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Colloidal hard dumbbells under gravity: structure and crystallization†
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We study the structure and phase behavior of hard dumbbells under gravity. The fluid shows layering

near the wall, where subsequent layers of dumbbells align alternatingly parallel or perpendicular to the

wall. We observe coexistence of a fluid with a plastic crystal (PC) and an aligned crystal (CP1) in a single

sediment for short dumbbells. For longer dumbbells, we observe a direct fluid–CP1 coexistence, while

for dumbbells of almost tangent spheres, the aperiodic crystal phase appears in between the fluid and

CP1 phase. The locations of the coexistences between these phases are well described by a simple

expression based on an approximation similar to the local density approximation, which has been

successfully applied to hard spheres under gravity [M. Marechal and M. Dijkstra, Phys. Rev. E, 2007,

75, 061404]. The fluid–PC-CP1 coexistence could not be explained using this expression. We attribute

this discrepancy to a lattice constant mismatch between the PC and CP1 phases. Finally, we show using

direct simulations that the plastic crystal stacks preferably as the hexagonal close packed crystal for

short dumbbells, as is the case for a bulk plastic crystal [M. Marechal and M. Dijkstra, Phys. Rev. E,

2008, 77, 061405].
Introduction

The phase behavior of hard spheres in bulk, arguably the

simplest system imaginable, is well understood by now. In

particular, it was shown by computer simulations that such

a system shows a purely entropy-driven phase transition from

a disordered fluid phase to a face-centered-cubic (fcc) crystal

phase at sufficiently high densities.1–3 Although the fcc phase is

the most stable phase, the free energy difference with respect to

the metastable hexagonal-close-packed (hcp) structure is only

very small and is on the order of 10�3 kBT per particle at the

melting transition.4 Here we define kB as Boltzmann’s constant

and T the absolute temperature. Historically, this system was

mainly investigated as a model for simple atomic liquids. The

advent of well controlled colloidal model systems has changed

this. In fact, by screening the interactions between charged

colloidal particles one can get interactions that are almost hard

core-like. However, the effect of gravity is usually not negligible

for colloids, since they are much larger than atoms. Hence,

a spatial inhomogeneous suspension is obtained due to the

gravitational field. The parameter that is associated with a grav-

itational field is the so-called gravitational length, which reads

l/s ¼ (bmgs)�1 where m is the effective or buoyant mass of the

colloidal particles, b ¼ (kBT)�1, s the diameter of the colloids,

and g the gravitational acceleration. Typically, l/s is of the order

of 10�1–103 for colloidal particles.

In a sediment, the local density increases with depth and

(before equilibrium is reached) with time, which leads to crys-

tallization when the pressure exceeds the freezing pressure of

hard spheres. In fact, in colloidal systems, this is probably the
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most widely used method to obtain crystals of micron-sized

colloids.5 Crystallization in sedimentation profiles of hard

spheres was studied using Monte Carlo simulations and density

functional theory.6–12 The simulations in ref. 6 show a discon-

tinuous transition where two layers crystallize at the same

gravitational field strength. Upon increasing the gravitational

field further, the crystalline film grows continuously. However,

density functional theory predicts a discontinuous crystal growth

via layering transitions upon increasing gravity in contrast with

the simulation results.6 Our Monte Carlo simulations in ref. 12

supported the continuous layer-by-layer growth as found in the

Monte Carlo simulations of Biben et al.6 Furthermore, we

showed that the chemical potential m at which the nth layer

crystallizes can be obtained from

m – mgz0n ¼ mcoex, (1)

where mcoex is the chemical potential at bulk coexistence and z0n is

the height of layer n.

Having calculated the structure and phase behavior of hard

spheres under gravity, one possible next step is to investigate

a more complicated particle shape. Dijkstra and Savenko13

investigated the freezing transitions of hard rods under gravity

for a L/D ¼ 5, where L is the distance between the centers of the

hemispherical end caps and D is the diameter of the cylinder. The

authors find coexistence between up to four phases in a single

sediment, a consequence of the rich phase diagram of hard rods,

that features isotropic, nematic, smectic and crystal phases for

this L/D. The phase coexistences were compared to a theoretical

expression, that is similar to eqn (1). However, since the calcu-

lations were performed in the canonical ensemble, the equations

feature the number of particles per unit area instead of the

chemical potential m.

While rods in the form of viruses14,15 are among the earliest

colloidal systems to be studied, it is difficult to tune the aspect

ratio of such systems. However, colloidal dumbbells can be
Soft Matter, 2011, 7, 1397–1408 | 1397



synthesized that are monodisperse and whose aspect ratio can be

easily tuned.16–18 In one of the possible synthesis methods, a layer

of silica is grown around a pair of aggregated silica cores to

obtain a dumbbell of length-to-diameter ratio L*¼ L/s, where L

is the distance between the centers of the spheres and s is the

diameter of the spheres. Other synthesis methods also exist,17,18

but it is somewhat more difficult to tune the aspect ratio using

these methods. Using dumbells with a low aspect ratio L*x0.3,

a plastic crystal was found experimentally19 above a packing

fraction which corresponds reasonably well with the value at

bulk coexistence as determined in ref. 20. At a very high packing

fraction, even an aligned phase was found, although the authors

have not investigated whether this is actually the aligned close

packed crystal phase of hard dumbbells.20 Peanut-shaped silica

shells are shown to form a degenerate crystal, the two-dimen-

sional equivalent of the a periodic crystal phase.18,21

The bulk phase diagram of hard dumbbells was mapped out

for a large part by Vega et al.20,22,23 and in ref. 24 we investigated

the phase diagram for large L which features, aside from the

aligned close packed crystal (CP1) also the aperiodic crystal

phase, where each sphere of a dumbbell occupies one site of

a hexagonal close-packed (hcp) or face-centered cubic lattice

(fcc), but the dumbbells are otherwise randomly oriented.

