

hard ellipsoids cannot self-assemble into the columnar phase76

unless suitable soft interactions are included.77 Hard cut spheres

do form columnar liquid crystals,78 but their application is

limited by the complexity of including interactions with the same

shape anisotropy as the core.74 Furthermore, the CS model

cannot predict the formation of one crystal phase observed

experimentally in systems of platelets: the tilted crystal phase,

where the molecular plane of the particles is tilted with respect to

the column axis.22 Recent free energy calculations demonstrated

the stability of this peculiar structure in the phase diagram of the

OHSC model.79,80

In the wake of previous studies on calamitic colloidal parti-

cles,69–72 we now turn our attention to the relaxation dynamics of

discotic particles in the columnar liquid crystal mesophase. In

spite of the substantial differences in the equilibrium phase

behavior between liquid crystal phases of calamitic and discotic

particles, we find interesting similarities in their rattling-and-

jumping diffusion and two-step relaxation dynamics. Although,

a straight comparison between the present systems of mono-

disperse platelets and the binary mixtures of rods of Ref. 72 is not

always feasible, we will identify and discuss some common

features throughout this paper. To our knowledge, although

understanding the dynamics of CLCDs is of fundamental and

technological importance, the present contribution represents

the first attempt to disclose the physics behind the long-time

structural relaxation decay of CLCDs. Additionally, given that

the difference between the Brownian motion of colloids and the

ballistic motion of molecules at very short time scales is unim-

portant for their long-time dynamics, as several simulation

studies pointed out,81–83 our conclusions on the structural relax-

ation of hard colloidal CLCDs are still valid for their molecular

counterparts. We note that the relaxation dynamics of hard

platelets has recently been investigated by Bier and van Roij

applying a dynamic density functional theory.84 These authors

studied the formation of dense elongated clusters of infinitely

thin square cuboids under the influence of an external potential,

but limited their analysis to the isotropic phase. In this paper, we

investigate the heterogeneous inter-column dynamics in CLCDs

of OHSCs and the associated non-Gaussian behavior due to the

presence of periodic barriers and transient cages that hamper and

delay the diffusion of the particles. We observe the typical

characteristics of the rattling-and-hopping diffusion from

a column to another, and those of single-file diffusion85 along the

same column.
2. Model and simulations

The geometrical shape of the OHSC model for discotic particles

is pictured in Fig. 1. It consists of a central cylindrical body, with

diameter s and height L, surrounded by a toroidal rim with tube

radius L/2. Therefore, the overall diameter of the OHSC is given

by D ¼ s + L. The aspect ratio, L* ¼ L/D, is the only relevant

geometric parameter which rules the phase behavior and the

dynamics of these systems, along with the packing fraction h ¼
Nv0/V, where V is the volume of the system, N the number of
This journal is ª The Royal Society of Chemistry 2011
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Fig. 1 Side view (left) and top view (right) of an oblate spherocylinder

with diameter D and thickness L. The diameter of the cylindrical body is

s h D � L.
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particles, and v0 ¼ p/6[L*3 + (3p/4)L*2(1 � L*) + (3/2)(1 �
L*2)L*]D3 their molecular volume.86

A preliminary study explored recently the phase behavior of

systems containing OHSCs by direct MC simulations73 and

subsequently the phase diagram has been determined using free

energy calculations.79,80 The phase diagram of OHSC as obtained

from free-energy calculations is shown in Fig. 2. It shows features

analogous to the CS phase diagram,78,87 with isotropic (I),

nematic (Nem), columnar (Col), and crystal (K) phases.

However, due to the particle shape, the CS and OHSC phase

diagrams deviate from each other in some relevant aspects. In

fact, OHSCs do not show a stable cubatic phase, observed for cut

spheres,78 and they may assemble in two stable crystal structures

instead of one. More specifically, for 0 # L* # 0.3, a stable Col

phase is observed, which transforms into a tilted crystal phase

(Kt) at high pressures. The second crystal phase, Ka, is observed

for L* > 0.45 and consists of perfectly aligned particles. The Col

phase melts into a Nem phase for aspect ratios L* # 0.1, and into

an I phase for 0.1 < L* < 0.3. For L* > 0.3, the Col phase is not

stable and the I phase first transforms into a Kt and, at higher

aspect ratios, into a Ka phase.79,80
Fig. 2 Phase diagram of oblate hard spherocylinders in packing fraction

(h) versus length-to-diameter ratio (L*) as obtained by free-energy

calculations from Ref. 79,80. I, Nem, Col, Kt, and Ka indicate the

isotropic, nematic, columnar, tilted crystal, and aligned crystal phases,

respectively. The light-shaded area denotes a two-phase coexistence

region, whereas the dark-shaded area contains inaccessible state points

which lie above the close packing line. In the inset, we show the nine state

points studied in this paper (red squares).

