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Polarizability and alignment of dielectric nanoparticles in an external
electric field: Bowls, dumbbells, and cuboids
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We employ the coupled dipole method to calculate the polarizability tensor of various anisotropic
dielectric clusters of polarizable atoms, such as cuboid-, bowl-, and dumbbell-shaped nanoparticles.
Starting from a Hamiltonian of a many-atom system, we investigate how this tensor depends on
the size and shape of the cluster. We use the polarizability tensor to calculate the energy difference
associated with turning a nanocluster from its least to its most favorable orientation in a homogeneous
static electric field, and we determine the cluster dimension for which this energy difference exceeds
the thermal energy such that particle alignment by the field is possible. Finally, we study in detail the
(local) polarizability of a cubic-shaped cluster and present results indicating that, when retardation is
ignored, a bulk polarizability cannot be reached by scaling up the system. © 2011 American Institute
of Physics. [doi:10.1063/1.3637046]

I. INTRODUCTION

Monodisperse (colloidal) particles with a wide variety of
shapes can nowadays be synthesized in the nanometer to mi-
crometer size regime.1, 2 These particles can serve as building
blocks for new materials and devices with great technolog-
ical potential. Self-assembly of the particles is an important
process by which large-scale nano-structures can be formed.
This self-assembly process can be spontaneous in the case
of favorable thermodynamic conditions and suitable effec-
tive particle-particle interactions,3–10 but can also be steered
and further manipulated by external fields. Rodlike parti-
cles in a liquid dispersion, for instance, can spontaneously
align at sufficiently high concentrations solely due to their ex-
cluded volume interactions,11 but their self-organisation has
also been driven by external magnetic or electric fields,12–16

by substrates that preferentially orient the rods,17, 18 or by
fluid flow.19 Also, more complicated shapes have been syn-
thesized and studied, for instance, dumbbells,2, 20–22 cubes,23

and bowls.21, 24, 25

In this article we study the electric-field assisted align-
ment of anisotropic nanoparticles by calculating their polar-
izability tensor starting from a microscopic picture of po-
larizable units that we call “united atoms” or just briefly
“atoms,” even though also larger units could have been taken.
We only consider dielectric particles,26, 27 and not metal-
lic particles.28–30 From the polarizability tensor of a non-
spherical cluster of atoms, the orientation-dependent electro-
static energy follows, and hence the cluster’s ability to align
in an external electric field. We focus here on cuboid-shaped
(rods and platelets), bowl-shaped, and dumbbell-shaped par-
ticles, for which we consider various shape and size parame-
ters. The polarizability of similar shapes have in recent years
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been under study using continuum theory31–35 and on several
occasions we briefly compare those results to ours.

Our calculations are based on the coupled dipole method
(CDM), a formalism introduced by Renne and Nijboer in the
1960s.36, 37 In the CDM, each atom in a cluster is treated as
a Lorentz atom (or Drude oscillator), in which the electron is
bound to the nucleus by a harmonic force. The atoms have
no permanent electric dipole moment, but their dipole mo-
ments are induced by the local electric field. This model has
been shown to yield the van der Waals interaction between
two atoms.36, 38, 39 In the CDM, many such dipolar atoms in-
teract and the potential energy, including all many-body ef-
fects, can be calculated from the eigenfrequencies of a set
of coupled harmonic oscillators, yielding forces equivalent to
Lifschitz’s quantum-electrodynamic fluctuation theory.40 Due
to its full many-body nature the CDM is more accurate than
continuum theories based on pairwise summations of atomic
van der Waals interactions, as employed in, e.g., the Hamaker-
de Boer approach41, 42 that underlies the treatment of disper-
sion forces in DLVO-theory.43, 44 In this article we do not con-
sider solvent effects explicitly.

II. FORMALISM OF THE CDM: POTENTIAL ENERGY,
POLARIZABILITY, AND ORIENTATIONAL ENERGY

A. Introduction

In the Lorentz model for atoms in an external electric
field, an atom is modeled as a dipole consisting of a nucleus
and an electron bound to it by a harmonic force. Thus, if the
electron is at a nonzero distance from the nucleus, the atom
is effectively an induced electric dipole. In this simple model,
the displacement u of the electron with respect to the nucleus,
and thus the atom’s polarization p = eu, is linearly dependent
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on the local electric field E that the atom is subjected to,

eu = p = α0E,

where e is the elementary charge. Here, α0 is the polarizability
of the atom, given by

α0 = e2

meω
2
0

, (1)

where me denotes the electron mass and ω0 is the angular fre-
quency associated with the harmonic force that binds the elec-
tron to the nucleus.45 Since an electric dipole will produce a
nonzero electric field in its surroundings, two of these Lorentz
atoms will interact, mediated by the electric field. It has been
shown that this dipole-dipole interaction yields the unretarded
Van der Waals interaction (∝ r−6) between the pair of atoms
(at large separation r).36 If N of these atoms are brought to-
gether and allowed to interact, the dipole-dipole interactions
will influence the electric properties of the cluster as a whole.
In general, the total polarizability of the cluster cannot be ex-
pected to equal Nα0, but will instead be modified because the
atoms are subject to each other’s induced electric field.