Furthermore, for small L we determined the type of plastic

crystal: fcc or hcp by calculating free energy differences. In this

paper we investigate the phase behavior of dumbbells under

gravity. The phase diagram of dumbbells is similar to short

spherocylinders especially for L/s � L/D ( 0.6.23 Therefore we

expect that the results presented here for dumbbells with

L # 0.6s, also apply quantitatively to short rods. The results for

L T 0.9s certainly do not apply to rods, as spherocylinders do

not order into an aperiodic crystal phase. In this paper, we show

that at short L we obtain the expected fluid–plastic crystal–CP1

coexistence, at intermediate L a direct fluid–CP1 crystal coexis-

tence and finally at large L a fluid–aperiodic crystal–CP1 coex-

istence. Furthermore, we show that although the free energy

difference between the fcc and the hcp plastic crystal is small, we

can observe by direct simulations in gravity that the hcp phase is

more stable for L ¼ 0.3s.
Model

We consider a system of hard dumbbells consisting of spheres of

diameter s. The center–to–center distance between the spheres is

L # s. Three values for L/s¼ 0.3, 0.6 and 0.92 will be considered

in this work, such that all gravity-induced phase coexistences that

are possible according to the bulk phase diagram24 can be found

(there are three distinct possibilities). Furthermore, the values for

L/s were chosen such that the sediment contained a sizable

number of layers of each possible phase at a certain value of L/s

for a chemical potential, which is not too high to prevent equil-

ibration problems. We have briefly investigated a few other

values of L and found no qualitative differences. We denote the

center-of-mass position and the orientation of dumbbell i by ri

and ui respectively. The particles are subjected to a gravitational

field oriented along the z-direction. In addition, the dumbbells

are confined between two smooth hard parallel walls at z¼ 0 and

z ¼ H. In other words, the dumbbells are subjected to the

external potential:
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(2)

where zi is the vertical coordinate, ui, z is the z component of the

direction vector of particle i, g is the gravitational acceleration and

m the buoyant mass of the hard dumbbells. All simulations were

performed at mgs/kBT¼ 2, so the gravitational length is equal to

l¼s/2. The height H is chosen such that the number density of the

centers of mass of the dumbbells rcom(z) (see Sec.) at z¼H – s/2 is

sufficiently small, i.e., rcom(H – s/2)d3 < 10�6, where d is the

diameter of the sphere that has the same volume as a dumbbell and

thus the system can be considered to be infinite in the z-direction.

The lateral dimensions of the box are Lx ¼ a0 n and

Ly ¼ a0 m
ffiffiffi
3
p

=2 with n, m integers. We choose n and m such that

the lateral dimensions of the simulation box are nearly equal,

which minimizes the finite-size effects for the fluid phase and still

accommodates a hexagonal crystalline layer with lattice constant

a0. To minimize finite size effects, relatively large horizontal box

dimensions ((n, m)¼ (14, 16)) were required for L¼ 0.3s, while for

the dumbbells with larger aspect ratios (L ¼ 0.6s and L ¼ 0.92s,

smaller boxes could be employed ((m, n) ¼ (12, 14) and (9, 10)

respectively). The average number of particles in the simulations

at the highest chemical potentials ranged from about 1500 for the

smallest box size to almost 5000 for the (14, 16)-system. The finite

size effects were investigated by comparing order parameter

profiles with profiles obtained for larger systems.

We employ periodic boundary conditions in the lateral

dimensions in our simulations. Rather than fixing the number of

particles we fix the chemical potential m by adding standard25

particle insertion and deletion moves to our Monte Carlo

simulations. We define a dimensionless chemical potential by

m* ¼ bm�log(V/s3) (3)

where V is the thermal volume. This definition is such that the

dimensionless ideal gas chemical potential equals log(Ns3/V).

Equilibration of the number of crystalline layers was rather slow.

This is caused by the glassy behavior at high chemical potentials,

which are necessarily above the chemical potential at bulk coex-

istence. We often needed simulation runs of over 107 successive

Monte Carlo moves per particle to reach equilibration. Equili-

bration was checked by comparing order parameter profiles.

Initial configuration

In this paper, we only consider simulations that were initiated in

one of two initial configurations. The first type of initial config-

uration is an empty simulation box (N ¼ 0). In this case, the

number of particles will increase slowly due to particle insertions

and removals and initially the configuration of these particles will

be fluid-like. When starting from such a fluid configuration, we

never observed the CP1 phase, which is the stable bulk phase at

high pressures for all aspect ratios. The CP1 phase must also be

stable in gravity at high pressure, which corresponds to a large

sediment, since it is the closest packed crystal phase. Therefore,

the second initial configuration used in this work is a CP1 crystal
This journal is ª The Royal Society of Chemistry 2011



Fig. 1 The CP1 crystal, its lattice vectors, a1, a2 and a3, and the direction

vector of the dumbbells, u0. (a) Side view: a1 points into the plane of view.

(b) Top view. The A face of the crystal is spanned by a1 and a3; the B face

is spanned by a1 and a2 and the A0 face, equivalent to the A face, is

spanned by a2 and a3. The A face is buckled i.e. one sphere of each

dumbbell is closer to a plane spanned by a1 and a3, than the other.

Table 1 The lattice parameters of CP1 at bulk coexistence as a function
of L/s

L/s a0/s b0/s c0/s

0.3 1.08 0.538 1.14 18.8�

0.6 1.08 0.664 1.43 18.4�

0.92 1.05 0.917 1.65 30.3�
with the densest packed plane at the wall to minimize the grav-

itational energy. The densest plane of CP1 is the ‘‘B’’ plane,

spanned by the lattice vectors a1 and a2, see Fig. 1. The lattice

vectors and the direction vector of CP1 are

a1 ¼ ða0; 0; 0Þ; a2 ¼
a0

2
;

ffiffiffi
3
p

2
a0; 0

 !
; (4)

a3 ¼ b0;
b0ffiffiffi

3
p ; c0

� �
; u0 ¼

ffiffiffi
3
p

2
sinq0;

sinq0

2
; cosq0 ;

� 
(5)

where a0, b0 and c0 are lattice parameters and q0 is the angle

between the z-axis and the equilibrium direction vector of the

particles, u0 (see also Fig. 1). We have set these lattice parameters

equal to the lattice parameters of CP1 at coexistence in bulk as

listed in Table 1. We have also briefly considered CP1 crystals

with the ‘‘A’’ plane aligned with the bottom wall, but we found

that these crystals were less stable than the CP1 crystal with the

‘‘B’’ plane at the wall for all investigated L/s. Since the layers are

able to shift upwards and sidewards due to the periodic boundary

conditions, we expect that all lattice parameters except a0 can be

adjusted during the simulation. Whenever possible we started

with the final configuration of a previous run, except when we

consider the stability of hcp versus fcc of the plastic crystal phase.
Bond switch moves

The aperiodic crystal is a crystal of spheres that are connected into

dumbbells (forming a ‘‘bond’’) in a random fashion. Many

different arrangements of such bonds (bond configurations) can

occur as described in ref. 24. These arrangements are only strictly
This journal is ª The Royal Society of Chemistry 2011
degenerate at L¼ s and close packing i.e. only then the free energy

of the dumbbells is the same for all bond configurations. As

density and especially L is decreased, some of the arrangements

become more frustrated than others by the fact that the bond

length L between the spheres within a dumbbell is smaller than the

distance between spheres of a neighboring dumbbell, which is

equal to the lattice constant. For this reason when considering an

aperiodic crystal at L < s, it is paramount to implement a move

which switches between bond configurations while preserving

detailed balance. Such a bond switch move was introduced in ref.

