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Crystal nucleation in binary hard-sphere mixtures: the effect of

order parameter on the cluster composition

Ran Niy, Frank Smallenburgy, Laura Filion and Marjolein Dijkstra*

Soft Condensed Matter, Debye Institute for NanoMaterials Science, Utrecht University,
Princetonplein 5, 3584 CC, Utrecht, The Netherlands

(Received 21 November 2010; final version received 18 December 2010)

We study crystal nucleation in a binary mixture of hard spheres and investigate the composition and size of the
(non)critical clusters using Monte Carlo simulations. In order to study nucleation of a crystal phase in computer
simulations, a one-dimensional order parameter is usually defined to identify the solid phase from the
supersaturated fluid phase. We show that the choice of order parameter can strongly influence the composition of
noncritical clusters due to the projection of the Gibbs free-energy landscape in the two-dimensional composition
plane onto a one-dimensional order parameter. On the other hand, the critical cluster is independent of the choice
of the order parameter, due to the geometrical properties of the saddle point in the free-energy landscape, which
is invariant under coordinate transformation. We investigate the effect of the order parameter on the cluster
composition for nucleation of a substitutional solid solution in a simple toy model of identical hard spheres but
tagged with different colours and for nucleation of an interstitial solid solution in a binary hard-sphere mixture
with a diameter ratio q¼ 0.3. In both cases, we find that the composition of noncritical clusters depends on the
order parameter choice, but are well explained by the predictions from classical nucleation theory. More
importantly, we find that the properties of the critical cluster do not depend on the order parameter choice.

Keywords: nucleation; computer simulation; binary mixtures; colloids; hard spheres

1. Introduction

The process of nucleation in colloidal systems has
attracted significant attention in recent years, both in
experimental and simulation studies. The framework
with which phenomena like these have been described
traditionally is classical nucleation theory (CNT),
which is based on the notion that a thermal fluctuation
spontaneously generates a small droplet of the ther-
modynamically stable phase into the bulk of the
metastable phase. In CNT as developed by Volmer
[1], Becker [2], and Zeldovich [3], the free energy of
formation of small nuclei of the new phase in the
parent phase is described by using the ‘capillary
approximation’, i.e. the free energy to form a cluster
of the new phase relative to the homogeneous meta-
stable phase is described by their difference in bulk free
energy and a surface free-energy term that is given by
that of a planar interface between the two coexisting
phases at the same temperature. Thus the droplet is
assumed to be separated from the metastable bulk by a
sharp step-like interface in CNT. The bulk free-energy
term is proportional to the volume of the droplet and

represents the driving force to form the new phase,
while the surface free-energy cost to create an interface
is proportional to the surface area of the cluster.
Hence, small droplets with a large surface-to-volume
ratio have a large probability to dissolve, while
droplets that exceed a critical size and cross the free-
energy barrier, can grow further to form the new stable
bulk phase.

CNT has successfully explained simulation results
for the nucleation of spherical particles, such as the
fluid–solid and gas–liquid nucleation in Lennard-Jones
systems [4–6] and crystal nucleation of hard spheres
[7,8]. A modified CNT has been used to explain the
nucleation of anisotropic clusters of the nematic or
solid phase (also called tactoids) from a supersaturated
isotropic phase of colloidal hard rods [9–11] and the
nucleation of 2D assemblies of attractive rods [12,13].
This state of affairs should be contrasted with the case
of binary nucleation for which various nucleation
theories have been developed that differ substantially
in the way they describe the composition of the cluster
[14–16]. For instance, Reiss assumed the surface
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tension to be independent of composition [14], while
Doyle extended CNT by taking into account a surface
tension that depends on the cluster composition [17].
However, more than 20 years later, it was shown by
Renninger [18], Wilemski [19,20], and Reiss [21] that
Doyle’s derivation leads to thermodynamic inconsis-
tencies. A revised thermodynamically consistent clas-
sical binary nucleation theory was developed by
Wilemski in which the composition of the surface
layer and the interior of the cluster could vary
independently [19,20]. However, in the case of strong
surface enrichment effects, this approach can lead to
unphysical negative particle numbers in the critical
clusters [22,23]. In addition, it was shown in [24] that
the derivation by Wilemski starts off with the wrong
equations, but the resulting equations are correct.
Moreover, binary nucleation can be accompanied with
huge fractionation effects, i.e. the compositions of the
metastable phase and of the phase to be nucleated can
differ enormously from the compositions of the two
coexisting bulk phases. It is therefore unclear (i) how
to determine the surface free-energy term for a cluster,
which is in quasi-equilibrium with a metastable parent
phase with a composition that is very different from
those of the two coexisting bulk phases, (ii) whether
the interfacial tension depends on composition,
curvature, and surface enrichment effects, and finally
(iii) whether or not one can use the capillary approx-
imation in the first place to describe binary nucleation
in systems where fractionation and surface activity
of the species are important. To summarize, there is
no straightforward generalization to multicomponent
systems of classical nucleation theory that is
thermodynamically consistent, does not lead to
unphysical effects, and can be applied to small
nuclei [16,25].

Numerical studies may shed light on this issue, as
the nucleation barrier can be determined directly in
computer simulations using the umbrella sampling
technique [26,27]. In this method, an order parameter
is chosen and configuration averages for sequential
values of the order parameter are taken. While this
makes it possible to measure properties of clusters with
specific values for the order parameter, it should be
noted that the results can depend on the choice of
order parameter. In the present paper, we investigate
whether the size and composition of (non)critical
clusters can be affected by the order parameter
choice employed in simulation studies of multicompo-
nent nucleation. For simplicity, we focus here on
crystal nucleation in binary hard-sphere mixtures,
where surface activity of the species can be neglected,
and we assume the surface tension to be composition
independent. The paper is organized as follows.

In Section 2, we describe the general nucleation

theorem as derived by Oxtoby and Kashchiev [16],

which does not rely on the ‘capillary approximation’

and can even be employed to describe small clusters.

Starting from the multicomponent nucleation theorem,

it is straightforward to reproduce the usual CNT for

binary nucleation, which is the focus in the remainder
of the paper. In Sections 3 and 4, we define the

(Landau) free energy as a function of an order

parameter, and we describe the order parameter that

is employed to study crystal nucleation. Additionally,

we discuss the effect of order parameter choice on the

nucleation barrier in more detail. We present results

for binary nucleation for a simple toy model of hard
spheres in Section 5, and subsequently, we study the

nucleation of an interstitial solid solution in an

asymmetric binary hard-sphere mixture in Section 6.

2. Classical nucleation theory for multi-component

systems

We study the formation of a multicomponent spherical

cluster of the new phase in a supersaturated homoge-

neous bulk phase � consisting of species i ¼ 1, 2, . . . .

We note that the thermodynamic variables correspond-
ing to the metastable phase � are denoted by the

subscript �, whereas those corresponding to the new

phase do not carry an extra subscript to lighten the

notation. We first consider a homogeneous bulk phase

� characterized by an entropy So
� , volume V o

� , and

particle numbers N o
i,� Note that the superscripts denote

the original bulk phase. The internal energy U o
� of the

original bulk phase reads

U o
� ¼ T oSo

� � Po
�V

o
� þ

X
�o
i,�N

o
i,� ð1Þ

with T o the temperature, Po
� the bulk pressure, �o

i,� the

bulk chemical potential of species i, and the summation
runs over all species.