B. Static polarizability and orientational energy of
dipole clusters in an external electric field

The Hamiltonian of a set of N Lorentz atoms at fixed
positions ri (i = 1, . . . , N) has been given and studied in
Refs. 27, 36, 38, 46–48. In the present work, we use the same
Hamiltonian, but add an extra term to allow for an externally
exerted, spatially homogeneous, electric field E0, such that the
complete expression for the Hamiltonian is

H =
N∑

i=1

k2
i

2me

+
N∑

i=1

meω
2
0u2

i

2

−
N∑

i,j=1

e2ui · Tij · uj

2
−

N∑
i=1

eui · E0, (2)

where we denote the momentum of the electron of atom i by
ki . The 3 × 3 matrix Tij is the dipolar tensor, given in terms
of the separation vector rij = ri − rj of atoms i and j , by

Tij =
⎧⎨
⎩

(3rij rij /|rij |2 − I)

|rij |3 , if i �= j

0, if i = j

,

where I denotes the 3 × 3 identity matrix and 0 denotes the
3 × 3 null matrix. Note that the dipolar tensor is not only
symmetric in its indices, Tij = Tji , but also symmetric in its
elements, Tij = TT

ij . As is clear from the Hamiltonian equa-
tion (2) and the form of Tij , this model describes interatomic
interactions in an instantaneous, nonretarded way. Therefore,
the validity of the theory is limited to model systems where
the relevant length scales are small enough for the speed of
light to be essentially infinite.

We now introduce 3N -dimensional vectors K, U , and E0,
which are built up from the ki , ui , and N copies of E0, re-

spectively. We also introduce a 3N × 3N -dimensional matrix
T , built up from the Tij . In terms of these objects, the Hamil-
tonian equation (2) is given by

H = K2

2me

+ 1

2
meω

2
0U · (I − α0T ) · U − eU · E0,

where α0 is given in Eq. (1), and I denotes the 3N

× 3N -dimensional identity matrix. Next, we introduce a
3N -dimensional vector U0 that satisfies

meω
2
0 (I − α0T ) · U0 = eE0, (3)

and use it to complete the square in the Hamiltonian,
obtaining

H = H0 + VE (4)

with

H0 = K2

2me

+ 1

2
meω

2
0(U − U0) · (I − α0T ) · (U − U0),

(5)

VE = −1

2
α0E0 · (I − α0T )−1 · E0. (6)

Note that VE is constant with respect to the generalized mo-
menta and coordinates K and U − U0, respectively. The 3N

oscillatory modes associated with the (harmonic) Hamilto-
nian H0 are given by

(U (k) − U0) (t) = (U (k) − U0) (0) exp (−iωkt) ,

(k = 1, . . . , 3N ), (7)

where the amplitude vectors (U (k) − U0)(0) and the frequen-
cies ωk are given by an eigenvalue equation for the matrix
(I − α0T ):

ω2
k

ω2
0

(U (k) − U0) (0) = (I − α0T ) (U (k) − U0) (0) . (8)

If we denote the eigenvalues of the matrix T by λk , it is seen
that the eigenvalues of (I − α0T ) are (1 − α0λk), and thus
that the allowed frequencies are

ωk = ω0

√
1 − α0λk.

Assuming the system to be in the electronic ground state, we
arrive at the total potential energy

V = V0 + VE, (9)

where V0 is the ground state energy of H0, given by the sum
of mode frequencies,

V0 = 1

2
¯

3N∑
k=1

ωk, (10)

where ¯ is the reduced Planck constant.
We note that V0 depends solely on the matrix (I − α0T )

and, thus, only on the relative coordinates rij of the atoms
with respect to each other. It follows that this term is com-
pletely independent of the orientation of the cluster with re-
spect to the electric field. In the absence of other clusters, V0

can therefore be interpreted as the self-energy of the cluster;
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in the presence of other clusters, the term also contains the in-
teraction energy between the clusters.46 For the analysis of the
response of the clusters to an external electric field, however,
we turn to the second term VE of Eq. (9): this term, given in
Eq. (6), contains all the orientational potential energy of the
cluster in the external electric field.

Clearly, the Hamiltonian of Eq. (4) describes a set of har-
monic oscillators with equilibrium positions given by U0 and
a shifted ground state energy V . Using this interpretation of
U0, we show, in the following, that VE is the energy of the
total time-averaged dipole moment of the cluster in the exter-
nal electric field. We first rewrite Eq. (3) in terms of the mean
polarization vector P ≡ eU0,

(I − α0T ) · P = α0E0, (11)

and use this equation, in combination with the expression for
VE given in Eq. (6), to derive

VE = −1

2
E0 · P = −1

2
E0 · pc, (12)

where

pc ≡
N∑

i=1

pi (13)

denotes the total polarization of the cluster and pi ≡ eu0,i

denotes the mean (time-averaged) polarization of atom i, as
given by the elements of P . From the form of Eq. (12), it
is clear that VE is the energy of an induced dipole pc in an
electric field E0.45 If we divide the matrix (I − α0T )−1 into
3 × 3 sub-blocks Dij , it can easily be seen from Eq. (11) that
pi = α0

∑
j Dij · E0, and thus that

pc = α0

N∑
i,j=1

Dij · E0 ≡ αc · E0, (14)

where we define the 3 × 3 cluster polarizability matrix by

αc ≡ α0

N∑
i,j=1

Dij . (15)

An alternative derivation of Eqs. (11)–(14) is given in
Ref. 26. Note that αc depends solely on the spatial configu-
rational properties of the cluster, not on the external electric
field. Moreover, one can prove mathematically that αc is a
symmetric matrix, as long as each atom has an equal polariz-
ability α0.49 This symmetry of αc implies that its eigenvectors
are orthogonal, which in turn implies that it is always possi-
ble to transform the system to an orthogonal basis, spanned
by these eigenvectors, in which αc is diagonal.