24 in order to sample the different arrangements of bonds

according to their local free energies and therefore correctly

calculate the free energy of the aperiodic crystal in the bulk. To

implement bond switch moves that preserve detailed balance and

still work at finite density it was necessary to add single spheres to

the simulation. In short, the bond switch move consists of two

steps: First, we connect a non-bonded sphere to a sphere of

a neighboring dumbbell and we cut the bond of that dumbbell,

effectively moving the sphere from one lattice site in the aperiodic

phase to another (for more details, see ref. 24). For bond switch

moves in bulk, the diameter of the spheres was set to s.

As the CP1 phase can be viewed as a deformed version of the

fcc phase, it can transform into the aperiodic crystal phase using

bond switch moves, provided that the layers can shift back to

their positions in the fcc crystal phase. In our simulations in

gravity, the top wall is far away so the layers can shift upwards,

when the loss of gravitational energy is compensated by the gain

in entropy due to the degeneracy of the aperiodic crystal.

Furthermore, the periodic boundary conditions allow for a shift

in the horizontal directions. We implemented the bond switch

moves, as introduced in ref. 24, for dumbbells under gravity and

observed a successful transformation from CP1 to the aperiodic

crystal phase. There are a few differences between the imple-

mentation of bond switch moves in gravity and in bulk

(see ref. 24), related to the (non-bonded) spheres that are

required in order to be able to perform the bond switches. First,

we subject the spheres to insertion and deletion moves and set

their chemical potential to m*/2 – Dm*, where m* is the dimen-

sionless chemical potential of the dumbbells and Dm*¼ 4 ensures

that the total fraction of single spheres is always small but

nonzero. The (buoyant) mass ms of the spheres was chosen to be

half the mass of a dumbbell (m), while the diameters of the

spheres (ss) was chosen such that the volume of a sphere is equal

to half the volume of a dumbbell. In this way the internal mass

densities of spheres and dumbbells are equal and separation of

the dumbbells and the spheres by gravity should be minimal,

according to Archimedes’ principle. Moreover, the acceptance

ratio of the bond switch moves is higher if we move a smaller

sphere, as the probability of creating overlaps with particles that

are not involved in the move is lower.

Methods

In order to analyze our simulation results, we calculate two

types of density profiles: One that measures the height

distribution of the centers of mass of the dumbbells:

r*
comðzÞ ¼

d3

A

X
i
dðz� ziÞ

� �
(6)
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and one that measures the height distribution of the individual

spheres of each dumbbell:

r*
sphereðzÞ ¼

d3

A

X
i

X
h

dðz� zi;hÞ
� �

; (7)

where d is the diameter of a sphere with the same volume as

a dumbbell, which is given by p
6
ðs3 þ 3Ls2=2� L3=2Þ. The

summation over i runs over all dumbbells and h ¼ � 1 over the

two spheres of each dumbbell. Similarly, all order parameter

profiles can either be defined for the center-of-mass of the

dumbbells or for the individual spheres of each dumbbell. To

lighten the notation, we use the following definitions to

abbreviate the averaging over the delta functions in the defini-

tions of the order parameter profiles:

hAiiz,com^ h
P

iAid(z�zi)i/h
P

id(z�zi)i (8)

and

hAiiz,sphere^ h
P

i,hA{i,h}d(z�zi,h)i/h
P

i,hd(z�zi,h)i, (9)

where Ai is any measurable property of particle i and A{i,h} is

a property of sphere h ¼ � 1 of dumbbell i. To study the

orientational order of the dumbbells, we measure the tensor

QabðzÞ ¼
�

3

2
ui;aui;b �

1

2
dab

�
z;com

; (10)

with a, b¼ x, y, z. We use the zz component of Q(z) to investigate

the alignment along the z axis (Qzz(z) ¼ 1) or perpendicular to z

(Qzz ¼ – 1/2). We define the nematic order parameter at height z,

S2(z), as the largest eigenvalue of Q(z). For a fluid with a rota-

tional symmetry of the director field around the z axis, as in the

case of a fluid of dumbbells near a horizontal wall, one can show

that Q is diagonal and that Qxx ¼ Qyy ¼ �1
2
Qzz. All dumbbells

very close to the wall (zix s/2) are oriented nearly parallel to the

wall (otherwise they would overlap with the wall, see eqn (2)).

Therefore, S2ðs=2Þ ¼ Qxxðs=2Þ ¼ Qyyðs=2Þ ¼ �1
2

Qzzðs=2Þx1
4
.

We use S2(z) to distinguish between the CP1 phase (S2 x 1) and

the plastic crystal (S2 ¼ 0). We also define S2
sphere(z), that

measures the orientational order of each dumbbell for which one

of its spheres is located at height z, as the largest eigenvalue of

3

2
ui;aui;b �

1

2
dab

� �
z;sphere

: (11)

To determine crystallization, we measure the hexagonal bond

order parameter of dumbbell g ¼ i or sphere g ¼ {i, h} using

j6;g ¼
1

Ng

XNg

l¼1

expði6qðrglÞÞ; (12)

where the bond angle q(rgl) is defined as the angle between

a reference axis and the center-of-mass displacement vector,

rgl ¼ rl – rg and the sum over l runs over the Ng nearest

neighbors of g. A particle is defined as a neighbor, when

xgl
2 + ygl

2 + (4zgl)2 < (1.4s)2, (13)

where xgl, ygl and zgl are the respective x, y and z compo-

nents of rgl. This criterion is chosen in such a way, that the
1400 | Soft Matter, 2011, 7, 1397–1408
neighbors g are located primarily in the same layer as

particle l.

The center-of-mass hexagonal bond order parameter profile is

defined as

j6
com(z) ¼ |hj6, iiz, com|. (14)

This parameter considers (virtual) bonds between the center-

of-mass of a dumbbell and the centers of mass of its neighbors.

It is 1 if the centers of mass of all dumbbells at height z are

hexagonally ordered. Similarly, the hexagonal bond order

parameter profile of the spheres is defined as

j6
sphere(z) ¼ |hj6, {i, h}iz, sphere|. (15)

In this case, bonds between sphere h of dumbbell i and

neighboring spheres are considered. These neighbors can be part

of another dumbbell or belong to the same dumbbell

i. j6
sphere(z) ¼ 1 if the spheres of the dumbbells are perfectly

hexagonally ordered.