Following the derivation in [16,25], we now con-

sider a spherical cluster of the new phase with a volume

V separated from the original phase by an arbitrarily

chosen Gibbs dividing surface. The volume of the

interface is set to zero, and the particle number of

species i in the cluster is given by Ni þNi,s, where Ni is
the number of particles of species i in a volume V

which is homogeneous in the new bulk phase, and Ni,s

is the surface excess number of particles of species i

that corrects for the difference between a step-like

interfacial density profile and the actual one. The

surface excess number Ni,s depends on the choice of

dividing surface. The internal energy U of the resulting

1214 R. Ni et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
U
t
r
e
c
h
t
]
 
A
t
:
 
0
9
:
1
9
 
1
8
 
M
a
y
 
2
0
1
1



system is then given by

U ¼ TS� þ TS� P�V� � PVþCþ
X

�i,�Ni,�

þ
X

�iNi þ
X

�i,sNi,s, ð2Þ

where P and S denote the bulk pressure and entropy of

the nucleated phase, and �i and �i,s are the chemical

potentials of species i in the new phase and the surface

phase, T is the temperature of the system with the

cluster, and C ¼ CðfNig, fNi,sg,V Þ is the total surface

energy of the spherical cluster. As the volume of the

surface layer is zero, the corresponding pressure is not

defined.
The difference in the appropriate thermodynamic

potential as a function of cluster size depends on the

quantities that are kept fixed during the nucleation

process. If the nucleus is formed at constant temper-

ature and constant total number of particles of each

species i, and if we keep the pressure of the original

phase fixed, then T¼T o, Ni,� þNi þNi,s ¼ N o
i,�, and

P o
� ¼ P�. The corresponding Gibbs free energy of the

initial system G o
� and that of the final system G are

then given by the Legendre transformation

Go
� ¼ U o

� � T oSo
� þ Po

�V
o
� ¼

X
�o
i,�N

o
i,�

G ¼ U� TSþ P o
� ðV� þ V Þ

¼ ðPo
� � PÞV þCþ

X
�i,�Ni,� þ

X
�iNi

þ
X

�i,sNi,s: ð3Þ

If we now assume that the composition of the

metastable phase � remains unchanged and we con-

sider the Maxwell relation

@V�
@Ni,�

� �
T,P�, fNj 6¼i,�g

¼ vi,� ¼
@�i,�

@P�

� �
T,fNi,�g

ð4Þ

with vi,� the partial particle volumes of species i in

phase �, we find that at constant pressure, the chemical

potential for each species i remains constant

� o
i,� ¼ �i,�. Subsequently, we obtain for the change in

Gibbs free energy DG ¼ G� Go
� when a nucleus is

formed in the bulk of the original phase:

DG ¼ ðP o
� � PÞV þCþ

X
ð�iðPÞ � �

o
i,�ðP

o
� ÞÞNi

þ
X
ð�i,s � �

o
i,�ðP

o
� ÞÞNi,s: ð5Þ

Consequently, the Gibbs free energy DG of a growing

cluster depends on the number of particles Ni and Ni,s

in the cluster and the surface energy of the cluster.

Hence, one can define a free-energy surface in the

multi-dimensional composition plane with a saddle

point that corresponds to the critical nucleus [14].

The conditions for the critical cluster read

@DG
@Ni

� �
V, fNj 6¼ig, fNi,sg

¼ 0,

@DG
@Ni,s

� �
V, fNig, fNj 6¼i,sg

¼ 0,

@DG
@V

� �
fNig, fNi,sg

¼ 0:

ð6Þ

To recover the chemical and mechanical equilibrium

conditions, we use the above conditions as well as the

Gibbs–Duhem equation and the Gibbs adsorption

equation. The Gibbs–Duhem equation at constant

temperature for the nucleated bulk phase is

�VdPþ
X

Nid�i ¼ 0, ð7Þ

and the Gibbs adsorption equation for the surface at

constant temperature is

Ad� þ
X

Ni,sd�i,s ¼ 0, ð8Þ

where we have employed C ¼ �A. Note that � denotes

the surface free energy per unit area and A is the

surface area of the cluster. The resulting equilibrium

conditions for all particle species i in the critical cluster,

the surface, and the metastable parent phase are then

given by

��i ðP
�Þ ¼ ��i,s ¼ �

o
i,�ðP

o
� Þ, ð9Þ

and for the pressure difference inside and outside the

droplet we find

P� � P o
� ¼

@��A�

@V�
, ð10Þ

where � denotes quantities associated with a system

where a critical cluster is present. Hence, the compo-

sition of the critical cluster can be determined from

these saddle point conditions.
In order to obtain the usual classical nucleation

theory for multicomponent systems, we assume a

spherical droplet with radius R. Note that the surface

area is then A ¼ 4pR2. In addition, we use the fact that

the volume of a spherical droplet can be expressed in

terms of the partial particle volumes vi of species i:

V ¼
4

3
pR3 ¼

X
Nivi: ð11Þ

Combining this with Equation (10), we arrive at the

generalised Laplace equation:

P� � P o
� ¼

2��

R�
þ

@��

@R�

� �
, ð12Þ
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where the square brackets denote a derivative associ-

ated with the displacement of the dividing surface.

One can now choose the dividing surface so that

@��

@R�

� �
¼ 0, ð13Þ

and hence one recovers the usual Laplace equation.

This choice for the dividing surface, corresponding to a

specific value for R� and ��, is called the surface

tension. In addition, if we use the Gibbs adsorption

isotherm (8) and the Maxwell relation (4) for the bulk

phase of the nucleated cluster, we find for the critical

cluster

d��i,s ¼ d��i ¼ vidP ð14Þ

and

A
@��

@R�

� �
¼ �

X
Ni,svi

@P�

@R�

� �
¼ 0, ð15Þ

which is the condition for a curvature independent

surface tension. Since @P�=@R� 6¼ 0, Equation (15)

implies that the dividing surface has to be chosen

such that

X
Ni,svi ¼ 0, ð16Þ

which is called the equimolar surface, as for one-

component systems Ni,s ¼ 0, i.e. the number of parti-

cles in the cluster equals the number of particles in a

uniform bulk phase with the same volume. It is

generally not possible in a multicomponent system to

choose the dividing surface such that Ni,s ¼ 0 for all

species. Thus, as vi is usually positive, Ni,s 5 0 for at

least one of the species. This may lead to (unphysical)

negative particle numbers when Ni ¼ Ni,s 5 0 as noted

in [22,23]. However, as will be discussed in Sections 5

and 6, there are cases in which the assumption Ni,s ¼ 0

for all i is valid.
If the nucleated phase is assumed to be incom-

pressible, one can integrate the Gibbs–Duhem equa-

tion (7) at constant temperature to arrive at

VðPo
� � PÞ ¼

X
ð�iðP

o
� Þ � �iðPÞÞNi, ð17Þ

and using Equation (5), we find

DG ¼ �Aþ
X
ð�iðP

o
� Þ � �

o
i,�ðP

o
� ÞÞNi

þ
X
ð�i,s � �

o
i,�ðP

o
� ÞÞNi,s: ð18Þ

Again using the Gibbs–Duhem equation at constant

temperature and pressure and the Gibbs adsorption

isotherm, and minimizing the free energy with respect

to Ni at fixed fNi,sg, we recover the Gibbs–Thomson

(also called Kelvin) equations for multi-component

spherical critical clusters

D��i ¼ �
2��vi
R�

, ð19Þ

where D��i ¼ �
�
i ðP

o
� Þ � �

o
i,�ðP

o
� Þ. The radius of the

critical cluster R� and the barrier height DG� read

R� ¼
2��vi

D��i
�� �� , ð20Þ

DG� ¼
4pR�2��

3
¼

16p��3

3ðD��i =viÞ
2
: ð21Þ

Using Equation (20) or the Maxwell relation (4), one

can show:

viD�i ¼ vjD�j, ð22Þ

and the radius of the critical cluster R� can be

expressed in terms of the bulk composition xi ¼

Ni=
P

Ni of the critical cluster and v ¼ V=
P

Ni:

R� ¼
2��vP
xijD��i j

: ð23Þ

In order to study multi-component nucleation, MC

simulations are often performed in the isobaric–

isothermal ensemble, in which the number of particles

N o
1,� and N o

2,�, the pressure of the original bulk phase

P o
� , and the temperature T are kept fixed. One of the

assumptions of classical nucleation theory is that the

composition of the metastable bulk phase remains

constant, while nucleating the new phase, see Equation

(4). In simulations this can only be achieved if the

system is sufficiently large, i.e. the volume of the meta-

stable bulk phase is much larger than that of the

nucleating cluster. Especially, for binary (multicompo-

nent) nucleation, where the composition of the stable

phase is very different from that of the metastable

phase, this can lead to a huge depletion of one of the

components in the metastable fluid phase, and there-

fore a change in composition. In order to circumvent

this problem, simulation studies on binary nucleation

are often carried out in the semi-grand canonical

ensemble [28,29], i.e. the total number of particles

N o
� ¼

P
N o

i,�, the chemical potential difference

D� o
12,� ¼ �

o
2,� � �

o
1,� between the two species, the

pressure Po
� , and the temperature T are kept fixed of

the original bulk phase. The corresponding thermody-

namic potential is obtained by a Legendre

transformation

YðN,D�12,P,TÞ ¼ GðN,N2,P,TÞ �N2D�12: ð24Þ

1216 R. Ni et al.
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Combining Equation (3) with the conditions that the
total number of particles are fixed N o

1,� þN o
2,� ¼

N1 þN2 þN1,� þN2,�, the chemical potential differ-
ence in the metastable phase is kept fixed
D� o

12,� ¼ D�12,�, constant pressure of the metastable
phase P o

� ¼ P� and constant temperature T ¼ T o, we
find for the corresponding thermodynamic potentials

Yo
� ¼ G o

� �N o
2,�D�

o
12,� ¼ �

o
1,�ðN

o
1,� þN o

2,�Þ,

Y ¼ G� ðN2,� þN2ÞD�12,�,

¼ ðPo
� � PÞV þ Fþ �1,�ðN1,� þN2,�Þ

þ �1ðN1 þN2Þ � D�12N2 � D�12,�N2, ð25Þ

where we have set the surface excess numbers Ni,s to
zero. Using the Maxwell equation

@�1

@P

� �
N,D�12,T

¼
@V

@N

� �
D�12,P,T

¼ v, ð26Þ

we find that due to constant pressure, the chemical
potential of species 1 remains unchanged �o

1,� ¼ �1,�.
Hence, we find that the change in free energy due to the
formation of a nucleus DY ¼ Y� Y o

� equals DG as
given in Equation (5) and the nucleation barrier can be
calculated in the semi-grand canonical ensemble.
Similarly, one can show that in any statistical ensemble
(grand canonical, canonical, etc. ), the change in the
corresponding thermodynamic potential as a function
of cluster size is always the same, provided that the
metastable parent phase is sufficiently large. A similar
result was also obtained by Oxtoby and Bob Evans,
who showed that the nucleation free-energy barriers in
the isobaric–isothermal and grand canonical ensemble
are identical, i.e. DG ¼ DO for a one-component
system [30].

3. Free-energy barrier

While nucleation is an inherently non-equilibrium
process, the assumption of local equilibrium is often
made to describe the behaviour of the system during
the nucleation process. In essence, this assumption
states that the nucleus is in quasi-equilibrium with the
parent phase for every cluster size. This is approxi-
mately true if the time required to reach an equilibrium
distribution of clusters is short compared to the time
needed to nucleate. After the system crosses the free-
energy barrier, the cluster of the new phase grows too
rapidly for this assumption to be accurate, but during
the nucleation process itself, local equilibrium has
proven to be a useful assumption.

In order to compute the free-energy barrier that
separates the metastable phase from the stable phase,
an order parameter F (or reaction coordinate) should

be defined that quantifies how much the system has
transformed to the new phase. A common order
parameter that is employed in nucleation studies is
the size of the largest cluster in the system as defined by
a certain cluster criterion. In the present paper, we
restrict ourselves to binary nucleation. From Equation
(18), we find that the Gibbs free energy DG of a
growing binary cluster depends on the number of
particles of species 1 and 2 in the cluster, and hence,
one can define a free-energy surface in the (N1,N2)-
plane with a saddle point that corresponds to the
critical nucleus [14]. By projecting the phase space of
the system onto the (usually) one-dimensional order
parameter, one can define the (Landau) Gibbs free
energy DGðFÞ as a function of this order parameter F

�DGðFÞ ¼ Gc � lnPðFÞ, ð27Þ

where � ¼ 1=kBT, with kB being Boltzmann’s constant
and T being the temperature, Gc is a normalization
constant generally taken to correspond to the free
energy of the homogeneous metastable phase, and
PðFÞ is the probability of observing an order parameter
of value F. In a system of N particles, at fixed pressure
P, and constant temperature T, the probability PðFÞ is
given by:

PðFÞ ¼

R
dV

R
drN exp½��ðUðrNÞ þ PV Þ��ðF� FðrNÞÞR
dV

R
drN exp½��ðUðrNÞ þ PV Þ�

ð28Þ

with V the volume of the system, U the potential
energy, and � the Kronecker delta function. The order
parameter function FðrNÞ is a function that assigns to
each configuration rN of the system a value for the
order parameter. The probability distribution PðFÞ can
be obtained from Monte Carlo (MC) simulations via
the umbrella sampling technique [26,27]. In this
method, an additional external potential Ubias is
added to the system to bias the sampling towards
configurations corresponding to a certain window of
order parameter values centred around Fo. By increas-
ing Fo sequentially, the entire free-energy barrier as a
function of F can be sampled. The typical biasing
potential used in umbrella sampling simulations is
given by:

�Ubiasðr
NÞ ¼ kðFðrNÞ � FoÞ

2, ð29Þ

where the constants k and Fo determine the width and
location of the window, and rN are the positions of all
N particles in the simulation.