Computationally, Eq. (15) is not a practical way of de-
termining αc, since it involves the very expensive operation
of explicitly calculating the inverse of a large matrix. Numer-
ically, the most favorable approach is to use Eq. (14): after
choosing a suitable coordinate system, we apply an electric
field in the x direction and calculate the cluster polarization
by solving Eq. (11). Efficient numerical algorithms for solv-
ing a set of linear equations are readily available, for example,
in the LAPACK package.50 Having solved Eq. (11) for P , we
calculate the sum in Eq. (13), then divide the resulting vector

by the electric field strength; the result is the first column of
αc. To gain the remaining two columns, this procedure is then
repeated in the other two Cartesian directions.

If we were to neglect the dipolar interactions within the
cluster, its polarization would be simply Nα0E0, i.e., the clus-
ter polarizability would simply be a scalar Nα0. The ratio of
the “actual” polarizability αc and this “naive” guess for the
polarizability,

f = αc

Nα0
, (16)

is a measure of how much the polarizability is enhanced due
to dipole-dipole interactions and may therefore be called the
“enhancement factor” of the dipole cluster.26

In terms of αc, we can rewrite Eq. (12) compactly as

VE = −1

2
E0 · αc · E0. (17)

This expression can then be written in terms of the eigen-
values αn and the corresponding normalized eigenvectors vn

(n = 1, 2, 3) of αc:

VE = −1

2

3∑
n,m=1

(E0 · vn) (vn · αc · vm) (vm · E0)

= −1

2

3∑
n=1

(E0 · vn)2 αn. (18)

In the first line, we inserted twice a complete orthonormal set
of eigenvectors, while, in the second line, we made use of the
fact that αc · vm = αmvm and vn · vm = δnm. The inner prod-
ucts obey the rule

∑
n (E0 · vn)2 = E2

0 , from which it follows
that

∑3
n=1 (E0 · vn)2 αn ≤ αmaxE

2
0 , where αmax = max ({αn})

and the equality is achieved if and only if E0 ‖ vmax , where
vmax is the eigenvector corresponding to αmax . It follows that
VE is minimized by an electric field in the direction of vmax .
A similar reasoning leads to the observation that VE is max-
imized by an electric field in the direction of the eigenvec-
tor with the smallest eigenvalue, αmin. The difference |�|
between maximum and minimum orientational energy VE is
thus given by

|�| = 1

2
(αmax − αmin) E2

0 .

Here, for later purposes, we intentionally kept the freedom of
choosing the sign of �.

C. Rotationally symmetric clusters

The bowl- and dumbbell-shaped nanoparticles consid-
ered in this article are clusters with an axis of rotational sym-
metry. The rotational invariance implies that the polarization
that would be induced by an electric field in the direction of
the symmetry axis must lie along this symmetry axis, and
therefore that this axis is an eigenvector of the cluster’s po-
larizability matrix αc. Since it is known that αc must be a
symmetric matrix, we know that its eigenvectors must be per-
pendicular to each other. This leads to the conclusion that the
preferred direction of any rotationally symmetric cluster must
either lie along the rotational symmetry axis or perpendicular
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to it. In this article, we always choose our coordinate system
such that this rotational symmetry axis lies along the z axis,
and choose the x and y directions such that αc is diagonal
(i.e., the Cartesian axes are the eigenvectors of αc). Moreover,
for rotationally symmetric clusters, αxx = αyy , and hence we
are left with only two independent entries on the diagonal of
αc, one of which will be αmax and the other will be αmin. For
the remainder of this article, we now define the orientational
energy difference as51

� ≡ 1

2
(αzz − αxx) E2

0 , (19)

where we choose the sign of � such that � is positive when
the preferred direction of the cluster is along the rotational
symmetry axis (which is equivalent to αzz > αxx).

Using Eq. (16), we can write Eq. (19) as

� = 1

2
�f Nα0E

2
0 , (20)

where

�f = fzz − fxx.

As will be shown for all the cluster shapes in this article, the
quantity �f is largely independent of the cluster size, pro-
vided the number of atoms is large enough. In this regime,
�f depends only on the shape of the cluster and on the di-
mensionless interatomic distance a/α

1/3
0 . This assertion does

not state anything about the individual values of fzz and fxx

as a function of cluster size. From the numerical data, it turns
out that these quantities can still depend on cluster size, albeit
usually only weakly.

It is of interest to compare � to the thermal energy kBT ,
since only if � � kBT , an electric field can be used to orient
the particle. Equating � = kBT we derive the required num-
ber of atoms N∗ from Eq. (20),

N∗ = 2kBT

�f α0E
2
0

. (21)

In Sec. IV, we will use this expression to calculate N∗ for
bowls and dumbbells and hence estimate the spatial dimen-
sions required for aligning these particles using an electric
field.

D. Fourfold rotationally symmetric clusters

One of the discussed cluster shapes in this article is a
cluster with a cubic shape. If we choose the coordinate axes
along the ribs of the cube, it can be easily seen from sym-
metry considerations that an electric field applied in the x di-
rection must induce a total cluster polarization p(cube)

c with a
nonzero component only in the x direction. Similarly, the po-
larizations as a result of electric fields in the y and z directions
will also point along the y and z axes, respectively. Because
these resulting polarizations are proportional to the columns
of α(cube)

c , it follows that α(cube)
c must be diagonal in this basis.