In bulk systems of hard dumbbells, plastic crystals were found

to be of either the fcc type or hcp type.24 To distinguish between

the two types of stacking we use the j3 order parameter, which

was used in ref. (26) to study defects in crystalline sediments of

colloidal spheres. We require the local trigonal ordering in the

layer above (+) or below (–) dumbbell i to define the trigonal

bond order parameter j3
�:

j�3;i ¼
1

N�

XN�
j

exp
�
3iq
�
rij

��
(16)

its horizontal distance to particle i is smaller than 1.1s and its

vertical distance is between 0.65s and 1.4s. If particle i is in

a perfect fcc environment, j3, i
+ ¼ – j3, i

�, while in an hcp

environment j3, i
+ ¼ j3, i

�. Accordingly, the j3 profiles that are

sensitive to hcp resp. fcc are defined as follows

j
hcp
3 ðzÞ

jfcc
3 ðzÞ

)
¼
�

1

2
jjþ3;i � j�3;ij

�
z;com

: (17)

Results and discussion

Structure

We perform Monte Carlo simulations of a fluid of hard dumb-

bells with elongation L¼ 0.3s, L¼ 0.6s and L¼ 0.92s. Here and

in the remainder of the paper we set the gravitational length l to

s/2. We measure the dimensionless density profiles for the center-

of-mass of the dumbbells, r*com(z), and for the individual

spheres of each dumbbell, r*sphere(z) and the order parameter

profile Qzz(z), that measures the alignment parallel (Qzz(z) ¼ 1)

and perpendicular Qzz(z) ¼ – 1/2 to the z-axis. In Fig. 2, we show

these profiles for L¼ 0.3s and m*¼ 20, for L¼ 0.6s and m*¼ 40

and for L¼ 0.92s and m*¼ 34; these state points all lie just below

the respective freezing transitions. From Fig. 2, we clearly

observe pronounced layering in the density profiles, but the

precise details depend heavily on L: For short dumbbells, the

center-of-mass density profile resembles the density profiles

obtained in sedimentation of hard spheres (with some effective

diameter), while the first peak in the density profile of the
This journal is ª The Royal Society of Chemistry 2011



Fig. 2 Dimensionless density profiles for the center of mass of the dumbbells r*com(z) and for the individual spheres of the dumbbells r*sphere(z) of

a fluid at m* ¼ 20 and L ¼ 0.3s (top), m* ¼ 40 and L ¼ 0.6s and m* ¼ 34 and L ¼ 0.92s (bottom). The insets show the decay of the profiles over the full

sediment.
individual spheres of each dumbbell has a small shoulder at z¼ L

+ s/2 that corresponds to upright particles with L ¼ 0.3s. The

Qzz(z) profile in Fig. 3, shows oscillations that seem to be out of

phase with the oscillations in the density profile for the center of

mass of dumbbells with 0.3s. To be exact, there is a minimum in

Qzz(z) at a slightly lower z-position than a maximum in r*com(z)

(corresponding to a vertical dashed line in Fig. 3), and also

a maximum in Qzz(z) just below a minimum in r*com(z). This is

caused by the fact that upright dumbbells in layer n are shifted

upwards compared to dumbbells that lie flat in the same layer

due to the presence of the particles in layer n – 1 (or the wall for

n ¼ 1). For very long dumbbells (L ¼ 0.92s), the spheres of each

dumbbell show the usual type of layering as shown in Fig. 2

(bottom row), while the center-of-mass profile has an unusual

structure. We find density peaks in r*com(z) at intermediate

values of z i.e. 1
2
ðsþ LÞ, 3

2
ðsþ LÞ etc. (the position of the wall is at

z¼ 0 so the smallest possible z-position is s/2). In addition, Fig. 2

shows that the layering in r*com(z) correlates with the oscillations

in Qzz(z) for L ¼ 0.92s. The odd numbered density peaks in

r*com(z) correspond to particles that are aligned on average

perpendicular to z (Qzz(z) ¼ – 1/2), while the even numbered

layers are aligned parallel to z (Qzz(z) ¼ 1). This is caused by the
This journal is ª The Royal Society of Chemistry 2011
fact that dumbbells with each sphere in a different layer are

aligned along z and have a center-of-mass position that is in

between two layers of spheres, while dumbbells with both spheres

in the same layer have their direction vector perpendicular to the

z-axis and their center-of-mass z-position in a layer. For inter-

mediate length L ¼ 0.6s, the dumbbells show a complicated

behavior that shows aspects of both the short dumbbell and the

long dumbbell profiles.

We also measure the density profiles and hexagonal order

parameter profiles for crystalline sediments of hard dumbbells

with the same elongations as for the fluid: L/s ¼ 0.3, 0.6 and

0.92. As mentioned in the ‘‘Initial configuration’’ section, the

initial configuration for these simulations is a CP1 crystal with

the hexagonal B plane spanned by a1 and a2 at the bottom wall.

Fig. 4 shows the crystalline layers at the bottom of the sample,

which can be seen from the negligible density in between the

layers and the sharp peaks in the profiles. At L ¼ 0.3s the

center-of-mass profile shows well defined layers that are about s

apart for all heights. A small jump in the j6 order parameter

profile can be observed, which marks the transition from the

CP1 crystal at low z to the plastic crystal further up in the

sediment. It can be seen from Fig. 4 that peaks in the density
Soft Matter, 2011, 7, 1397–1408 | 1401



Fig. 3 Orientational order parameter profiles Qzz(z) of a fluid for the

same parameters as in Fig. 2. The positions of the maxima of the center-

of-mass density profiles, r*com(z) (see Fig. 2) are indicated by vertical

dashed lines.
profile of the plastic crystal (PC) are lower and less sharp,

corresponding to larger fluctuations of the positions of the

dumbbells. This also explains the slightly lower value of j6
com

for the plastic crystal. Finally, at high z, the density profile

shows fluid-like behavior and j6
com becomes very small, i.e. the

plastic crystal is replaced by a fluid phase. A similar jump in the

hexagonal order parameter profile of the spheres, j6
sphere(z), can

be observed for L ¼ 0.92s, corresponding to the CP1 to

aperiodic crystal transition. Here the rcom*(z) profile of the CP1

phase (only two layers of dumbbells) has an interlayer spacing

of almost 2s, while the aperiodic crystal peaks are separated by

half the diameter. Half of the peaks of the aperiodic crystal

phase are caused by the bonds which connect spheres within

a layer of spheres and therefore the center of mass of the

dumbbell is within the layer. The other half of the peaks is

caused by inter-layer bonds. The center-of-mass profile of the

aperiodic crystal phase looks rather ragged i.e. the peak heights

differ, because the number of inter-layer bonds and the number

of intra-layer bonds are not equal. For these reasons, it is more

convenient to use the hexagonal order parameter profile for the

individual spheres, rather than the hexagonal order parameter

profile for the centers of mass of the dumbbells. The j6
spheres(z)

profile shows pronounced ordering for both the CP1 and the

aperiodic crystal phase for L ¼ 0.92s as can be seen from Fig. 4.