4. Order parameter

In order to follow a phase transformation, a cluster
criterion is required that is able to identify the new
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phase from the supersaturated phase. In this paper, we

focus on the formation of a solid cluster in a

supersaturated fluid phase. In order to study crystal

nucleation, the local bond-order parameter is used to

differentiate between liquid-like and solid-like particles

and a cluster algorithm is employed to identify the

solid clusters [5]. In the calculation of the local bond

order parameter a list of ‘neighbours’ is determined for

each particle. The neighbours of particle i include all

particles within a radial distance rc of particle i, and the

total number of neighbours is denoted NbðiÞ. A bond

orientational order parameter ql,mðiÞ for each particle is

then defined as

ql,mðiÞ ¼
1

NbðiÞ

XNbðiÞ

j¼1

Yl,mð�i, j,�i, jÞ, ð30Þ

where Yl,mð�,�Þ are the spherical harmonics, m 2 ½�l, l �

and �i, j and �i, j are the polar and azimuthal angles of

the centre-of-mass distance vector rij ¼ rj � ri with ri
the position vector of particle i. Solid-like particles are

identified as particles for which the number of

connections per particle 	(i) is at least 	c and where

	ðiÞ ¼
XNbðiÞ

j¼1

Hðdlði, j Þ � dcÞ, ð31Þ

H is the Heaviside step function, dc is the dot-product

cutoff, and

dlði, j Þ ¼

Pl
m¼�l ql,mðiÞq

�
l,mð j ÞPl

m¼�l jql,mðiÞj
2

� �1=2 Pl
m¼�l jql,mð j Þj

2
� �1=2 :

ð32Þ

A cluster contains all solid-like particles which have a

solid-like neighbour in the same cluster. Thus each

particle can be a member of only one cluster.
The parameters contained in this algorithm include

the neighbour cutoff rc, the dot-product cutoff dc, the

critical value for the number of solid-like neighbours

	c, and the symmetry index for the bond orientational

order parameter l. The hard-sphere crystals considered

in this paper are expected to have random hexagonal

order, thus the symmetry index is chosen to be 6 in the

present study.
This choice of order parameter F, defined as the

number of solid-like particles in the largest crystalline

cluster, has been used to study crystal nucleation in

various one-component systems, e.g. Lennard-Jones

systems [5], hard-sphere systems [7], and Yukawa

systems [31].
On the other hand, for binary systems, a variety of

crystal structures can appear in the bulk phase

diagram, e.g. substitutionally ordered (superlattice)

crystal structures with varying stoichiometries, substi-
tutionally disordered solid solutions, interstitial solid
solutions, crystalline phases of species 1 with a
dispersed fluid of species 2, etc. Nucleation of a

substitutionally disordered solid solution and a crystal
with the CsCl structure has been studied in a binary
mixture of hard spheres using the total number of
particles in the largest crystalline cluster as an order
parameter, i.e. F ¼ N1 þN2 [28]. This order parameter

has also been employed in a crystal nucleation study of
a substitutionally disordered face-centred cubic crystal
and a crystal with the CsCl structure of oppositely
charged colloids [32], and nucleation of the NaCl salt
crystal from its melt using the symmetry index l¼ 4

instead of l¼ 6 for the bond orientational order
parameter [33]. However, one can also define other
linear combinations of N1 and N2 as an order
parameter. When the partial particle volumes of the
two species are very different, one can employ

the volume of the largest crystalline cluster
F ¼ V ¼ N1v1 þN2v2 as an order parameter. While,
if the crystal structure consists of only one species, say
species 1, with the other species randomly dispersed,
the number of particles of species 1 in the largest

crystalline cluster would be more appropriate to use as
an order parameter F ¼ N1. On the other hand, one
can also use the stoichiometry n of the ABn superlattice
structure to define the order parameter F ¼ N1 þN2=n
in order to prevent a strong bias towards one of the

species. More generally, if the cluster size is measured
by the order parameter F ¼ N1 þ 
N2, the sensitivity
of the order parameter to particles of species 2 can be
tuned via the parameter 
. For 
¼ 1, this corresponds
to the total number of particles in the cluster, while for


¼ 0, this corresponds to the number of particles
of type 1.

As already mentioned above, the umbrella sam-
pling technique is often employed to determine the
probability distribution PðFÞ and the Gibbs free energy
DGðFÞ. To this end, a biasing potential is introduced to

sample configurations with certain values for this order
parameter F. In this paper, we investigate the effect of
the choice of order parameter on the properties of the
clusters during nucleation in a binary mixture of hard
spheres, where we assume that the surface excess

numbers of species i are negligible. Using Equation
(18), we now write down explicitly the change in Gibbs
free energy for binary nucleation

DG ¼ �Aþ D�1N1 þ D�2N2, ð33Þ

where D�i ¼ �iðP
o
� Þ � �

o
i,�ðP

o
� Þ. The Gibbs free energy

DG depends on the particle numbers N1 and N2 and the

1218 R. Ni et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
U
t
r
e
c
h
t
]
 
A
t
:
 
0
9
:
1
9
 
1
8
 
M
a
y
 
2
0
1
1



composition of the critical cluster can be determined
from the saddle point conditions for DG. The free-
energy surface in the two-dimensional composition
plane (N1,N2) is projected in umbrella sampling MC
simulations onto a one-dimensional order parameter,
e.g. F ¼ N1 þ 
N2. Hence, the projected DGðFÞ and
the averaged (or projected) cluster composition of
noncritical clusters both depend on the order
parameter. We note that this is not an artifact of the
umbrella sampling MC simulations, but merely the
projection of a correctly measured equilibrium distri-
bution. To determine the averaged composition of
noncritical spherical clusters with radiusR as a function
of F, we can minimize DG with respect to N2 while
keeping the order parameter F fixed:

@DG
@N2

� �
F
¼ D�2 � 
D�1 þ

2�v1
R
ð!� 
Þ ¼ 0, ð34Þ

where ! ¼ v2=v1. If we use the umbrella sampling
technique in MC simulations to determine the Gibbs
free energy DGðFÞ as a function of F, one can easily
determine the slope of the barrier from the simulations,
which is equal to

dDG
dF
¼ ðD�2 þ

2�v1
R

!Þ
@N2

@F

� �

þ D�1 þ
2�v1
R

� �
@N1

@F

� �
ð35Þ

with

@N1

@F
¼

1� x� 
Nð@x=@FÞ
1� xþ 
x

ð36Þ

@N2

@F
¼

xþNð@x=@FÞ
1� xþ 
x

, ð37Þ

where we define the composition x ¼ N2=N and
N ¼ N1 þN2. Combining Equations (34) and (35)
yields