Moreover, because the cube is invariant under 90◦ rotations,
we do not expect the induced polarization of the cube to be
dependent on whether the electric field is applied in the x, y,
or z direction and, therefore, the entries on the diagonal of

α(cube)
c must be equal. Hence,

α(cube)
c ∝ I. (22)

Note that, in this case, both the polarizability and the en-
hancement factor can be described by a scalar: the former by
the proportionality factor between α(cube)

c and I, the latter by
this “scalar polarizability” divided by Nα0. Since in this case
αxx = αyy = αzz, we find, from Eq. (19), that � = 0. This
kind of cluster will therefore not have a preferred orientation
within an external electric field. Physically, this is a surprising
result since, a priori, one could expect an anisotropic cluster
such as a cube to prefer to align one of its features (such as its
ribs, faces, or vertices) along the electric field. However, sim-
ple symmetry arguments negate this expectation. For cuboid-
shaped rods and platelets, on the other hand, as is the case
for bowls and dumbbells, αxx = αyy �= αzz and hence � �= 0.
In Sec. III, we will use Eq. (21) to calculate N∗ for rods and
platelets and estimate the minimum size of the particles to
align them in an electric field.

E. Units of distance

Throughout the remainder of this paper, we will usually
measure lattice spacings in units of α

1/3
0 . The reason is that,

throughout the theory, the matrix T is always multiplied by a
factor α0. Upon applying this multiplication to the submatri-
ces Tij , we get

α0Tij = (3sij sij /|sij |2 − I)

|sij |3 (i �= j ) ,

where

sij = rij /α
1/3
0 .

Clearly, the relevant parameters are not the rij themselves, but
rather the dimensionless combinations sij = rij /α

1/3
0 . Using

these dimensionless distances, we thus eliminate the atomic
polarizability as an explicit input parameter. At the same time,
the dimensionless combinations are O (1) in magnitude (for
typical lattices and atomic polarizabilities), which is conve-
nient for computational purposes. We use the numerical data
provided in Ref. 26 to calculate the dimensionless lattice
spacing

ã ≡ a/α
1/3
0

for several substances, the result of which is listed in
Table I. For clarity, we note here that all other physical quan-
tities remain unscaled in this paper.

TABLE I. Lattice spacings a, atomic polarizabilities α0, and dimensionless
lattice spacings ã ≡ a/α

1/3
0 of some typical substances. (See Ref. 26.)

Substance a(Å) α0(Å3) ã

Hexane 6.009 11.85 2.64
Silica 3.569 5.25 2.05
Sapphire 3.486 7.88 1.75
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III. DIELECTRIC RODS AND PLATELETS

A simple (but useful) example illustrating the intro-
duced quantities are dielectric rods and platelets. We consider
cuboid-shaped clusters, with the atoms on a simple cubic (sc)
lattice with a dimensionless lattice constant ã = 2. Let L be
the number of atoms along the edge parallel to the axis of
90◦ rotational symmetry and l be the number of atoms along
the other two edges. Then the shape of the l × l × L cuboid
is defined by the ratio l/L. This cluster shape is rod-like for
l/L < 1, cubic-shaped for l/L = 1, and platelet-shaped for
l/L > 1.

The edge of length L of the cuboid is the axis of fourfold
rotational symmetry, and we choose the z axis along this edge.
In this coordinate system, the polarizability matrix is diagonal
with only two independent elements, αxx = αyy and αzz.

A well-known property of dipoles is that it is energeti-
cally favorable for them to lie head-to-toe and unfavorable to
lie side-by-side. Therefore, for l/L < 1 (rods), if we apply an
electric field in the z direction, thus inducing a polarization
of the dipoles along the “head-to-toe direction,” we expect
the dipole-dipole interactions between the atoms to enhance
the induced polarization, because there are more dipoles ly-
ing head-to-toe than side-by-side. On the other hand, an elec-
tric field in the transverse direction (x-y plane) would induce
more atomic polarizations lying side-by-side than head-to-toe
and therefore, in this case, we expect the interactions to re-
duce the induced polarization. Also, we expect this effect to
be stronger for smaller l/L ratios, since the smaller this ratio,
the more extreme the difference in the number of head-to-toe
and side-by-side interactions will be. We expect the opposite
to happen for l/L > 1 (platelets), for similar reasons.

In Fig. 1(a), we plot the elements of the enhancement
factor fxx = αxx/Nα0 and fzz = αzz/Nα0, as a function of
l/L, for L = 10. Our heuristic expectation that the enhance-
ment in the z direction is larger than that in the x direction for
l/L < 1 is confirmed by this plot. For small l/L, the inter-
atomic interactions reduce the polarization when the electric
field is applied in the x direction, while they enhance it when
it is applied in the z direction. However, fxx becomes larger
than unity for l/L � 0.73, where atomic interactions enhance
the polarization in both directions. We note that fxx and fzz

cross over at l/L = 1, which is the special case of a dielectric
cube-shaped particle. Here, the enhancements in both direc-
tions equal each other, as was predicted in Eq. (22). The value
of the enhancements for l/L = 1 is fxx = fzz ≈ 1.05687.
The L-dependence of the enhancement factor of cubic
clusters will be discussed in Sec. V. For l/L > 1 (platelets),
the cuboid polarizability is more enhanced in the x direction
than in the z direction, and fzz becomes smaller than unity for
l/L � 1.17, which means that the interatomic interactions
start reducing the z-polarizability for sufficiently flat platelets.