At high z, the aperiodic crystal phase is replaced by a fluid

phase and j6
sphere tends to zero. In conclusion, we find triphasic
1402 | Soft Matter, 2011, 7, 1397–1408
coexistences both for small L and for large L, which is

a consequence of the phase diagram of dumbbells compared to

that of hard spheres. For small L, we find CP1–plastic crystal–

fluid coexistence, while for large L a CP1–aperiodic crystal–fluid

coexistence is observed. At the intermediate value of L ¼ 0.6s

we observed a sediment containing only the CP1 phase and the

fluid phase, as expected from the bulk phase diagram of hard

dumbbells.
Location and nature of the phase transitions

We investigated the fluid–crystal and crystal–crystal transitions,

and calculated the locations of these transitions. We found that

the hysteresis in the crystallization of the plastic and aperiodic

crystals was lower than the spacing between m* values we

considered. This can be explained by considering the melting of

a crystal of which one or more of the surfaces is already exposed

to a fluid phase, which usually shows little hysteresis also in the

bulk i.e. the temperature or pressure at which melting first occurs

in a simulation is the same as the thermodynamic melting

point.27,28 In our simulations that include a gravitational force,

the crystal is always in contact with a fluid layer and therefore

one expects little hysteresis in the melting transition. As

mentioned before, the CP1 phase did not form spontaneously, so

the CP1 phase was used as an initial configuration and the

melting behavior was studied to locate the transition. Therefore,

also the hysteresis in this transition could not be determined.

Possibly, the CP1 crystal did not form spontaneously in our

simulations because of the slow dynamics at the large pressures

at which it is stable in the bulk, which makes it difficult for the

particles to align and form the CP1 crystal. Furthermore, the

dumbbells in the first fluid or plastic crystal layer at the wall or on

top of the CP1 phase lie parallel to the wall. These particles need

to rotate upwards against gravity and the pressure of the particles

on top of this layer to form a layer of CP1 crystal, which hinders

the crystallization dramatically.29 We have implemented molec-

ular dynamics of slightly soft repulsive dumbbells to investigate

whether the CP1 crystal would form in a system with realistic

dynamics (as apposed to Monte Carlo moves). Unfortunately,

also here the fluid did not crystallize into the CP1 phase. This

leads to the conclusion that the CP1 crystal phase will not form

spontaneously for repulsive dumbbells on time scales that can be

investigated using current simulation techniques.

In addition to the order parameter profiles that are shown in

Fig. 4, we also measured the nematic order parameter profile

S2(z) for small L and the nematic order parameter profile

S2
sphere(z) at the z-positions of the spheres for large L in order to

distinguish between the different types of crystals (not shown in

Fig. 4). We show the values of the relevant order parameters at

the height of each layer as a function of m in Fig. 5. We define the

z-position of the nth layer, zn, of the aperiodic crystal phase as the

position of the nth maximum of r*sphere(z), i.e. layer n is the nth

layer of spheres for L ¼ 0.92s, while for L ¼ 0.3s and L ¼ 0.6s

we number the layers of dumbbells via the maxima in the center-

of-mass density profile, r*com(z) and, correspondingly, zn is the

z-position of the nth maximum in the center-of-mass profile. We

define layer n to be crystalline if j6(zn) (left panel in Fig. 5) is

larger than 0.5, while we define a crystalline layer to be CP1 if its

crystalline and the orientational order parameter, S2(zn) or
This journal is ª The Royal Society of Chemistry 2011



Fig. 4 Center-of-mass density profile rcom*(z) and hexagonal bond order parameter profile j6
com(z) for dumbbells with L ¼ 0.3s at m* ¼ 60 (top row),

and with L ¼ 0.6s at m* ¼ 60 (middle row), the center-of-mass density profile r*com(z) and hexagonal bond order parameter profile j6
sphere(z) of the

individual spheres of dumbbells with L¼ 0.92s at m*¼ 60 (bottom row). The inset in the bottom left plot is an enlargement of part of the r*com(z) profile,

showing oscillations with a period � 0.5s in the aperiodic crystal.
S2
sphere(zn) (right panel in Fig. 5), is larger than 0.5. We will

describe the sequences of transitions that occur when the chem-

ical potential decreases (i.e. going from right to left in Fig. 5). As

mentioned before, the particles in the bottom segment of the

sediment form a CP1 crystal at high chemical potential for all

three values of L considered, which is evident from Fig. 5 by the

high values of the hexagonal bond order parameter j6(zn) x 0.95

and the nematic order (alignment) parameter S2(zn) x 0.9 for

low n. As the chemical potential decreases, the thickness of the

CP1 crystal decreases as the layers transform one by one into the

lower density phase for the appropriate aspect ratio L. To be

precise, the CP1 phase transforms into the plastic crystal phase

for L ¼ 0.3s, the fluid phase for L ¼ 0.6s and the aperiodic

crystal phase for L¼ 0.92s. During these transitions the particles

lose their alignment i.e. S2(zn) drops in the right panel of Fig. 5.

Note, that the nematic order S2 does not go to zero during these

transitions, as the directors of the dumbbells directly on top of

a crystal or the wall preferably lie in the horizontal plane, as

discussed in the Methods section. Finally, the plastic crystal

layers for L ¼ 0.3s and the aperiodic layers for L ¼ 0.92s melt

(i.e. transform into a fluid) at yet lower chemical potential as

indicated by a sudden decrease in j6(zn) in Fig. 5 (left panel),

when the chemical potential is decreased below the transition

chemical potential for layer n.
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In ref. 12, we discussed the number of layers that first crys-

tallizes for hard spheres in a gravitational field. Similarly, we

count the number of layers nmin in the various crystals of

dumbbells at the chemical potential just before they melted

completely here. For the CP1 crystal phase of dumbbells with

L ¼ 0.6s and L ¼ 0.92s, nmin was one layer of dumbbells. The

plastic crystal and CP1 phases of dumbbells with L ¼ 0.3s

consisted of 2 layers of dumbbells at the lowest chemical

potential for which they were stable. Finally, nmin ¼ 2 for the

aperiodic phase of dumbbells with L ¼ 0.92s, where we counted

layers of spheres instead of dumbbells for the aperiodic phase.

For large L, a single layer of CP1 can be identified with two

layers of spheres. So, in fact, the thinnest stable crystal of

dumbbells for each L is about as thick as the thinnest stable of

hard spheres12 at the same gravitational length g* ¼ s/l ¼ 2,

independent of the dumbbell aspect ratio L/s.