!D�1 � D�2 ¼ ð!� 
Þ
dDG
dF

: ð38Þ

We wish to make a few remarks here. First, we recover
the Gibbs–Thomson equations for the critical cluster
(19) when we set dDG=dF in Equation (35) to zero, and
we recover Equation (22) from Equation (38) for
critical clusters. Consequently, the size and composi-
tion of the critical cluster are independent of the choice
of 
. This can also be understood from the fact that the
saddle point in the free-energy landscape is invariant
under coordinate transformations. As long as the top
of the nucleation barrier corresponds to this saddle
point, the average properties of the cluster will be
dominated by the configurations around this saddle

point, regardless of the chosen order parameter. While
most reasonable choices of order parameter fulfill this
requirement, it is possible to design order parameters
that shift the top of the barrier away from the saddle
point. In this case, the clusters at the top of the barrier
are noncritical clusters, and rates calculated from the
resulting free energy barrier are unreliable. It is
important to note that a different choice of order
parameter can change the height of the nucleation
barrier, since the barrier height is determined by the
fraction of phase space mapped to the same order
parameter value at the top of the barrier. However, this
effect should be small, as the probability of finding a
cluster at the top of the nucleation barrier is dominated
by the probability of being in the saddle point of the
free-energy landscape. For noncritical clusters, we
clearly find that the slope of the barrier, and hence
the composition of the cluster, depends on the choice
of order parameter via 
. Below, we study the effect of
the choice of order parameter for a simple toy model of
hard spheres and for the nucleation of an interstitial
solid solution in an asymmetric binary hard-sphere
mixture. It is interesting to compare this to past studies
investigating one-component systems with higher-
dimensional order parameters [34,35]. For the
Lennard-Jones system, Moroni et al. have shown that
the number of particles in the cluster alone is insuffi-
cient to provide a good prediction for the probability a
cluster will grow out to a large crystal [34]. Using
a two-dimensional order parameter, they observed a
strong correlation between the crystallinity and the size
of clusters with a 50% probability of growing out.
Specifically, clusters with a large amount of face-
centred-cubic (fcc) ordering require much smaller sizes
to grow out than those with more body-centred-cubic
(bcc) ordering. They found that this correlation was
not visible in the two-dimensional free-energy land-
scape, and argued that the shape and structure of a
nucleus could determine whether it will grow out.
However, we note that the two-dimensional order
parameter is still a projection from a higher-dimen-
sional phase space. Thus, the properties of noncritical
clusters likely depend on the choice of order parameter
as well.

5. A substitutional solid solution

In order to obtain more insight in the effect of order
parameter choice on the cluster composition of
noncritical clusters, we first investigate binary crystal
nucleation in a toy model of hard spheres. Here, we
consider a system consisting of two species of hard
spheres with identical sizes, but tagged with different
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colours, say species 1 is red and species 2 is blue.
Obviously, the stable solid phase to be nucleated is a
substitutional disordered face-centred-cubic (fcc) crys-
tal phase with the red and blue particles randomly
distributed on an fcc lattice. The work in [7,8] showed
that the nucleation barriers for pure hard spheres are
well described by the predictions from classical nucle-
ation theory, where because of the condition of the
equimolar surface, the surface excess number Ns ¼ 0.
It is therefore safe to neglect the surface excess
numbers for the present model as well. In addition, it
is clear that the partial particle volumes vi and volume
per particle v are identical, and ! ¼ v2=v1 ¼ 1. Using
the Gibbs–Thomson equations for a binary critical
cluster (19), we find that the supersaturation
D��1 ¼ D��2 ¼ �2�

�v=R�, and hence the composition
of the critical cluster follows straightforwardly from
the bulk chemical potentials ��1ðP

o
� Þ and �

�
2ðP

o
� Þ, which

depends on the bulk chemical potentials of the original
bulk phase and the supersaturation.

As already mentioned above, the composition of
noncritical clusters depends on the choice of order
parameter, i.e. the projection of the two-dimensional
composition plane onto a one-dimensional order
parameter F. Using Equation (38), we find that for

¼ 1, the composition of noncritical cluster is deter-
mined by the supersaturation D�1 ¼ D�2 and the bulk
chemical potentials of the original bulk phase. For

¼ 0, we only measure the number of particles of one
colour, say red, in the cluster. However, a thermody-
namic average of all clusters with N1 red particles also
includes all post-critical clusters with many blue
particles, and as a result, the order parameter fails to
work for 
¼ 0. For non-zero values of 
, the ensemble
of clusters of each size is well defined, and we can
perform umbrella sampling MC simulations to mea-
sure the average cluster composition.

In order to keep the composition of the metastable
fluid fixed, we perform Monte Carlo simulations on a
binary mixture with N¼ 1000 hard spheres in the semi-
grand canonical ensemble. Both species of hard spheres
are identical in size with diameter �, and are either
tagged red (species 1) or blue (species 2). The simula-
tions were carried out in a cubic box with periodic
boundary conditions and the Metropolis sampling
consists of particle displacements and volume changes,
and attempts to switch the identity (colour) of the
particles. The acceptance rule for the identity swap
moves is determined by the chemical potential differ-
ence D� o

12,� [28,29]. We use the umbrella sampling
technique to determine the nucleation barrier
DY ¼ DG as a function of an order parameter F ¼
N1 þ 
N2, where N1ðN2Þ denotes the number of red
(blue) solid-like particles in the largest crystalline

cluster in the system as determined by the local

bond-order parameter and cluster criterion described

in Section 4 with cutoff radius rc ¼ 1:3�, dot-product
cutoff dc ¼ 0:7, and number of solid bonds 	c � 6. We

first calculate the nucleation barrier for 
¼ 1, for

which the order parameter F is simply the total

number of solid-like particles in the largest cluster.

We set the reduced pressure P� ¼ P o
� �

3=kBT ¼ 17, and

D� o
12,� ¼ 0, which corresponds on average to an

equimolar mixture of red and blue hard spheres for

the metastable fluid phase. We plot the resulting

nucleation barriers DG as a function of F in

Figure 1. We note that the nucleation barrier for


¼ 1 is equivalent to the nucleation barrier for a pure

system of hard spheres [7,8]. In addition, we show the

composition of the largest cluster as a function of F in

Figure 2. We find that the averaged composition

x ¼ N2=N ¼ 0:5 as it should be since D�1 ¼ D�2 and

the bulk chemical potentials of the metastable fluid are

equal �o
1,� ¼ �

o
2,�. Using the binomial coefficients and

the measured one-dimensional free-energy barrier, we

determine the two-dimensional free-energy landscape

DGðN1,N2Þ=kBT ¼ � lnPðN1,N2Þ from the probability

distribution function

PðN1,N2Þ ¼ exp½�DGðN1 þN2Þ=kBT�2
N N

N1

� �
: ð39Þ

Figure 3 presents a contour plot of the two-dimen-

sional free-energy landscape �DGðN1,N2Þ as a function

of N1 and N2. Exemplarily, we also plot isolines for the

order parameter F ¼ N1 þ 
N2 for 
¼ 1 and 0.5 to

show the projection of the two-dimensional composi-

tion plane onto a one-dimensional order parameter.

0 50 100 150 200

2

4

6

8

10

12

G
/k

B
T

0.5

1

Figure 1. Gibbs free energy DGðFÞ=kBT as a function of
order parameter F ¼ N1 þ 
N2 for a binary mixture of red
(species 1) and blue (species 2) hard spheres with equal
diameter � as obtained from umbrella sampling MC simu-
lations at a reduced pressure of P� ¼ P o

� �
3=kBT ¼ 17 with


¼ 1 and 
¼ 0.5.
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In order to check the effect of order parameter

choice in the biasing potential (29) on the nucleation

barrier and the composition of the clusters, we also

calculate the nucleation barrier for 
¼ 0.5 at the same

reduced pressure. We plot the nucleation barrier in

Figure 1 and the averaged composition of the cluster as

a function of F in Figure 2. While the barrier height is
not significantly affected by the choice of order
parameter in the biasing potential, in agreement with
our predictions in Section 4, the critical cluster ‘size’ as
measured by F, i.e. .79 and 96 for 
¼ 0.5 and 1,
respectively, depends on the order parameter choice as
expected. In addition, we determine the theoretical
prediction for the cluster composition using Equation
(38). Using the measured slope of the nucleation
barrier from Figure 1, we obtain the chemical potential
difference D�12ðFÞ of species 1 and 2 in the cluster
from Equation (38). Using Equation (39), we find

PðN1,N2Þ / 2N
N!