In Fig. 1(b), we plot the orientational energy difference �

[as defined in Eq. (19)], for a typical electric field strength of
E0 = 100 V mm−1, an atomic polarizability α0 = 5.25 Å3, at
room temperature (T = 293 K), as a function of the number
of cluster atoms, for several values of l/L < 1 (rods). The lat-
tice is simple cubic with lattice spacing a = 2α

1/3
0 ≈ 3.48 Å.

Clearly, � is linear in the number of particles. We fit the

l / L 0.10

l / L 0.33

l / L 0.17

0 500 1000 1500 2000 2500
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 (b)

(a)
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FIG. 1. Properties of an l × l × L cuboid-shaped cluster of atoms with
atomic polarizability α0 on a simple cubic lattice with spacing ã = 2. (a)
The elements fxx (red) and fzz (blue) of the enhancement factor matrix as
a function of the shape parameter l/L, for L = 10. Note that fxx = 1 at
l/L ≈ 0.73, fzz = 1 at l/L ≈ 1.17, and fxx = fzz = 1.05687 at l/L = 1.
(b) The difference �f = fzz − fxx of the enhancement factor elements as
a function of l/L, for several values of L. (c) The energy difference � (in
units of kBT ) of turning the cuboidal rod from its least to its most favorable
orientation in an external electric field, as a function of the number of atoms
N in a rod, with shape parameters l/L = 0.10, 1/6 ≈ 0.17, and 1/3 ≈ 0.33.
System parameters are given in the text, and the solid lines are linear fits to
the data.

data to the functional form of Eq. (20), with �f being fit
parameter.

For sufficiently large N , we can confirm from Fig. 1(b)
that �f is constant with respect to the particle size, and that
hence �f depends only on the shape parameter l/L (save for
the internal parameter ã). As mentioned before, the individual
values for fzz and fxx are allowed to vary with size, but the
numerical data shows that they do so only slightly in the case
of rods.
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As an example, for l/L = 0.10, we find, for the param-
eters of Fig. 1(b), that �f ≈ 1.1. By substituting the afore-
mentioned numerical data into Eq. (21), it follows that N∗

≈ 1.3 × 109. Using the shape parameter l/L = 0.1, the num-
ber of atoms along the long edge of the cuboid is calculated as
L∗ = (100N∗)1/3 ≈ 5.0 × 103 which, using a ≈ 3.48 Å, cor-
responds to a physical length of the long edge of ∼1.8 μm
and corresponding length of the short edges of 0.18 μm.

A simple order-of-magnitude calculation shows that re-
tardation effects, which are not included in our theory, be-
come important when length scales are of the order of
∼500 nm. The estimate of 1.8 μm for alignment exceeds this
length scale and thus, retardation effects are expected to be
important. The exact magnitude of the error this produces in
our estimate is hard to determine without including retarda-
tion effects in the CDM, but the expectation is that the error
will be marginal, since our estimated length scale does not
dramatically exceed the 500 nm boundary.

In Fig. 1(c), we plot �f as a function of l/L, for sev-
eral values of L. Interestingly, these graphs overlap for suf-
ficiently large N , again confirming the independence of �f

of L. It appears that for cuboids, a “sufficiently large N” is
easily achieved: already for l × l × 5 cuboids, there is almost
perfect collapse of the data.

A. Dielectric strings

A special case of a dielectric rod is a cluster consisting
of L Lorentz atoms positioned on a straight line, separated
by an interatomic distance a. This shape can be viewed as a
L × 1 × 1 cuboid for which l/L becomes arbitrarily small as
L increases. We will briefly discuss this cluster shape here,
because it has been investigated previously.26

For lattice spacing ã = 2, the enhancement factor ma-
trix elements fxx and fzz are plotted, as a function of L in
Fig. 2(a). We note that this is not a new result, Kim et al. pro-
duced a similar plot in Ref. 26. From fzz > fxx , it is clear that
an electric field applied in the z direction will induce a higher
polarization than the one applied in the x direction. The en-
hancement in the z direction, fzz, is greater than unity, mean-
ing that the interactions enhance the induced polarization, as
expected. On the other hand, fxx is smaller than unity, mean-
ing that the polarizability is reduced by the interactions. The
limiting value of fzz for L → ∞ is fzz (L → ∞) ≈ 2.5064
while, in the transverse direction, fxx (L → ∞) ≈ 0.7689 .26

In Fig. 2(b), we plot the orientational energy differ-
ence equation (19) for three values of the dimensionless in-
teratomic distance ã, for a typical electric field strength of
E0 = 100 V mm−1, an atomic polarizability of 5.25 Å3, and
at room temperature (T = 293 K). To the numerical results,
linear functions of the form

� = 1

2
�f α0E

2
0 (L − L0) (23)

have been fitted with �f and L0 as fit parameters. We note
here that Eq. (23) is compatible with Eq. (20) when L  L0.
In this regime, atomic strings will have a negligible end effect.
We usually find that L0 � O (10) so, often, L  L0. As an
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FIG. 2. (a) The diagonal elements fxx (red squares) and fzz (blue circles) of
the enhancement factor matrix of a straight line of L dipoles along the z axis.
The spacing between the atoms is ã = 2 (note that for fii , no other parame-
ters are needed to define this system). (b) The energy difference � associated
with turning this string from its least to its most favorable orientation in an
external electric field E0 = 100 V mm−1, for three different values of the di-
mensionless interatomic distance, ã = 1.75 (red), ã = 2 (blue), and ã = 3
(yellow). Choosing atomic polarizability α

1/3
0 = 5.25 Å3 (silica), these val-

ues correspond to spacings of, respectively, a ≈ 3.04 Å,3.48 Å, and 5.21 Å.
The temperature is T = 293 K (room temperature).

example, the fit parameters for ã = 2 turn out to be

�f ≈ 1.72, L0 ≈ 1.98. (24)

Using Eqs. (23) and (24), we can make a prediction for
the length L∗ of an atomic string for which the orientational
energy difference becomes of the order of kBT . Equating �

= kBT , it is easily seen that

L∗ = 2kBT

�f α0E
2
0

+ L0 ≈ 8.1 × 108.