This journal is ª The Royal Society of Chemistry 2011
The focus of the present paper is on the relaxation dynamics in

the Col phase of OHSCs. We performed Monte Carlo (MC)

simulations in a cuboidal box of volume V with periodic

boundary conditions. Our systems with L* ¼ 0.1, 0.2, and 0.3

consist of N ¼ 3840, 1792, and 1280 particles, respectively, to

allow an integer number of columns to fit in a box of similar

length along the three dimensions. To equilibrate the columnar

phases, we expanded the system from an ordered crystalline

phase in the constant-pressure ensemble. Each MC cycle con-

sisted of N attempts to displace and/or rotate randomly selected

particles, plus an attempt to anisotropically change the box

volume at constant pressure P* ¼ bPD3, with b ¼ 1/kBT, kB the

Boltzmann constant and T the temperature. As usually, trans-

lational and rotational moves were accepted if no overlap was

detected. The overlap check is based on the computation of the

distance between OHSCs, which implies to estimate the distance

between two-dimensional flat disks. This mathematical problem

has been addressed by several authors in the last three

decades.73,86,88,89 Here, we apply the algorithm proposed by

Cuetos and Mart�ınez-Haya, which extends those proposed by

Wojcik and Gubbins,86 and later by Almohamad and Selim.89

We refer the interested reader to the Appendix of Ref. 73 for

technical details.

The systems were considered at equilibrium when the packing

fraction achieved a steady value within the statistical fluctua-

tions. The equilibrated configurations were used to examine the

relaxation dynamics by performing MC simulations in the iso-

choric-isothermal (NVT) ensemble. The volume was kept

constant to prevent unphysical collective moves which would not

reproduce rigorously the stochastic Brownian motion of the

particles. In this case, one MC cycle, which we set as unit of time,

only consisted of N attempts to displace and/or rotate particles.

Time scales can be easily converted in units of the short-time

diffusion coefficients which we will calculate below for the

systems of interest. It is worth noting that the short-time diffu-

sion coefficients for micron-sized colloidal disks is DS � 1 mm2/s

and for molecular discotic mesogens DS � 100 mm2/s. The time

scale, that we probe here, corresponding to 107 MC cycles, is of

the order of 10�1 s for colloidal disks and 10 s for molecular

discotic platelets. Moreover, due to the relevant density of the

columnar mesophases studied here, we can safely neglect the

contribution of hydrodynamics with respect to the excluded

volume interactions, as observed in colloidal suspensions of rod-

like particles.90

Standard MC simulations have been applied to mimic the

rattling-and-jumping diffusion of prolate hard spherocylinders

(PHSCs) in smectic69–71 and columnar72 liquid crystal phases.

Moreover, they were shown to be very efficient to investigate the

slow relaxation dynamics in glasses.91,92 In all these studies, the

average length scale of elementary moves is determined by fixing

the maximum step size, dRmax. This is usually chosen according

to (i) a reasonable CPU time per simulation run, (ii) a satisfying

acceptance rate, and (iii) an adequate description of the

Brownian motion of colloidal particles suspended in a fluid.

However, although the short-time dynamics could be missed if

dRmax is chosen too big, any reasonable and convenient choice of

dRmax should not affect the dynamics at long time scales. We

checked that, apart from an overall scaling of the time-lengths,

this was indeed the case. In systems of anisotropic particles,
Soft Matter, 2011, 7, 3533–3545 | 3535
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where the shape has a direct effect on the short-time diffusion,

dRmax is better decoupled into two terms: dRt
maxand dRkmax, which

refer to the inter-column and in-column displacements, respec-

tively. The ratio between these two terms must satisfy the

following relation:

dRt
max

dR
k
max

¼
ffiffiffiffiffiffiffiffi
Dt

S

D
k
S

s
; (1)

where Dt
S and DkS are the short-time diffusion coefficients of the

OHSC in the direction perpendicular and parallel to its short

axis, respectively. To our knowledge, there are no available

expressions for the self-diffusion coefficients of OHSCs. There-

fore, we make use of the analytical expressions proposed for

oblate ellipsoids,93,94 which were more recently applied to inves-

tigate the Brownian dynamics of colloidal suspensions of

Laponite clay platelets.95 We argue that possible deviations given

by the difference in shape of the two discotic particles are

negligible, such that the ratio between the short-time diffusion

coefficients reads95:

Dt
S

D
k
S

¼ 1

2

ð3v2 � 2Þl� 1

ðv2 � 2Þlþ 1
; (2)

where v ¼ 1/L* and l ¼
�
v2 � 1

��1=2
arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 1
p �

. The

relative values of the self-diffusion coefficients and maximum

step sizes are given in Table 1.

The ratio between the short-time rotational diffusion coeffi-

cients, computed by applying similar analytical expressions as

those of eqn (2),95 is �1 regardless of the particle aspect ratio. As

a consequence, the maximum elementary rotation around the

short axis and that around the direction perpendicular to it can

be assumed to be of the same magnitude, that is dfkmax x dft
max h

dfmax. We simultaneously fixed dRmax and dfmax to yield an

acceptance rate of �50% per translational and rotational move,

respectively.