From Fig. 5, it can be seen that the melting of layer n ¼ 1

through nmin seems more discontinuous (it occurs between two

closely spaced values of the chemical potential) than the melting

of the other layers for most crystals (which occurs over a range of

chemical potential values). The exception is CP1, which always

seems to transform discontinuously into the lower density phase.

Using a hand-waving argument, one can explain these results

using the structure of the fluid layer, which lies directly on top of
Soft Matter, 2011, 7, 1397–1408 | 1403



Fig. 5 Order parameters of the layer n as labeled as a function of reduced chemical potential m*. The order parameter of layer n is defined as the value of

the corresponding order parameter profile at zn, where zn is defined as the nth maximum of r*com(z) (top and middle row) or rspheres*(z) (bottom row).

Top: center-of-mass hexagonal bond order parameter j6
com(zn) (left), nematic order parameter S2(zn) (right) for L ¼ 0.3s. Middle: j6

com(zn) (left) and

S2(zn) (right) for L ¼ 0.6s. Bottom: hexagonal bond order parameter j6
sphere(zn) of the individual spheres of each dumbbell (left) and nematic order

parameter profile at the z-positions of the spheres S2
sphere(zn) (right) for L¼ 0.92s. The order parameters of the first two layers for L¼ 0.3s and L¼ 0.92s

and the third and fourth layer for L¼ 0.92s (primarily S2
sphere(zn)) are difficult to distinguish from each other, since these layers melt at the same chemical

potential. For clarity, we do not show all layers.
the crystal. This fluid layer has some degree of hexagonal

ordering, which can be appreciated from the nonzero value of the

j6(z) profiles in Fig. 4. The same structuring is also observed for

hard spheres and is caused by the top crystalline layer, that serves

as a template. However, there is little directional alignment of the

fluid layer. Therefore, in order to form a CP1 layer on top of

a already formed crystal the rotational symmetry of the direction

vectors must be broken, while for the plastic crystal and the

aperiodic crystal phase the hexagonally structured fluid can

smoothly transform in a crystal phase. Typically, a transition

that breaks a symmetry is discontinuous, which might explain the

discontinuous growth of the CP1 crystal. In the initial crystalli-

zation the translational symmetry is broken, since the fluid is not

hexagonally ordered, and therefore we might expect this transi-

tion to be discontinuous. As a word of caution, we note that the

same reasoning can be applied to the freezing of two-dimensional
1404 | Soft Matter, 2011, 7, 1397–1408
hard discs, which is currently thought to occur through two

second order transitions.30–32

Comparison to bulk

The reduced chemical potentials at which the transitions (or the

disappearance of a phase in the sediment) occur mtrans* are

compared to the bulk coexistence chemical potentials in Fig. 6

and Tab. 2. Since we require the chemical potential at the

coexistence between the fluid and aperiodic phases and the

coexistence between the aperiodic and CP1 phases and these were

not calculated in our earlier paper on the bulk phase behavior of

hard dumbbells,24 we repeated the bulk free energy calculations

and common tangent constructions for L ¼ 0.92s using simu-

lations that employ bond switch moves (see ref. 24 for full

details). For completeness, we also list the resulting coexistence

densities and pressures in Tab. 3.
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Table 3 Reduced densities, pressures and chemical potentials of the bulk
fluid–aperiodic crystal and aperiodic crystal–CP1 coexistences at various
L ¼ 0.92s as calculated using simulations that include bond switch
moves.24 The unit of length used in the definition of the dimensionless
density and pressure is the diameter of a sphere with the same volume as
a dumbbell with aspect ratio L ¼ 0.92s

Phase 1 Phase 2 r1d3 r2d3 bPd3 m*

fluid aper 1.042 1.124 30.01 34.25
aper CP1 1.217 1.255 48.46 52.46

Table 2 The phases found in our simulations for hard dumbbells with
center–to–center distance to diameter ratio (L/s), the lowest chemical
potential at which they were found (mtrans), the chemical potential of the
coexistence between the phase of interest and the phase at lower density
(see Fig. 6) and the thickness of the layers Dz. For L ¼ 0.92s, Dz is the
thickness of a layer of spheres, while for L ¼ 0.3s and L ¼ 0.6s Dz is the
thickness of a layer of dumbbells

L/s phase mtrans* mcoex* Dz/s

0.3 PC 24.75 � 0.25 21.50 1.14
0.3 CP1 31.5 � 0.5 43.12 1.13
0.6 CP1 41.75 � 0.25 41.66 1.42
0.92 aper 38.5 � 0.5 34.25 0.83
0.92 CP1 52.75 � 0.25 52.46 0.78

Fig. 6 Bulk phase diagram for hard dumbbells in the m*-L/s represen-

tation, where m* is the dimensionless bulk chemical potential as defined in

eqn (3) and the results indicated by the solid lines are obtained in stan-

dard Monte Carlo simulations without special moves, while bond switch

moves were employed for the results indicated by the dashed lines. The

squares denote the dimensionless chemical potentials (m*) at which the

phase transitions occur in a gravitational field with l¼ s/2. Fluid denotes

the fluid phase, PC denotes the plastic crystal phase, CP1 the periodic

crystal and Aper the aperiodic crystal phase.
For L ¼ 0.6s and L ¼ 0.92s, m*trans corresponds nicely to the

bulk values, which gives confidence in the equilibration.

However, for L ¼ 0.3s the PC–CP1 freezing transition is far off.

To investigate this discrepancy, we investigate the structure of

a fluid–PC–CP1 sediment at m* ¼ 35, where we did not expect to

find any stable CP1 crystal phase.

From the structure of one layer of the plastic crystal we

observe that the lattice direction of the plastic crystal conforms

to that of the CP1 phase and to the simulation box. Furthermore,

we find that the PC layer in contact with the CP1 crystal has
This journal is ª The Royal Society of Chemistry 2011
a horizontal lattice constant of about 1.18s, which is significantly

smaller than the lattice constant of the bulk plastic crystal at the

PC–CP1 coexistence, which is about 1.2s. The other layers of the

plastic crystal phase have a lattice constant of about 1.24s,

similar to the lattice constant in the bulk at the fluid–PC

coexistence.