Since in this case a = 2α
1/3
0 ≈ 3.5 Å, we find a minimum

string length of about a meter in order to experience any
significant effect from the electric field, which is clearly
unphysical.

IV. DIELECTRIC BOWLS AND DUMBBELLS

In this section we consider two other shapes of dipole
clusters, namely, bowl-shaped and dumbbell-shaped clusters.
As mentioned in Sec. I, these shapes have recently been
synthesized and show self-assembly behavior that can be
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FIG. 3. Construction and definition of parameters for (a) bowl and (b) dumbbell. (a) The bowl diameter σ and the bowl thickness d completely define its shape,
as follows. If d < σ/2, the shape of the bowl is defined by subtracting one sphere from another (the blue area). (See Ref. 21.) If d > σ/2, we let d → σ − d

and use the same construction, but take the intersection of the spheres instead of the difference (the orange area). Note that in the latter case, the shape is no
longer a “bowl” in the traditional sense of the word. (b) The shape of the dumbbell is constructed by adding two (overlapping) spheres. The sphere diameter σ

and the distance between the sphere centers L completely define the shape of the dumbbell. Note that if L > σ , the “dumbbell,” in fact, consists of two separate
spheres.

influenced by an external electric field. It is of interest to in-
vestigate how the shape and size of such particles influence
their interaction with the electric field.

The shape parameters of the bowl and dumbbell, d/σ (the
ratio of the maximum thickness of the bowl and its diameter)
and L/σ (the ratio of the center-to-center distance of the com-
posing spheres and their diameter), respectively, as well as
their theoretical construction, are given in Fig. 3. For the bowl,
d/σ = 0 is the limit of an infinitesimally thin hemispherical
shell, d/σ = 1/2 corresponds to a half sphere, and d/σ = 1
corresponds to a sphere. For the dumbbell, L/σ = 0 refers to
a sphere, L/σ = 1 corresponds to two touching spheres, and

for L/σ > 1, the spheres are actually separated by a gap. The
locations of the atoms in the clusters can be inferred by inter-
secting the cluster shape with a lattice of our choice. In the
present work, we will focus on a simple cubic lattice.52 Ex-
amples of resulting clusters are depicted in Fig. 4, in which
our choice of coordinate system is also defined, such that the
cluster polarizabilities are diagonal with αxx = αyy .

A. Bowls

In Fig. 5(a), we plot αxx and αzz for a bowl-shaped par-
ticle, consisting of atoms on a sc lattice with lattice spacing

FIG. 4. Examples of the dipole setup for (a) a bowl (shape parameter d/σ = 0.275) and (b) a dumbbell (shape parameter L/σ = 0.55), both intersected with
a simple cubic lattice. Each sphere corresponds to an inducible dipole (Lorentz atom).
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FIG. 5. Quantities associated with a bowl-shaped cluster of atoms on a simple cubic (sc) lattice with dimensionless lattice constant ã = 2, shape parameter d/σ ,
and diameter σ [illustrated in Fig. 3(a)]. For σ/a = 20, panel (a) shows the elements αxx (red) and αzz (blue) of the polarizability tensor, and (b) the elements
fxx (red) and fzz (blue) of the enhancement factor tensor, both as a function of d/σ . The light red and blue crosses in panel (b) indicate the enhancement
factor elements of a hemisphere as calculated using continuum theory in Ref. 33. Panel (c) shows the energy difference of turning a bowl from its least to its
most favorable orientation in an external electric field E0 = 100 V mm−1, as a function of the number of atoms in the bowl, for d/σ = 0.25, 0.4, and 0.75. The
atomic polarizability is 5.25 Å3 (yielding lattice constant a ≈ 3.48 Å) and the temperature is T = 293 K. Panel (d) shows the difference |�f | = |fzz − fxx | of
the enhancement factor elements in the z and x directions, as a function of d/σ , for σ/a = 7.5, 10.5, 13, 15.5, and 18, showing a strong dependence on the
shape parameter d/σ and a weak dependence on the size parameter σ/a.

ã = 2 and fixed bowl diameter σ/a = 20, as a function of the
shape parameter d/σ , defined in Fig. 3. As expected, both
αxx and αzz rise as d/σ increases from d/σ = 0 (a hemi-
spherical shell) to d/σ = 1 (a sphere), because the number
of atoms increases. Clearly, however, αxx > αzz for all d/σ

except d/σ = 1, meaning that the bowl is more polarizable in
the x direction and, hence, from Eq. (12), has a lower orien-
tational energy when the field is along the x direction.

Plotting the diagonal elements of the enhancement factor
matrix in Fig. 5(b), we note that fxx increases upon decreas-
ing d, but that fzz reaches a minimum at around d/σ ≈ 0.5,
where the interactions’ diminishing effect on the polarizabil-
ity in the z direction is largest. In the same figure, we indicate
the results for a hemisphere (corresponding to d/σ = 0.5),
as presented in Ref. 33. Considering that the theoretical ap-
proach presented in that work is completely different from
ours, the agreement is excellent.