In order to describe the inter-column diffusion and the long-

time structural relaxation of the columnar phase of OHSCs, we

computed (i) the transverse free-energy barrier, (ii) the self part

of the van Hove correlation function (s-VHF), (iii) the non-

Gaussian parameter (NGP), (iv) the mean square displacement

(MSD), and (v) the self part of the intermediate scattering

function (ISF).
Table 1 Details of the systems that we studied in this paper, consisting of obla
reduced pressures P* ¼ bPD3, and corresponding packing fractions h. For co
diffusion coefficients, Dt

S /DkS, calculated from eqn (2), and that of the maxim
ficients, DkS, in units of s/D2, with s the time unit; the geometric parameter l (s
diffusion coefficients in units of s/D2; and the height of the free-energy barrie

L* 0.100 0.20
l 0.148 0.28
Dt

S /DkS (from eqn (2)) 1.391 1.30
dRt

max/dRkmax 1.179 1.14
(DkSs/D2) � 106 3.062 6.23

P* 104.5 112.5 125.0 59.0
h 0.575 0.600 0.630 0.57
Snem 0.96 0.97 0.98 0.92
(Dt

L s/D2) � 108 — — — 0.58
(DkLs/D2) � 107 0.385 0.152 0.128 1.63
U0/kBT 12.5 19.0 27.0 9.0

3536 | Soft Matter, 2011, 7, 3533–3545
Transverse free-energy barrier

We computed the free-energy barriers from the (relative) prob-

ability p(x,y) of finding a particle at a given position (x,y) in the

direction perpendicular to the director n. This probability is

proportional to the Boltzmann factor, as defined in Ref. 96:

pðx; yÞfexp

�
�Uðx; yÞ

kBT

�
; (3)

where U(x,y) denotes the effective potential for the inter-column

diffusion and the proportionality constant is fixed in such a way

that the minima of the potential are set to zero.
Self-part of the van Hove correlation function

To describe the inter-column rattling-and-jumping diffusion of

the OHSCs, we compute the s-VHF.97 This correlation function

measures the probability distribution for a particle displacement

r after an interval of time t. We separately estimate the s-VHF

along n and in the plane perpendicular to n by evaluating the

functions:

Gks ðz; tÞ ¼
1

N

*XN

j¼1

d
�
z� zjðtþ t0Þ þ zjðt0Þ

�+
(4)

Gt
s ðrt; tÞ ¼

1

N

*XN

j¼1

d
�
rt � rt; jðtþ t0Þ þ rt; jðt0Þ

�+
2p

; (5)

with (rt,j(t),zj(t)) the location of particle j at time t, d the Dirac-

delta, h/i the ensemble average. The index 2p indicates the

average over the polar angle which defines the bidimensional

vector rt. It should be noticed that for freely diffusive particles

these functions are described by a Gaussian.
Non-Gaussian parameter

The NGP gives a quantitative description of the deviations from

Gaussian behavior. It is defined as98

a2ðtÞ ¼
	
r4ðtÞ



ð1þ 2=dÞ

	
r2ðtÞ


2
� 1 (6)
te hard spherocylinders with varying length-to-diameter ratios L*¼ L/D,
mparison, we give the nematic order parameter Snem, the ratio of the self-
um displacements, dRt

max/dRkmax; the short-time in-column diffusion coef-
ee text and eqn (2)); the long-time inter-column, Dt

L , and in-column, DkL,
rs (U0) in units of kBT

0 0.300
0 0.398
7 1.239
3 1.111
9 9.100

65.0 80.0 46.0 50.0 60.0
5 0.600 0.630 0.575 0.600 0.630

0.94 0.95 0.85 0.90 0.91
6 — — 1.988 0.071 —
4 1.429 0.847 4.126 3.308 1.310

13.0 25.0 8.5 12.5 17.5

This journal is ª The Royal Society of Chemistry 2011
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where d ¼ 1 for the longitudinal diffusion along n and d ¼ 2 for

the planar transverse diffusion. Heterogeneous dynamics occurs

on a time scale t, if the NGP deviates from zero.
Self part of the intermediate scattering function

We examine the structural relaxation decay of the density fluc-

tuations by measuring the self-part of the ISF,

Fsðq; tÞ ¼
1

N

*XN

j¼1

exp
h
iq,
�
rjðtþ t0Þ � rjðt0Þ

�i+
; (7)

at the wave vectors (q*
x,q

*
y,0) and (0,0,q*

z), which correspond,

respectively, to the first peak of the structure factor in the

perpendicular and parallel directions to n. In particular, the

transverse and longitudinal relaxations will be given by Ft
s (t) ¼

Fs((q
*
x,q

*
y,0),t) and Fks(t) ¼ Fs((0,0,q*

z),t), respectively.
3. Results

We studied 9 state points of OHSC systems, characterized by the

three packing fractions h¼ 0.575, 0.600, and 0.630, for the aspect

ratios L* ¼ 0.1, 0.2, and 0.3. In Fig. 3, we show equilibrium

configurations of CLCDs with L* ¼ 0.1 (a, b), 0.2 (c, d), and 0.3

(e, f), all at h¼ 0.575. By visual inspection, it appears evident that

the in-column order is higher for the most aspherical particles,

with L* ¼ 0.1, which are significantly more aligned than those
Fig. 3 Top (left) and front (right) views of the columnar phase of oblate

hard spherocylinders with L*¼ 0.1 (a, b), L*¼ 0.2 (c, d), and L*¼ 0.3 (e,

f), at h ¼ 0.575. The gray spheres in the middle show the orientational

distribution of the molecular short axes. The particles assume different

colors according to their orientation.