N2!ðN�N2Þ!
exp½��N2D�12ðFÞ�

ð40Þ

from which we determine the most probable (or
averaged) composition x ¼ 1� exp½��D�12ðFÞ�. The
theoretical prediction for the composition is plotted in
Figure 2. We find good agreement with the measured
composition, except for very small cluster sizes, where
we do not expect CNT to match our nucleation
barriers. For comparison, we also plot the same
predictions for the nucleation paths in Figure 3. We
clearly observe that the two nucleation paths cross at
the saddle point yielding the same size and composition
of the critical cluster for both order parameters, as

expected.
Finally, we also determine the composition of the

clusters from the steady-state distribution. In systems
where the nucleation of the new phase is measured

directly, either in experiments or simulations, the
measured cluster size distribution corresponds to a
steady-state distribution rather than an equilibrium
distribution. The steady-state distribution observed
during the nucleation process is different from the
equilibrium distribution, as clusters that exceed the
critical cluster size during the steady-state process will
continue to grow further. The steady-state distribution
depends both on the free-energy landscape and the
dynamics of the system, and includes a flux across the
free-energy barrier, whereas the equilibrium distribu-
tion can only be determined by preventing the system
from nucleating, i.e. constraining the maximum cluster
size by e.g. umbrella sampling MC simulations. While
the equilibrium and steady-state distributions are in
good agreement for small cluster sizes, they disagree
strongly for post-critical cluster sizes, i.e. when the
system crosses the free-energy barrier. In particular,
the equilibrium cluster size distribution shows a
minimum corresponding with the maximum in the

free-energy barrier, and the steady-state distribution

0 20 40 60 80 100
0

20

40

60

80

100

N1

N
2

0.5

1

0 kBT

10 kBT

20 kBT

30 kBT

40 kBT

50 kBT

60 kBT

70 kBT

80 kBT

Figure 3. Contour plot of the two-dimensional free-energy
landscape DGðN1,N2Þ=kBT as a function of N1 and N2. We
also plot a few isolines for the order parameter
F ¼ N1 þ 
N2 for 
¼ 0.5 and 1 (dashed lines), and we plot
the nucleation path (solid lines labelled with 
¼ 1 and

¼ 0.5) for the two order parameters that we considered as
predicted by (38). The two nucleation paths cross at the
saddle point corresponding to the critical cluster size.

0 20 40 60 80 100 120 140
0.40

0.45

0.50

0.55

0.60

x

Steady state
Theory

0.5
1

Figure 2. Composition x ¼ N2=N of the largest crystalline
cluster as a function of order parameter F ¼ N1 þ 
N2 for a
binary mixture of red (species 1) and blue (species 2) hard
spheres with equal diameter � as obtained from umbrella
sampling simulations at pressure P� ¼ P o

� �
3=kBT ¼ 17 with


¼ 1 (red circles) and 
¼ 0.5 (green squares). For compar-
ison, we plot the theoretical prediction (38) using the
measured nucleation barrier of Figure 1 (black solid line)
and the composition determined from a steady-state cluster
size distribution for 
¼ 0.5 (blue dashed line). The critical
cluster size is F ’ 79 and 96 for 
¼ 0.5 and 1, respectively.
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generally decreases continuously (even) beyond the
critical cluster size.

We calculate the cluster composition from the
steady-state distribution for our binary mixture of hard
spheres. To this end, we determine the free energy as a
function of cluster size N1 and N2 from Equation (39)
using a fit to the free-energy barrier obtained from
umbrella sampling MC simulations with 
¼ 1. The
dynamics of the cluster are described by the following
rates:

kþ,1N1,N2
¼ 1,

kþ,2N1,N2
¼ 1,

k�,1N1,N2
¼ exp½��ðGðN1 � 1,N2Þ � GðN1,N2ÞÞ�,

k�,2N1,N2
¼ exp½��ðGðN1,N2 � 1Þ � GðN1,N2ÞÞ�:

Here, k
þð�Þ,i
N1,N2

is the rate associated with adding (remov-
ing) a particle of species i to (from) the nucleus
consisting of N1 and N2 particles. Hence, clusters can
only grow or shrink by one particle at a time with a
rate determined by the corresponding free-energy
difference. In order to determine the steady-state
cluster size distribution, we set a limit to the steady-
state distribution by defining a maximum cluster size,
which exceeds the critical cluster size. As a barrier
crossing can be considered as a one-way event,
subsequent nucleation events should start again from
the metastable fluid phase. To this end, we impose that
the addition of an extra particle to a nucleus with this
maximum cluster size falls back to size zero. We note
that this step is not reversible, and results in slightly
modified rates for nuclei with the maximum cluster size
and for clusters of zero size. With the exception of
these steps, the dynamics obey detailed balance.

In order to determine the steady-state distribution,
we set the rate at which clusters of size (N1,N2) are
created to zero. Hence, the flux with which clusters of
size ðN1,N2Þ are created should balance the flux with
which clusters of this size disappear:

PssðN1,N2Þ
X
i

ðkþ,iN1,N2
þk�,iN1,N2

Þ

¼PssðN1þ 1,N2Þk
�,1
N1þ1,N2

þPssðN1� 1,N2Þk
þ,1
N1�1,N2

þPssðN1,N2þ 1Þk�,2N1,N2þ1
þPssðN1,N2� 1Þkþ,2N1,N2�1

:

Here, PssðN1,N2Þ denotes the steady-state cluster size
distribution. The equations for cluster size zero and the
maximum cluster size are slightly different due to a flux
of clusters from maximum to zero cluster size. By
solving this set of linear equations numerically, we
obtain the steady-state distribution. Subsequently, the
average cluster composition can be obtained from the
steady-state distribution by averaging over clusters

with equal F ¼ N1 þ 
N2. The resulting cluster com-
position is shown in Figure 2 for 
¼ 0.5. Since the two-
dimensional steady-state cluster size distribution,
which is symmetric in N1 and N2 decreases monoton-
ically with cluster size, the resulting projected compo-
sition is always lower than 0.5 and matches well with
the cluster compositions obtained from umbrella
sampling MC simulations and the theoretical predic-
tion, except at small cluster sizes as expected.
Moreover, in the limit of large (post-critical) clusters,
the cluster growth rate approaches a constant for the
current choice of dynamics, resulting in a nearly flat
steady-state cluster size distribution and a cluster
composition of 0.5.