The orientational energy difference � for bowls com-
posed of atoms on a sc lattice is plotted in Fig. 5(c) as
a function of the number of atoms N for several values
for d/σ , for an electric field strength E0 = 100 V mm−1, an
atomic polarizability α0 = 5.25 Å3, and at room tempera-
ture (T = 293 K). To the numerical results, linear functions

of form (20) have been fitted to determine �f , which we
now find to be negative. This implies that the axis of rota-
tional symmetry is, for bowl-shaped particles, the least fa-
vorable direction for the external field. The numerical data
show that the individual values of fxx and fzz vary (slightly)
with cluster size but that the difference �f is essentially
constant. The latter is illustrated in Fig. 5(d) where we plot
|�f | as a function of the shape parameter d/σ , for sev-
eral different bowl diameters σ . These graphs clearly over-
lap for higher values of σ or d/σ , which means that for
those values, �f is indeed independent of the particle size
parameter σ .

As an example, for d/σ = 0.25, we have as fit parame-
ter �f ≈ −0.442, which we can use to predict the size of a
nanocluster for which the orientational energy difference |�|
= kBT ; using Eq. (21) with E0 = 100 V mm−1 and α0

= 5.25 Å3 yields N∗ ≈ 3.1 × 109. Extrapolating from the
phenomenological dependence of N on σ (N ∝ σ 3), we ex-
pect to reach this number of particles for σ ∗/a ≈ 2.7 × 103

(as a comparison, the presently shown data goes up to σ/a

= 37). Since a = 2α
1/3
0 ≈ 3.5 Å in this case, we can estimate

the diameter σ ∗ ≈ 1.0 μm beyond which the electric field be-
comes capable of aligning the bowls.
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B. Dumbbells

In Fig. 6(a), we plot αxx and αzz for a dumbbell parti-
cle with fixed sphere diameter σ/a = 20, consisting of atoms
on a sc lattice with spacing ã = 2, as a function of the shape
parameter L/σ , defined in Fig. 3. With increasing L/σ (and
thus increasing L, since σ is fixed), the number of atoms in-
creases, resulting in a rising trend of αii for L/σ < 1. For
L/σ > 1 (two separate spheres), an increase in L no longer
increases the number of particles and instead only increases
the distance between particles in both spheres, reducing their
interactions. The result is that αzz decreases, while αxx , which
benefits from less interactions, keeps increasing. We note here
that αzz already starts decreasing before L/σ = 1, which can
be explained by the fact that close to L/σ = 1, the number
of particles does not increase enough with increasing L to
make up for the larger distance between particles in different
spheres.

We plot the enhancement factor elements fxx and fzz in
Fig. 6(b). We notice here again that fzz already “stalls” at
L/σ ≈ 0.7 and decreases before L/σ reaches unity, while
fxx displays the opposite behavior. Also note that, for L

> σ , as the distance between the separate spheres increases,
the enhancement factors decay to that of a single sphere.

This was to be expected as the enhancement factor of two
spheres at infinite separation is equal to that of a single
sphere. Again, we indicate in the graph results that are cal-
culated in Ref. 34 using continuum theory for two touching
spheres (L/σ = 1) and note the excellent agreement with out
work.

The energy difference between the most and least favor-
able orientations is given by Eq. (19) and is plotted in Fig. 6(c)
as a function of N for three different values of L/σ , for
E0 = 100 V mm−1, α0 = 5.25 Å3, ã = 2, and room temper-
ature T = 293 K. Using Eq. (20), the fit parameter for dumb-
bells with L/σ = 0.85 turns out to be �f ≈ 0.323, such that
the number of particles for which the energy difference be-
comes comparable to the thermal energy is N∗ ≈ 4.3 × 109.
This corresponds to σ ∗/a ≈ 1.6 × 103, whereas the presently
shown data goes up till σ/a = 20.5. Inserting a ≈ 3.5 Å, we
obtain σ ∗ ≈ 0.6 μm as an estimate for the typical dumb-
bell diameter for which the orientational energy becomes
important.

In Fig. 6(d), we plot �f as a function of the dumbbell
shape parameter L/σ , for several size parameters σ . Clearly,
since the graphs overlap, also for dumbbells, �f is largely in-
dependent of the overall size, and depends only on the shape.
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FIG. 6. Quantities associated with a dumbbell-shaped cluster of atoms on an simple cubic (sc) lattice with dimensionless lattice constant ã = 2, with shape
parameter L/σ , and dumbbell sphere diameter σ [illustrated in Fig. 3(b)]. For σ/a = 20, panel (a) shows the elements αxx (red) and αzz (blue) of the polariz-
ability matrix and (b) the elements fxx (red) and fzz (blue) of the enhancement factor matrix as a function of L/σ . The light red and blue crosses in panel (b)
indicate the enhancement factor elements of two touching spheres as calculated using continuum theory in Ref. 34. Panel (c) shows the energy difference of
turning the dumbbell from its least to its most favorable orientation in an external electric field E0 = 100 V mm−1, as a function of the number of atoms in the
dumbbell, for L/σ = 0.25, 0.85, and 0.95. The atomic polarizability is 5.25 Å3 (yielding lattice constant a ≈ 3.48 Å) and the temperature is T = 293 K. Panel
(d) shows the difference �f = fzz − fxx of the enhancement factor elements in the z- and x directions, as a function of L/σ , for σ/a = 6, 8, 10, 12, and 14,
again showing a strong shape- and a weak size-dependence.
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V. THE ENHANCEMENT FACTOR OF DIELECTRIC
CUBES

In the nonretarded limit of present interest, the inter-
action energy between dipoles separated by a distance r is
∝ r−3. In three dimensions, this is a long-range interaction
which does not decay sufficiently quickly to ignore system
size and boundary effects. Therefore, we should not expect to
be able to determine bulk quantities from calculations such as
those done in this paper. The enhancement factor difference
�f (discussed in Secs. III and IV), which is found to be
essentially independent of size, seems to be an interesting
exception.