This journal is ª The Royal Society of Chemistry 2011
with L* ¼ 0.2 or 0.3. For L* ¼ 0.3, we even find small clusters of

particles with orientations perpendicular to the nematic director

n, which is oriented along the longitudinal direction z. This is

confirmed by the computation of the nematic order parameter

defined by the second Legendre polynomial: Snem¼h3(ui$n)2� 1i/2,

where ui is the individual orientation of a particle. Snem quantifies

the longitudinal order of the discotic particles, regardless of the

2D symmetry of the hexagonal lattice. Therefore, it can be

regarded as an in-column order parameter. At h ¼ 0.575, Snem is

equal to 0.96, 0.92, and 0.85, for L* ¼ 0.1, 0.2, and 0.3, respec-

tively. An analogous tendency is also observed at higher packing

fractions (see Table 1). The gradual loss of in-column alignment

with increasing L* is a consequence of the phase behavior of the

OHSC model (see Fig. 2). At L* ¼ 0.1 and h ¼ 0.575, the system

is well-inside its stable Col phase, far from Nem-Col phase

coexistence with the Nem phase, which is located at h x 0.45. By

contrast, the systems containing particles with L* ¼ 0.2 and 0.3,

at the same packing fraction, are just above the I-Col phase

coexistence region or unfortunately inside the two-phase region.

At the time we started the simulations, the I-Col phase bound-

aries were not known. This relevant distinction plays a crucial

role in the inter-column diffusion of the particles, as we will

discuss below. For comparison, it is interesting to note that in

smectic liquid crystals, freely-rotating hard rods diffuse from

a layer to another easier than perfectly aligned hard rods, as

observed in Ref. 71.

The structural order of CLCDs can be better appreciated by

computing the pair correlation functions along the director n and

in the plane perpendicular to it. In Fig. 4 and 5, we give,

respectively, the transverse, gt(rt), and the longitudinal, gk(z),

pair correlation functions for the nine systems of interest. The

inter-column order is neither particularly affected by the shape

anisotropy nor by the packing of the system (see Fig. 4(a, b, c)).

In fact, the location of the peaks of gt follows the hexagonal

arrangement of the particles in the 2D lattice, with a gradual

shifting towards lower rt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
with increasing density,

and it is similar for the three aspect ratios (see also Ref. 73). On

the other hand, the in-column pair correlation functions, gk,

present distinctive features which are coherently linked to the

alignment of the particles into the columns, as detected in Fig. 3.

More specifically, we note periodically peaked positional corre-

lations which persist to long distances and decay slowly to unity

for the denser systems. By contrast, at lower packing fractions,

the correlation length is shorter and gk decays faster to one.

Long-range spatial correlations were previously observed by MC

simulations for aspect ratios 0.2 # L* # 0.5,73 where the authors

distinguished between interdigitated (Dhi), ordered (Dho), and

disordered (Dho) columnar phases, depending on the inter- and

in-column alignment of particles. Free-energy calculations

showed that the Dhi phase is actually a Kt or a Ka phase with

many defects.79 In agreement with the latter results, which set the

Col-Kt transition at h>0.7, we did not determine any sign of

interdigitation at L* ¼ 0.1 and 0.2 for the densities studied here.

In fact, the gk in Fig. 5(a) and 5(b) show peaks at approximately

integer multiples of the particle thickness L*. At L* ¼ 0.3, the

development of a second peak in Fig. 5(c) at approximately

integer multiples of L*/2, which is limited to a relatively short

correlation length, suggests that our systems are very close to the

Kt phase transition, again in agreement with Ref. 79,80.
Soft Matter, 2011, 7, 3533–3545 | 3537
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Fig. 5 Longitudinal pair-correlation function, gk(z), as a function of z,

in columnar liquid crystals of oblate hard spherocylinders with length-to-

diameter ratios L* ¼ 0.1 (a), L* ¼ 0.2(b), and L* ¼ 0.3 (c). The solid,

dashed, and dotted lines refer to the packing fractions h ¼ 0.575, 0.600,

and 0.630, respectively.

Fig. 4 Transverse pair-correlation function, gt(rt), as a function of

rt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, in columnar liquid crystals of oblate hard spherocy-

linders with length-to-diameter ratios L*¼ 0.1 (a), L*¼ 0.2(b), and L*¼
0.3 (c). The solid, dashed, and dotted lines refer to the packing fractions

h ¼ 0.575, 0.600, and 0.630, respectively.
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The 2D hexagonally packed arrangement of the columns

yields an effective periodic potential U(x,y) for the diffusion of

discotic particles from a column to another. This effective

potential, introduced in eqn (3), quantifies the effect of perma-

nent free-energy barriers on the inter-column diffusion, similarly

to what has recently been observed in experiments 96 and simu-

lations69–72 of columnar and smectic liquid crystals. In all these

studies, it was found that to diffuse along the broken 1D

(smectic) or 2D (columnar) symmetry direction, a particle must

overcome a free-energy barrier of the order of a few kBT,

depending mostly on the packing of the system, but also on the

particle anisotropy and on the rotational degrees of freedom. In

Fig. 6, we give a 2D representation of the mean-field effective

potential throughout the transverse direction to the director n.