In conclusion, we have shown using a simple model
for a binary mixture of hard spheres that the compo-
sition of the critical cluster does not depend on the
choice of order parameter, while the composition of
noncritical clusters is affected by the order parameter.
This is a direct consequence of the projection of the
two-dimensional free-energy landscape onto a one-
dimensional order parameter, say F ¼ N1 þ 
N2,
which influences directly the projected (Landau)
DGðFÞ and the averaged (or projected) cluster compo-
sition. Moreover, as the umbrella sampling method
allows us to equilibrate the system for various values of
the order parameter, the system can be regarded to be
in local equilibrium for each value of the order
parameter. The nucleation paths that the system then
follows remain close to the minimum free-energy path
(see Figure 3), and thus the height of the nucleation
barrier is largely unaffected by the choice of order
parameter.

6. An interstitial solid solution

We consider crystal nucleation of an interstitial solid
solution in a highly asymmetric binary mixture of large
and small hard spheres with size ratio q ¼ �2=�1 ¼ 0:3,
where �1ð2Þ denotes the diameter of species 1 (large
spheres) and 2 (small spheres). The interstitial solid
solution consists of a face-centred-cubic crystal phase
of large spheres with a random occupancy of the
octahedral holes by small spheres, and hence the
composition of the interstitial solid solution can vary
from x ¼ N2=N 2 ½0, 1� [36]. As the volume of this solid
phase is not largely affected by the density of small
spheres, we set the partial particle volume v2 and
! ¼ v2=v1 to zero. Using Equation (38), we find the
following relation if the system is in local equilibrium
at fixed order parameter F ¼ N1 þ 
N2

D�2 ¼ 

dDG
dF

: ð41Þ
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for 
¼ 0, the order parameter F ¼ N1 measures only
the large spheres in the cluster, and the cluster
composition of both critical and noncritical clusters
is determined by the chemical equilibrium condition
for the small spheres in the cluster and the metastable
fluid phase, i.e. D�2 ¼ 0. For 
¼ 1, when all particles
in the clusters are counted by the order parameter
F ¼ N1 þN2, the composition of precritical clusters
will have a higher density of small particles compared
to the chemical equilibrium condition for the small
particles in the cluster and the metastable fluid phase,
as the slope of the nucleation barrier is positive, and
similarly post-critical clusters will have a lower density
of small particles. For both order parameters, we find
that the critical cluster satisfies the Gibbs–Thomson
equation (19), and thus for a partial particle volume
v2¼ 0, we obtain chemical equilibrium for the small
particles in the critical cluster and the fluid phase
independent of the order parameter choice.

As the composition and size of the critical cluster
are not affected by the choice of order parameter, we
set 
¼ 0 in order to investigate whether or not we
observe diffusive equilibrium for species 2 for all
noncritical clusters. To keep the composition of the
fluid fixed, it would be convenient to use again Monte
Carlo simulations in the semi-grand canonical
(NPT� D�12,�) ensemble. However, the acceptance
probability of changing small spheres into large
spheres is extremely small, which makes the equilibra-
tion time of the simulation prohibitively long, even
when we use the augmented semi-grand ensemble
presented in [28], where the diameter of the particles is
changed gradually in different stages. In order to solve
this problem, we determine the free-energy barrier
using the umbrella sampling technique in isothermal–
isobaric MC simulations, in which the pressure P o

� , the
temperature T, and the particle numbers N o

1,� and N o
2,�

are kept fixed of the original metastable bulk phase.
We perform successive simulations for each window,
but in such a way that the composition
x o
� ¼ N2,�=ðN

o
1,� þN o

2,�Þ of the metastable fluid phase
is on average kept fixed during the growth of the
nucleus. To this end, we first measure the instanta-
neous composition x� of the fluid phase in the initial
configuration for the successive umbrella sampling
windows centred around a new order parameter value
F. If the composition of the fluid has changed more
than 0.1%, we resize random particles in the fluid
phase during an equilibration run until the fluid phase
reaches its original composition x o

� . We then start the
production run to measure the probability distribution
function PðFÞ and the corresponding part of the free-
energy barrier in a normal isobaric–isothermal MC
simulation. We assume that the composition of the

fluid phase during MC simulations of a single umbrella
sampling window does not change significantly, since
the cluster size is approximately constant. In order to
determine the composition of the fluid phase, we first
determine the largest crystalline cluster in the system
by using the local bond-order parameter and cluster
criterion as described in Section 4 with cutoff radius
rc ¼ 1:3�1, dot-product cutoff dc ¼ 0:7, and number of
solid bonds 	c � 6. The composition of the fluid is
defined as x� ¼ ðN

o
2,� �N2Þ=ðN

o
2,� þNo

1,� �N2 �N1Þ

where N1 is the number of large spheres in the cluster
and N2 is the number of small spheres which have at
least six neighbours of large spheres in the cluster
within cut-off distance 1:1�1. N

o
1,� and N o

2,� denote the
total number of large and small spheres in the MC
simulation.

In addition, we determine the composition of the
solid nucleus x ¼ N2=N. In order to avoid surface
effects and defects in the crystal structure of the solid
nucleus, we determine the fraction of octahedral holes
that is occupied by a small sphere in the fcc lattice of
the large spheres in the solid cluster. An octahedral
hole is defined as a set of six large particles, where each
particle is a neighbour of four other particles in the
same set, and the octahedral hole is occupied by a
small particle if all six large particles are within a cutoff
radius of 0:22�1 of the centre-of-mass of this small
sphere.

We first determine the nucleation barrier in a
normal N o

1,�N
o
2,�P

o
�T MC simulation using the

umbrella sampling technique for system sizes
N o
� ¼ N o

1,� þN o
2,� ¼ 3000, 6000, and 9000 particles.

The initial fluid composition is set to x o
� ¼ 0:5 and

reduced pressure P� ¼ �P o
� �

3
1 ¼ 25. We plot the Gibbs

free energy DG=kBT as a function of the number of
large spheres N1 in the largest crystalline cluster in
Figure 4. We observe that the nucleation barrier height
and critical cluster size decreases upon increasing
system size. This can be explained by a change in the
composition of the metastable fluid phase during
the growth of a crystalline cluster. In Figure 5, we
plot the composition of the metastable fluid phase as a
function of the cluster size N1 for the various system
sizes. We clearly find that the fluid composition
changes significantly during the growth of a solid
nucleus for smaller system sizes. In order to corrobo-
rate this result, we perform umbrella sampling MC
simulations in which the composition of the metastable
fluid phase is kept fixed in each successive umbrella
sampling window using the method as described above.
The composition of the fluid phase is indeed kept fixed
by this method as shown in Figure 5. The nucleation
barrier as obtained by fixing the composition of the
metastable fluid phase is presented in Figure 4. As the
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nucleation barrier calculated at fixed fluid composition
should correspond to an infinitely large system size, we
plot the barrier heights DG�=kBT as a function of 1=No

�

with N o
� ¼ N o

1,� þN o
2,�. We find that the barrier height

depends linearly on 1=N o
� within error bars. Moreover,

extrapolating the barrier heights obtained from
N o

1,�N
o
2,�P

o
�T MC simulations to the thermodynamic

limit, we find that the finite-size corrected barrier
height agrees well within error bars with the barrier
height determined from umbrella sampling MC simu-
lations with fixed fluid composition corresponding to
an infinitely large system size. In addition, we plot the
composition of the solid cluster as a function of cluster
size N1 in Figure 5, and we find no strong dependence
of the cluster composition on system size.