We investigated the reproducibility of these unexpected results

at a dimensionless chemical potential m* ¼ 35. When the simu-

lation was allowed to run for ten times longer than the rest of the

runs, the number of crystalline layers and the lattice constants of

the crystals in the sediment where the same as for the shorter

simulations. The presence of an intermediate layer of plastic

crystal with a lattice constant of � 1.18s in between the CP1

crystal and the other, the plastic crystal with lattice constant of

�1.24s were also reproduced for a larger horizontal box size

corresponding with 20� 20 particles in a layer of the CP1 crystal

and also for a larger gravitational length l ¼ s. The differences

between all density and order parameter profiles of the larger

system and the corresponding profiles of the original (14, 16)

system were smaller than the statistical error. The z-positions of

the plastic crystal–CP1 and fluid–plastic crystal for l ¼ s also

corresponded nicely to the results for l ¼ s/2, i.e. z/l was the

same for both values of l. This reproducibility, suggests that the

observed structure holds rather generally for the PC–CP1

interface.

Using these results, our explanation for the discrepancy

between the locations of the PC–CP1 coexistence as expected

from bulk simulations and as observed in our simulations in

gravity is as follows. When the CP1 phase partially melts in the

presence of a gravitational field, the remaining CP1 layers form

a template on top of which the plastic crystal (PC) grows.

Unfortunately, the hexagonal face of CP1 is a rather poor

template for the formation of a plastic crystal, since the (hori-

zontal) lattice constant of CP1 is considerably smaller than the

lattice constant of the plastic crystal (about ten percent at bulk

coexistence between the two phases). To cope with this poor

template, a defect-rich, high density plastic crystal layer grows

directly on top of the CP1 crystal, followed by the remainder of

the plastic crystal with a lower density. Because of the defects and

the high density (which is higher than the bulk crystal) the

intermediate layer has a higher local free energy (or grand

potential) than the bulk plastic crystal, which explains why the

topmost CP1 layer transforms into this defect-rich layer at

a lower chemical potential than expected from bulk coexistence.

A second scenario is that the high density in the intermediate

layer hinders diffusion upwards out of the CP1 crystal and

therefore kinetically hinders the melting of the CP1 crystal. We

cannot exclude this alternative scenario, although we have run

very long simulations to ensure that our simulations are equili-

brated. Regardless of which scenario holds, we expect from the

results at the other values of L that the CP1 crystal is metastable

at chemical potentials below bulk coexistence i.e. that the defect-

rich layer only forms a barrier for the complete melting of the

CP1 crystal.
The number of layers as a function of chemical potential

Now, we compare our results for the freezing of the nth layer

with the estimate that layer n crystallizes when
Soft Matter, 2011, 7, 1397–1408 | 1405



Fig. 7 The number of CP1 crystalline layers NCP1 and the total number

of crystalline layers Ntotal as a function of dimensionless chemical

potential m* for (from top to bottom) L¼ 0.3s, 0.6s and 0.92s. The lines

labeled by ‘‘pred’’ denote our prediction (13) based on the chemical

potential at bulk coexistence, while ‘‘fit’’ denotes a fit (see text).
m – mgzn ¼ mcoex (18)

where mcoex is the chemical potential at bulk coexistence and

zn ¼ Dz(n – 1), where Dz is the thickness of a layer. According to

this definition, zn is the z-position in between layer n and n – 1.

The thickness Dz is obtained from a fit of zk as a function of the

number of crystalline layers (Nlayers), where k is the top layer of

the crystal of interest. The resulting layer thicknesses are tabu-

lated in Tab. 2. Note that for the plastic crystal and the aperiodic

crystal phase, k is not equal to Nlayers, when there are also layers

of the CP1 crystal phase present in the sediment. The expression

for the chemical potential at which the kth layer crystallizes, eqn
1406 | Soft Matter, 2011, 7, 1397–1408
(18) for n¼ k, can be inverted to obtain the number of crystalline

layers as a function of m:

Nlayers(m) ¼ P(m – mcoex)/(mgDz)R + 1, (19)

where PxR is the largest integer smaller than x. The number of

crystalline layers and the prediction (13) are plotted in Fig. 7. As

before, we plot the number of layers of spheres in Fig. 7 for

L ¼ 0.92s, while for the other values of L we plot the number of

dumbbell layers.

The agreement between prediction (13) and the data is

reasonable except for L ¼ 0.3s. Furthermore, the slope is

correctly predicted for all L. For L ¼ 0.3s, the number of layers

of CP1 (NCP1) is similarly affected by the mismatch between the

plastic crystal lattice and the CP1 lattice as the PC–CP1 transi-

tion itself: the bottom layer of the plastic crystal phase is desta-

bilized, when in contact with the CP1 phase (see the discussion at

the end of the previous section). To quantify the discrepancy

between the prediction and the simulation results, we fit eqn (19)

to NCP1 with m*coex as the only fit parameter; the result for the

chemical potential m*coex was 31.4, while the reduced chemical

potential at bulk PC-CP1 coexistence is 43.12. It should be noted,

that eqn (19) with adjusted m*coex might not give the correct

result for other values of the gravitational length l.
Relation to experiments on colloids

In experiments, the chemical potential is usually not readily

available, although it has been obtained in a (mass) density

matched suspension in ref. 33 using a variant of the Widom

particle insertion method.34 However, the pressure can be easily

obtained by integrating the density profile from the ideal gas at the

top of the sediment to the height of interest. We checked for the

center-of-mass profile of dumbbells and for rsphere*(z)/2 that the

pressure at height z obtained by this integration oscillates around

the bulk pressure that corresponds to the chemical potential

m – mgz. These unavoidable oscillations are caused by the layering,

but we noticed that the pressure at the peak of the density profile,

as well as the pressure right in the middle between two layers,

P(z0n), corresponds almost exactly to the bulk pressure at those

heights. This is a nontrivial result, since the gravitational field is

rather strong (l/s ¼ 0.5). Using this result, we find that layer n is

crystalline, when the pressure P(z0n) in between layers n and n – 1

is higher than the bulk coexistence pressure. In the case of CP1 at

L ¼ 0.3s, the fitted m*coex ¼ 31.4 can be inserted in eqn (18) to

obtain the chemical potential at which a layer crystallizes. As

mentioned, this chemical potential is much lower than the chem-

ical potential at bulk PC-CP1 coexistence, therefore we have no

bulk pressure data at this chemical potential. Instead, we use the

local pressure P(z0n) as a function of the local chemical potential

m(z0n)¼m – mgz0n in our sediment, which results in a dimensionless

pressure d3P(z)/kBTx27 at m*(z) ¼ 31.4. Finally, we predict that

layer n will be crystalline when,

P(z0n) > P0, (20)

where P0 is equal to the coexistence pressure (see ref. 24,

ref. 20,22, and 23 and Table 3), except for the PC–CP1 transition

at L ¼ 0.3s where d3P0/kBTx27.
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Fig. 8 Top: Probability to find an hcp layer Phcp as measured using j3(zn)