The blue regions, which overlap with the 2D lattice positions,

denote the minima of the potential, and hence the peak in the

density distribution of the particles. By contrast, the reddish

areas, located in between neighboring columns, indicate the

maxima of the potential, i.e. the unfavorable locations for the

particles. To give an estimate of the height of the barrier as

a function of density and aspect ratio, we show in Fig. 7

a transverse section of the free-energy landscapes obtained from

Fig. 6 and fit the points with the following sinusoidal function:

Uðx; yÞ ¼
Xm

k¼1

Uk

�
sin

prt

h

�2k

(8)
3538 | Soft Matter, 2011, 7, 3533–3545
where m is an integer cut-off, and Uk and h fitting parameters. As

a general tendency, the height of the free-energy barriers

increases from h ¼ 0.575 to h ¼ 0.630 for the three anisotropies

studied here. The particles in the denser state are then much more

confined in the original columns, and their diffusion to other

columns is strongly inhibited. This is especially evident at L* ¼
0.2 and 0.3 as the peak of the barrier increases from�8kBT to the

significantly high value of �25kBT that basically prevents the

inter-column diffusion. Furthermore, we note that at constant

packing fraction, increasing the anisotropy leads to higher free-

energy barriers. At h ¼ 0.600, for instance, the barrier height is

11kBT, 15kBT, and 19kBT, at L* ¼ 0.3, 0.2, and 0.1, respectively.

We conclude that, as observed in columnar mesophases of

calamitic particles,72 both packing and anisotropy have

a remarkable impact on the height of the free-energy barriers.

The inter-column free-energy barriers shed light on the effect

of the transverse hexagonal symmetry of the Col phase on the

diffusion of the discotic particles. More specifically, their

periodic shape provokes and characterizes the rattling-and-

jumping motion of the particles in the 2D lattice. To better

appreciate the effect of the combined action of permanent

barriers and temporary cages on the long-time diffusion, we

exemplarily show in Fig. 8 the planar displacements of N ¼ 1280

particles with L* ¼ 0.3 collected at h ¼ 0.575 from t* h t/s ¼ 10

to t* ¼ 107, with s the time unit. At t* ¼ 10, the platelets are still

very close to their original position, rattling in the cage formed by

the surrounding neighbors. At longer times, they have crossed
This journal is ª The Royal Society of Chemistry 2011
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Fig. 6 Mean-field effective potential U(x,y) in units of kBT for the column-to-column diffusion in systems of oblate hard spherocylinders with length-

to-diameter ratios L* ¼ 0.1, 0.2, and 0.3, from left to right, respectively. The packing fraction is h ¼ 0.575 for the three systems. The black isopotential

lines represent the points in which the potential is equal to a multiple of 2kBT, from 2kBT to 14kBT.

Fig. 7 Transverse section of the mean-field effective potential U(x,y) in

Fig. 6 for the column-to-column diffusion in columnar liquid crystals of

hard oblate spherocylinders with varying length-to-diameter ratios L* and

packing fraction h. From top to bottom: L* ¼ 0.1, 0.2, and 0.3. Circles,

squares, and triangles refer to h¼ 0.575, 0.600, and 0.630, respectively. The

solid lines are fits with m ¼ 5 harmonic modes (see eqn (8)).

Fig. 8 Particle displacements in the planes perpendicular to the nematic

director of N¼ 1280 oblate hard spherocylinders with length-to-diameter

ratio L* ¼ 0.3 at h ¼ 0.575 in the columnar phase, collected at t* ¼ 10

(black points), t* ¼ 106(red), and t* ¼ 107 (green).
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the cage, overcome the barrier and finally, following the hexag-

onal 2D symmetry, jumped to one (at t* ¼ 106) or more (at t* $

107) diameter distances away.

To quantify this discretized rattling-and-jumping diffusion,

which suggests close analogies with the diffusion of hard rods in

smectic70 or columnar72 liquid crystals, we compute the s-VHFs,

defined in eqn (5). In Fig. 9 and 10, we present the longitudinal

and transverse components of the s-VHF at several time decades

for different particle anisotropies at h ¼ 0.575 and 0.600. The
This journal is ª The Royal Society of Chemistry 2011
s-VHF along the director n is in line with our previous results on

columnar mesophases of rod-like particles,72 where small devia-

tions from Gaussianity at short time scales indicate the presence

of particles able to displace rather longer distances than expected

by assuming a Gaussian distribution. This behavior, which

resembles that of the heterogeneous dynamics in out-of-equilib-

rium systems, such as supercooled liquids and gels, is a conse-

quence of the simultaneous presence of slow and fast particles,

and hence of the trapping action of the cage formed by their

surrounding neighbors. However, the weight of the two sets of

particles on the longitudinal dynamics of the system is limited to

a relatively short time interval, and it cancels out at long time

scales where the agreement with the Gaussian fits is excellent.

The longitudinal dynamics of OHSCs significantly diverges from

the behavior in the transverse directions, as we can appreciate in

Fig. 10. In fact, the inter-column s-VHFs are not monotonic, but

periodically peaked functions of rt, and hence deviate signifi-

cantly from Gaussianity. The peaks, located at quasi-quantized

distances of neighboring columns, indicate that a number of
Soft Matter, 2011, 7, 3533–3545 | 3539
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Fig. 9 Longitudinal component of the self-part of the van Hove function,

Gs,k(z,t), of columnar liquid crystals of OHSCs with length-to-diameter

ratios L*¼ 0.1 (a, b), L*¼ 0.2 (c, d), and L*¼ 0.3 (e, f), as a function of z.

The packing fractions are h ¼ 0.575 (left column) and h ¼ 0.600 (right

column). The black, red, green, blue, and orange solid curves refer to the

time scales t*¼ 103, 104, 105, 106, and 107, respectively. The dashed lines are

Gaussian fits. At L*¼ 0.1 and h¼ 0.575, we zoom in on shorter distances

to better appreciate the deviations from Gaussianity (see inset).