Finally, we determine the composition of (non)crit-
ical clusters for the nucleation of the interstitial solid
solution for four different fluid compositions
x o
� ¼ 0:2, 0:5, 0:7 and 0.8 at state points well inside

the fluid–solid coexistence region using umbrella sam-
pling MC simulations with fixed fluid composition and
system size N o

� ¼ 3000. Following [28], the ‘supercool-
ing’ was kept fixed, i.e. P o

� =P
�
coex ¼ 1:2, where P�coex is

the pressure at the bulk fluid–solid coexistence at the
corresponding fluid composition. We note however
that these state points correspond to different values
for the supersaturation, and can therefore lead to
significantly different barrier heights. We determine
the Gibbs free-energy barrier and the cluster compo-
sition as a function of cluster size N1 using umbrella
sampling MC simulations, and plot the results in
Figures 6 and 7 for the four different fluid compositions.

In Figure 7, the dashed lines indicate the compositions
predicted by Equation (41) with 
¼ 0, i.e. chemical
equilibrium for species 2 in the clusters and the
metastable fluid phase. For comparison, we also plot
the composition of the coexisting solid phase at P o

� .
We clearly observe that the measured cluster composi-
tions obtained from umbrella sampling MC simula-
tions are in good agreement with the predictions
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Figure 5. The composition of the largest crystalline cluster
x ¼ N2=N (top) and the metastable fluid phase x� (bottom)
as a function of cluster size N1. The green line denotes the
simulation in which the composition of the fluid was reset to
the original value at the start of each US window. The other
lines correspond to normal No

1,�N
o
2,�P

o
�T MC simulations,

where the overall composition of the system is kept fixed for
various system sizes.
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Figure 4. (a) Gibbs free energy DG=kBT as a function of
number of large particles N1 in the largest crystalline cluster
using normal No

1 N
o
2 PT MC simulations and isobaric–iso-

thermal MC simulations with fixed fluid composition
x� ¼ 0:5, and pressure P� ¼ �P o

� �
3
1 ¼ 25. (b) Free-energy

barrier height DG�=kBTas a function of 1=No
� .
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Figure 6. Gibbs free energy DG=kBT as a function of cluster
size N1 for four different fluid compositions
x o
� ¼ 0:2, 0:5, 0:7, and 0.8 for a binary mixture of hard

spheres with size ratio 0.3 at 20% supercooling, i.e.
P o
� =P

�
coex ¼ 1:2 with P�coex the bulk coexistence pressure.
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from CNT for cluster sizes larger than 30, which
predicts chemical equilibrium for the small spheres in
the cluster and the metastable parent phase. If we now
take a closer look at the state point defined by xo

� ¼ 0:2
and P o

� =P
�
coex ¼ 1:2 for the metastable fluid phase, we

find from [36] that the composition of the coexisting
fluid and solid phase after full phase separation should
be x ’ 0:47 and 0.15, respectively. Interestingly, we find
that the composition of the nucleating clusters is much
lower (x ’ 0:07) than that of the coexisting bulk crystal
phase. Hence, the phase separation is mainly driven by
the nucleation of large spheres while maintaining
chemical equilibrium for the smaller species throughout
the whole system. Only when the chemical potential of
the large spheres in the metastable fluid is sufficiently
low due to a depletion of large spheres as a result of
crystal nucleation and crystal growth, small spheres will
diffuse into the crystal phase in order to increase the
composition of the solid phase. However, we note that
the chemical equilibrium condition for the smaller
species only holds for the present order parameter
choice F ¼ N1, whereas any other choice of order
parameter would certainly yield different results for the
cluster composition.

For highly asymmetric binary hard-sphere mix-
tures, where the stable solid phase corresponds to a fcc
of large spheres with a dispersed fluid of small
particles, one would naively expect that the small
particles are always in chemical equilibrium during the

nucleation process. Hence, in order to study crystal
nucleation in highly asymmetric mixtures, one can
employ an effective pairwise depletion potential
description as described by Bob Evans and co-workers
in [37–39] provided that three- and higher-body inter-
actions are negligible and the depletion potentials are
determined at fixed chemical potential of the small
spheres. Such an effective pair potential approach was
employed in a nucleation study in the vicinity of a
critical isostructural solid–solid transition in a binary
mixture of hard spheres with size ratio
q ¼ �2=�1 ¼ 0:1, but this study showed according to
the authors a breakdown of classical nucleation theory
[40]. It would be interesting to investigate whether or
not the breakdown is caused by the (false) assumption
of chemical equilibrium of small spheres during the
nucleation process. For less asymmetric binary hard-
sphere mixtures, where the small spheres cannot diffuse
freely in the solid cluster, chemical equilibrium of the
smaller species is harder to maintain, especially when
the nucleated crystal phase has long-range crystalline
order for both species as in the case of a superlattice
structure where the chemical potentials of the two
species are not independent as it is determined by the
stoichiometry of the crystal structure. It would be
interesting to investigate at which size ratio and
pressures this crossover occurs.

7. Conclusions

In this paper, we have studied crystal nucleation in a
binary mixture of hard spheres and we have investi-
gated what the effect is of the choice of order
parameter on the composition and size of both critical
and noncritical clusters. We have studied nucleation of
a substitutional solid solution in a simple toy model of
identical hard spheres but tagged with different colours
and we investigate the nucleation of an interstitial solid
solution in a binary hard-sphere mixture with a
diameter ratio q¼ 0.3. In order to study nucleation of
a crystal phase in computer simulations, a one-
dimensional order parameter is usually defined to
identify the solid phase from the supersaturated fluid
phase. We have shown that the choice of order
parameter can strongly influence the composition of
noncritical clusters, as the free-energy landscape in the
two-dimensional composition plane (N1,N2) is proj-
ected onto a one-dimensional order parameter, say
F ¼ N1 þ 
N2, in umbrella sampling MC simulations.
This is supported by the good agreement that we found
between our results on the composition of noncritical
clusters obtained from umbrella sampling MC simula-
tions and the predictions from CNT for the nucleation
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Figure 7. Cluster compositions x ¼ N2=N as a function of
cluster size N1 for four different fluid compositions
x o
� ¼ 0:2, 0:5, 0:7, and 0.8 for a binary mixture of hard

spheres with size ratio 0.3 at supercooling P o
� =P

�
coex ¼ 1:2.

The long dashed lines denote the composition predicted by
CNT, which corresponds to chemical equilbrium of species 2
in the solid clusters and the metastable fluid phase, while the
dotted lines denote the composition of the coexisting bulk
crystal phase.
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of a substitutional solid solution in a toy model. While
the effect is clearly visible in the case of a binary
system, it should occur more generally whenever a
higher-dimensional free-energy landscape is projected
onto a single order parameter. For the nucleation of an
interstitial solid solution in a highly asymmetric hard-
sphere system, we found that the composition of
noncritical clusters is determined by the chemical
equilibrium condition of the small spheres in the
cluster and the fluid phase, as the partial particle
volume of the small spheres in the solid phase can be
neglected. We compared the composition of the
noncritical clusters obtained from umbrella sampling
MC simulations and the theoretical prediction from
CNT, and found again good agreement. More impor-
tantly, we find that the barrier height and the compo-
sition of the critical cluster are not significantly
affected by the choice of order parameter. As a
result, critical clusters and the barrier height should
be comparable even with different order parameters.
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