(symbols), and as predicted by eqn (22) (smooth lines). Bottom: number of

hcp layers Nhcp and total number of crystalline layers Ntotal; inset: Nhcp/

(Nfcc + Nhcp) as measured and as predicted by eqn (23). The stacking of the

top and bottom layer is undefined, so Nfcc + Nhcp ¼ Ntotal – 2.
We must also estimate whether the free energy barriers or

kinetic hindrance that impaired the crystallization of CP1 for

L/s ¼ 0.3 and 0.6 and the melting of CP1 at chemical potentials

above m ¼ 31.4 for L/s ¼ 0.3 are as insurmountable in experi-

ments as in our simulations. We will do so by a crude order of

magnitude comparison of the accessible time scales in experi-

ments and simulations by the free (self) diffusion time sD. Only if

the time available for the typical experiment in diffusion units is

much larger than the ‘‘time’’ available in our Monte Carlo

simulations, the experiments can be expected to give very

different results. For micron-sized colloids sD is usually around

a few seconds,35 while sD is around a few milliseconds of wall

clock time in our simulations for our largest system sizes.

According to this crude comparison of time scales, our longest

simulation, that ran for one week, corresponds to an experiment

of many years. Therefore, it seems likely that the free energy

barriers that we encountered during our simulations will not be

overcome in experiments of micron-sized repulsive dumbbells.
Plastic crystal: hcp or fcc?

The dumbbells in the plastic crystal can either reside on an hcp

lattice or an fcc lattice. The free energy difference between these

two phases in bulk is small (( 0.01kBT per particle24), but still

much larger than the free energy difference between the fcc and

hcp phases of hard spheres (difference is of order 10�3kBT per
This journal is ª The Royal Society of Chemistry 2011
particle4). Furthermore, the stable phase for dumbbells of any

appreciable aspect ratio (L > 0.1s) is hcp, while the stable phase

for hard spheres is fcc. We investigated whether the small free

energy difference between the two types of plastic crystals can be

observed in a spontaneously crystallized sediment i.e. starting

from a fluid phase. We initiated all runs with zero particles; the

number of particles slowly increases during the simulation in the

grand canonical ensemble due to the insertion moves. In this

case, it is advantageous that the CP1 phase never forms spon-

taneously, as it allows us to investigate higher chemical potentials

than the plastic crystal–CP1 coexistence. In Fig. 8 we show the

probability to find an hcp layer as obtained from j3
hcp/(j3

fcc +

j3
hcp) for layers n ¼ 2, 3 and 4 for hard dumbbells with L ¼ 0.3s

and gravitational length l ¼ s/2. We ran 10 simulations at each

chemical potential, therefore the measured probabilities are

multiples of 0.1. We indeed find that the probability to find an

hcp layer is higher than the probability to find an fcc layer,

although for higher chemical potentials the data is rather noisy

because of the slow equilibration at high pressure. Using the bulk

free energy differences between hcp and fcc for hard dumbbells as

determined in ref. 24, one can estimate the probability to find an

hcp layer in the bulk. The probability that one layer in the bulk,

consisting of Nl particles, is hcp stacked is given by

PhcpðrÞ ¼
exp
�
� bNl fhcp

�
exp
�
� bNl fhcp

�
þ exp

�
� bNl ffcc

�; (21)

where f ^ F/N is the bulk free energy per particle, and where the

surface tension between fcc and hcp (which is only known for

hard spheres36) is ignored. Furthermore, we do not consider

grain boundaries or other defects within a layer, since these were

never observed in our simulations. This has the effects that

a layer is always either completely hcp or fcc stacked. We fit

Df(r) ¼ (Ffcc – Fhcp)/N to the bulk free energy difference as

a function of r and L. For L ¼ 0.3s it is always positive and of

order 0.01kBT per particle. Subsequently, we fit the density as

a function of the chemical potential in the bulk, r(m), and make

use of a variant of the local density approximation37 to write

Phcp(zn) ¼ 1/[1 + exp(bNlDf(r(m – mgzn)))], (22)

where Nl ¼ 124 is the number of particles in a single layer. We

plot this expression along with our simulation results in Fig. 8.

Although the dependence on m and the layer number can not be

confirmed by our data, we see that for low m our simulation

results agree roughly with the theoretical prediction. In Fig. 8 we

also show the number of hcp stacked layers, Nhcp along with the

total number of crystalline layers Ntotal and, in the inset, the ratio

of the Nhcp over the total number of crystalline layers for which

the stacking can be defined, i.e. Ntotal – 2. Similarly as described

above, the average number of layers that are hcp stacked can be

calculated using the bulk free energy:

Nhcp

	 

¼
P
fsng
P

n sn exp
�
þ b

P
n snDFn

�
P
fsng exp

�
þ b

P
n snDFn

� (23)

where n denotes the nth layer, sn denotes the stacking of layer

n: sn ¼ 1 if the layer is hcp stacked, sn ¼ 0 if the layers is fcc

stacked, {sn} is a particular stacking configuration, such that the

sum over {sn} is over all possible stacking configurations and
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finally DFn ¼ NlDf(r(m – mgzn)). This sum can be calculated

explicitly because the number of layers is not very large. From

the inset of Fig. 8, we see that expression (17) overestimates the

actual number of layers, except at low chemical potential. We

attribute this discrepancy to the noise due to slow thermalization,

which tends to randomize the stacking i.e. bring the stacking

probability closer to 0.5.
Conclusion

We investigated the structure and phase behavior of hard

dumbbells in a gravitational field. The structure of the fluid is

influenced by the presence of the hard wall showing oscillations

not only in the density profile but also in the orientational order

profile. The structure of the crystal is not very sensitive to the

effect of the gravitational field as the dumbbells in a crystal are

already layered. An interesting effect of a gravitational field for

particles that have more than one crystal phase is that coexis-

tences can be observed between more than two phases, in this

case between the fluid, plastic crystal and aligned crystal phases

for short dumbbells and the fluid, aperiodic crystal and aligned

crystal phases for long dumbbells. The locations of the interfaces

between the various phases in a gravitational field are usually

well described by comparing local chemical potentials (or pres-

sures) to the bulk coexistence state points, although special care

must be taken when considering the phase transformation

between two crystals with mutually incompatible structures. This

is an interesting and surprising result, because we are considering

gravitational lengths of the order of the diameter of the particle,

for which the local density approximation is assumed to be

invalid. Here, the local density approximation refers to the

assumption that the free energy of a slab at a certain height is

equal to the bulk free energy with the bulk density replaced by

the local density in the slab.37 Finally, we showed that the free

energy difference between the fcc and the hcp type of the plastic

crystal of hard dumbbells results in a directly observable pref-

erence for hcp in a sediment of hard dumbbells.
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