Fig. 10 Transverse component of the self-part of the van Hove function,

eqn (5), of columnar liquid crystals of OHSCs with length-to-diameter ratios

L* ¼ 0.1 (a, b), L* ¼ 0.2 (c, d), and L* ¼ 0.3 (e, f), as a function of

rt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The packing fractions are h¼ 0.575 (left column) and h¼

0.600 (right column). The black, red, green, blue, orange, and cyan solid

curves refer to the time scales t*¼ 102, 103, 104, 105, 106, and 107, respectively.
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fast-moving OHSCs have displaced a rather long distance even at

relatively short time scales, whereas the others are still rattling

around their original position. The presence of fast and slow

particles determines the heterogeneous dynamics of the system

and affect its long-time structural relaxation decay. We note that
3540 | Soft Matter, 2011, 7, 3533–3545
the height of the peaks and their number increase with decreasing

pressure and increasing particles anisotropy. This is due to the

distinct phase behavior of the three systems at identical packing

fraction, but different anisotropy, and, more specifically, to the

proximity of the I-Col phase coexistence. As a matter of fact, at

h ¼ 0.575 fast particles with L* ¼ 0.3 have already diffused from

one to another column at t* ¼ 105, whereas at h ¼ 0.600 this has

only taken place at t*¼ 106. It also takes one more decade of time

if the anisotropy is increased to L* ¼ 0.1, at h ¼ 0.575

(Fig. 10(a)). At h ¼ 0.630, for any aspect ratio, the inter-column

diffusion is strongly inhibited, and the profiles of the s-VHFs

(not shown here) are similar to those of Fig. 10(b, d). In these

cases, deviations from Gaussianity are negligible, as the analysis

of the NGPs will show later on. Similar results have been recently

observed in simulations,70,72 theory,99 and experiments96 on

smectic and columnar phases of rods. Additionally, in simula-

tions on the layer-to-layer diffusion of rods in smectics, it was

shown that the fast particles can form string-like clusters which

exhibit collective motion.69,70 We believe that in CLCDs a similar

intriguing scenario might also take place, but a more detailed

analysis on the particle scale is needed to clarify this aspect in

detail.

Deviations from the Gaussian behavior of the VHFs in liquid

crystalline systems have been analyzed by simulations,69–72

experiments,96 and theory99 in terms of the non-Gaussian

parameter, a2(t), defined in eqn (6). The NGPs as measured in

our systems are shown in Fig. 11 and 12 for the longitudinal and

transverse motion, respectively. Due to the fluid-like in-column

behavior, the longitudinal NGPs, a2,z, are essentially negligible

for the whole time range, regardless of the system density or the

particle anisotropy. By contrast, the transverse NGP, a2,xy, is

characterized by two possible scenarios: it may exhibit either

a time-independent behavior as a consequence of the extremely

high permanent barriers which prohibit the diffusion from

column to column, or a time-dependent behavior due to the

transient cage effect of the surrounding particles. In the former

case, the transverse dynamics of the particles is limited to the

space available between adjacent columns, around their original

positions. Due to this uniformly distributed behavior, a2,xy is

constantly zero. We note that, although this result is the same as

that observed for a2,z, the physical interpretation on the particle

scale of this macroscopic observation is rather different in the

two cases. While a2,z is zero because of the absence of permanent

barriers and a relatively weak cage effect, a2,xy is zero because of

significantly high free-energy barriers which practically block the

particles in their cage. In the two cases, all the particles behave

homogeneously and both xy-NGP and z-NGP are identically

zero. If the permanent barriers are smaller, the transverse NGPs

may exhibit a time-dependent behavior due to the transient cage

effect of the surrounding particles. More specifically, a2,xy is

basically zero for t* < 103, when the disks are still rattling around

their original position. For time scales in the range 103 < t* < 104,

a2,xy starts to deviate from zero as a consequence of the varie-

gated dynamical behavior of the particles which can either escape

their cage and diffuse to a neighboring column, or keep on

rattling around the same position. Jumping from a column to

another may take a relatively long time interval, during which the

motion of the discotic particles becomes sub-diffusive. The

deviations from Gaussian behavior increase up to amax
2,xy, the peak
This journal is ª The Royal Society of Chemistry 2011
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Fig. 11 Mean square displacement (open symbols), in units of D2, and

non-Gaussian parameter (solid symbols) along the nematic director, for

systems of oblate hard spherocylinders with length-to-diameter ratios

L* ¼ 0.1 (a), L* ¼ 0.2 (b), and L* ¼ 0.3 (c). Circles, squares, and dia-

monds refer to packing fractions h¼ 0.575, 0.600, and 0.630, respectively.

For comparison, also the results at L* ¼ 0.1 and h ¼ 0.500 are shown

(triangles). Note that the vertical axes of MSDs and NGPs are on the left

and right, respectively.

Fig. 12 Mean square displacement (open symbols), in units of D2, and

non-Gaussian parameter (solid symbols) in the plane perpendicular to the

nematic director, for systems of oblate hard spherocylinders with length-

to-diameter ratios L* ¼ 0.1 (a), L* ¼ 0.2 (b), and L* ¼ 0.3 (c). Circles,

squares, and diamonds refer to packing fractions h ¼ 0.575, 0.600, and

0.630, respectively. For comparison, also the results at L* ¼ 0.1 and h ¼
0.500 (long-time diffusion coefficient Dt

L s/D2 ¼ 8.425 � 10�8) are shown

(triangles). Note that the vertical axes of MSDs and NGPs are on the left

and right, respectively.
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of the NGP, which is located at 105 < t* < 107, depending on the

system, and determines the beginning of the long-time diffusive

regime. From this time on, a2,xy starts to decrease monotonically

to zero indicating the end of the caging effect on most of the

particles, which already jumped away to a different column. For

the same anisotropy, we note that the peak increases with the

density of the system. This phenomenon is explained by

considering that a given particle can escape the trapping cage as

a consequence of the rearrangement of its neighbors, which is

significantly slower at higher densities as more particles are

involved. Furthermore, comparison of the three systems at h ¼
0.575 and 0.600, shows that the degree of non-Gaussianity and

the average life-time of the caging regime, namely the height and

position of amax
2,xy, respectively, increase for the system containing

thinner platelets and higher free-energy barriers. This means

that, as already found in smectic liquid crystals of calamitic

particles,70 increasing the particle anisotropy yields higher free-

energy barriers and more heterogeneous and non-Gaussian

dynamics.

In Fig. 11 and 12, we also plot the longitudinal and transverse

mean square displacements (MSDs), hDz2(t)i and hDx2(t) +

Dy2(t)i, respectively. As a general tendency, the xy-MSD exceeds
This journal is ª The Royal Society of Chemistry 2011
the z-MSD only at short time scales because of the anisotropy of

the short-time diffusion coefficients.93,94 The z-MSD undergoes

a rather smooth crossover from the short- to long-time diffusive

regimes, as typically observed in dense fluids. This slight and

relatively fast change of slope is coherent with the profiles of the

longitudinal s-VHFs shown on Fig. 9, which slightly deviate

from Gaussianity at low-to-moderate time scales. By contrast,

the xy-MSD is characterized by three clearly distinct time

dependences. The short-time dynamics, with the particles still

rattling in their cage, is diffusive, that is hDx2(t) + Dy2(t)if t. At

102 < t* < 103, we detect the formation of a relatively long plateau

which at moderate densities extends up to tmax, the time at which

the xy-NGP reaches the maximum, or, at higher packing frac-

tions, may extend well beyond our simulation times. The plateau

quantifies the time to escape from the trapping cages and char-

acterizes the sub-diffusive behavior of the systems. At tmax, the

xy-MSD becomes linear with time and the long-time diffusive

regime is reached. At the highest packing fraction, h ¼ 0.630, the

free-energy barriers become so high that the sub-diffusive

behavior extends well beyond our simulation time. Additionally,

comparison of the MSDs for different length-to-diameter ratios
Soft Matter, 2011, 7, 3533–3545 | 3541
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shows that, at the same packing fraction, the thicker particles

diffuse faster than the others. This result is consistent with the

height of the free-energy barriers of Fig. 7 and is due to the in-

column arrangement of the particles, which are significantly

more aligned in systems with L* ¼ 0.1. From the MSDs in the

diffusive regime, we computed the longitudinal, DkL, and trans-

verse, Dt
L , long-time diffusion coefficients by applying the

well-known Einstein relation along n and in the direction

perpendicular to it, respectively:100

v
D

Dz2ðtÞ
E

vt
¼ 2D

k
L (9)

and

v
D

Dx2ðtÞ þ Dy2ðtÞ
E

vt
¼ 4Dt

L : (10)

We give the values of the long-time diffusion coefficients in

Table 1 in units of D2/s, allowing a conversion from MC cycles

into a more physical time unit, i. e. in units of D2/DL. The

dynamics of each system is characterized by a diffusion coeffi-

cient in the z direction that decreases with increasing packing

fraction and particle anisotropy. In the xy direction, at the

highest packing fractions the diffusion is strongly inhibited and

no diffusion coefficients are available. In the other cases, we

observe that DkL is significantly larger than Dt
L as a consequence
Fig. 13 Longitudinal self intermediate scattering functions, Fs,z(t), for

systems of oblate hard spherocylinders with length-to-diameter ratios

L*¼ 0.1 (a), L*¼ 0.2 (b), and L*¼ 0.3 (c), evaluated at packing fractions

h ¼ 0.575 (circles), h ¼ 0.600 (squares), and h ¼ 0.630 (triangles). The

black, red, and green solid lines are fits (see text).

Fig. 14 Transverse self intermediate scattering functions, Fs,xy(t), for

systems of oblate hard spherocylinders with length-to-diameter ratios

L*¼ 0.1 (a), L*¼ 0.2 (b), and L*¼ 0.3 (c), evaluated at packing fractions

h ¼ 0.575 (circles), h ¼ 0.600 (squares), and h ¼ 0.630 (triangles). The

black, red, and green dashed lines are Gaussian approximations (see text

for details).

3542 | Soft Matter, 2011, 7, 3533–3545
of the simultaneous action of permanent barriers and temporary

cages.

Additionally, we quantified the long-time structural relaxation

decay by calculating the self-part of the ISFs as defined in eqn (7).

In Fig. 13 and 14, we show the longitudinal, Fs,z(t), and the

transverse, Fs,xy(t), s-ISFs at the wave vectors q ¼ (0,0,qz) and

(qx,qy,0), respectively, corresponding to the main peaks of the

static structure factor. In particular, we found that

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

x þ q2
y

q
x7 and Lqz x 5.0 for the nine systems studied, with

a negligible dependence on the density. We immediately notice

two main features which distinguish the longitudinal and

transverse structural relaxation regardless of the length-to-

diameter ratio: (i) the in-column structural relaxation is several

orders of magnitude faster than the inter-column relaxation;

and (ii), whereas the Fs,z(t) decays in a single step, three

different time-dependent regimes are observed in the relaxation

of Fs,xy(t). More specifically, Fs,z(t) decays very fast to zero

with a slightly stretched exponential decay, as expected for

dense liquidlike dynamics and already found in our previous

studies on rod-like particles.70–72 By contrast, the inter-column

relaxation decay develops into two steps separated by

a plateau, which denotes the average life-time of the caging

effect. During the short-time decay, which is quite fast, the

particles are free to rattle around their original positions inside

a temporary cage composed by surrounding particles. At this

stage, Fs,xy(t) decays exponentially towards the plateau whose
This journal is ª The Royal Society of Chemistry 2011
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height and temporal extension increase with increasing packing

of the system and/or particle anisotropy. At longer time scales,

a second decay, which is correlated to the escape from the

transient cages, should lead the systems to the structural

relaxation. However, due to the significantly long time scales

and high densities involved, we are not able to quantify the

long-time relaxation decay, which takes more than 7 time

decades. For comparison, we also plot the Gaussian approxi-

mation FG
s;xyðtÞ ¼ exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

x þ q2
y

q
,
	
Dx2ðtÞ þ Dy2ðtÞ


�
, which

fits very well the s-ISFs at short time scales, but may

substantially underestimate the time-extension of the plateau

and the second decay of the structural relaxation. This result is

particularly evident in the system containing particles with L*

¼ 0.3 at h ¼ 0.575 (Fig. 14(c)), where the Gaussian fit would

predict the complete structural relaxation in the time interval

106 < t* < 107, whereas our full calculations show a longer time

scale for the relaxation to take place.
4. Conclusions

In summary, we performed the first Monte Carlo simulations of

the long-time relaxation dynamics of oblate hard spherocylinders

in columnar liquid crystal phases. These model systems represent

a valuable reference to understand the behavior of discotic

particles on molecular or colloidal scale. The structural order of

the columnar mesophase has been studied by computing pair-

correlation functions, which, at high pressures, indicate the

formation of long-range longitudinal spatial correlations. The

transverse order is hexagonal with a very weak dependence on

particle anisotropy and packing of the systems. The short and

long-range effect of, respectively, temporary cages and perma-

nent barriers make the column-to-column diffusion rather slow

or, at high densities, even completely inhibited. While the caging

is due to the mutual trapping action of neighboring particles, the

presence of the permanent barriers is associated with the crystal-

like arrangement of the 2D hexagonal lattice in the direction

perpendicular to the nematic director. We estimate the average

life-time of the trapping cages, which extends at least for two time

decades, and the height of the permanent barriers, characterized

by a mean-field periodic potential. In analogy with previous

studies on columnar and smectic liquid crystals of calamitic

particles, the height of these barriers increases with density and/

or with particle anisotropy. More specifically, the higher the

barrier, the more discretized the transverse diffusion of the

particles which are essentially not allowed to occupy inter-

column positions. We find significantly demanding barriers, with

peaks over 25kBT, at the highest packing fractions and aniso-

tropies, which practically prevent the inter-column diffusion and

constrain the particles to rattle around their position in the plane.

By contrast, less dense systems with higher length-to-diameter

ratios show more favorable free-energy landscapes with barriers

in the order of a few kBT.

While the in-column diffusion is that typical of a dense liquid

with a relatively fast exponential relaxation decay, the rattling-

and-jumping dynamics from column to column evolves along

three separate time regimes. At very short times, the discotic

particles freely diffuse in the cage formed by their nearest

neighbors. At this stage, the system shows a Gaussian behavior
This journal is ª The Royal Society of Chemistry 2011
with a linear mean square displacement and a fast exponential

decay of the correlation functions. As soon as the particles feel

the presence of their surrounding cage, the diffusion slows down

significantly, deviations from Gaussianity are observed, and both

mean square displacement and intermediate scattering function

develop a plateau whose time extension increases with density

and/or particle anisotropy. As time passes, an increasing number

of particles jumps from a column to another, hence contributing

to recover a homogeneous dynamics which results into a second

diffusive regime. At the beginning of the long-time diffusion,

which indicates the end of the cage regime, the deviations from

Gaussian behavior start to decrease and go exponentially to zero.

At high densities, the plateau may extend beyond our simulation

time and no significant diffusion over the trapping cages is

observed.

Finally, we have shown that the column-to-column diffusion

can be strongly inhibited at high packing fractions. We believe

that this result is of key importance for those applications where

the hopping-type dynamics of the platelets might be unfavorable

for the longitudinal charge transport through columns. Further-

more, the relatively fast dynamics along the director, especially in

the proximity of the nematic or isotropic phase transition, may

contribute to speed up the self-healing of structural defects, which

may strongly limit the performance of columnar liquid crystals as

semiconductors in a variety of devices.
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