In Ref. 26, the enhancement factor of one-dimensional
lines and two-dimensional squares of atoms was determined
and investigated in detail. For these low-dimensional systems
the r−3 interaction is short-ranged, such that well-defined bulk
behavior is found in the “middle” of these clusters, indepen-
dent of the boundary layers. In this section, we aim to do the
same for a cubic-shaped particle with atoms on a cubic lat-
tice. We will confirm that the polarizability does not seem
to reach a bulk value for this three-dimensional object. In-
terestingly, since the fully retarded interaction energy decays
asymptotically as ∝ r−4, we may thus note that the existence
of a well-defined polarizability (and hence permittivity) for
real-life bulk substances can be qualified as a retardation ef-
fect: the fact the speed of light is finite results in substances
having well-defined bulk permittivities.

A. Theoretical predictions

In Ref. 26, the (scalar) enhancement factor for a cubic
L × L × L cluster of atoms on a cubic lattice is plotted as a
function of the rib length L. The enhancement factor is seen
to increase with increasing cube size, seemingly approach-
ing some limiting value greater than unity. In contrast, when
it is assumed that all dipoles have the same polarization, it
is possible to prove that26, 45 f (∞ × ∞ × ∞) = 1. However,
by assuming the same polarization for all dipoles, we neglect
the effect of the surfaces of the cube, which is questionable
given the long range of the dipole-dipole potential (∝ r−3).
One might argue that an infinite lattice of atoms without any
surface is the best model for a bulk substance imaginable, but
realistic substances are never infinite and, as will be shown,
their surfaces do have a significant effect on the polarizability
even when their proportional number of atoms becomes low.

In Ref. 26 the enhancement factor is plotted for cube sizes
up to 10 × 10 × 10. This is still far from the regime where the
surface can be expected to be negligible; the ratio of dipoles at
the surface is, for this cube size, still (103 − 83)/103 ≈ 0.49.
In the present work, we will therefore consider larger cubic
clusters, of sizes up to 120 × 120 × 120. For these clusters,
the fraction of surface dipoles is ∼0.05. Another prediction
for the limiting value of f (L → ∞) can be obtained from
the Clausius-Mosotti relation. For our purposes, a convenient
form of this relation is given by53

pc = Nα0E0

1 − nα0/3
,

where n is the number density of atoms. For a simple cubic
lattice, where the number density equals n = 1/a3, the en-
hancement factor is thus given by

f = 1

1 − α0/3a3
I. (25)

The Clausius-Mosotti relation is expected to give a better pre-
diction for lower densities.45 Below, we will compare the pre-
diction of Eq. (25) to numerical results as a function of the
dimensionless lattice constant ã = a/α

1/3
0 .

B. Numerical methods

Special optimization techniques were used in the case
of large dielectric cubes. Because the number of atoms in
the cluster increases rapidly with the rib length of the cube,
we encounter practical problems such as memory limitations.
However, two techniques can be used to reduce this problem,
which we will now briefly discuss.

1. Exploiting symmetry

In this technique, we use the symmetries of the cube to re-
duce the order of the linear equation to be solved. It is possible
to express the polarizations of all the dipoles in terms of only
those in one octant of the cube. If we insert these relations
into the set of Eqs. (11), we reduce the number of dipoles by
a factor of 8. Note that in this way, we also increase the com-
putational cost of calculating a matrix element by (roughly) a
factor of 8, but since the cost of solving a set of linear equa-
tions scales with the square of the order of the equation set,
we gain an overall factor of 8 in computation speed.

2. The Gauss-Seidel method

The second technique uses the Gauss-Seidel method54 for
solving a set of linear equations, trading computation speed
for less memory use. The Gauss-Seidel method is an itera-
tive method for solving P from an equation of form (11). The
method starts with a guess (discussed below) for P , which we
shall call P (0). The next approximation for P , P (1), is calcu-
lated using the following formula:

p
(k+1)
i = 1

zii

⎛
⎝ei −

∑
j>i

zijp
(k)
j −

∑
i>j

zijp
(k+1)
j

⎞
⎠ , (26)

where the p
(k)
i are the elements of P (k), the ei are the elements

of E , and the zij are the elements of the matrix (I − α0T ).
Note that in our case zii = 1, and that we can write Eq. (26)
in terms of more familiar quantities,51

p(k+1)
i = E0 −

∑
j>i

Zij · p(k)
j −

∑
i>j

Zij · p(k+1)
j ,

where the Zij are 3 × 3 blocks in the matrix (I − α0T ). Note
that with this technique, it is not necessary to store a “new”
and an “old” copy of P , because only elements are needed
that have been calculated previously; i.e., it is no problem to
simply keep overwriting the elements of P .
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TABLE II. An overview of techniques used for calculating the polarizability
of a cubic cluster of atoms on a simple cubic lattice, and their associated
acronyms, as used in the caption of Fig. 7. In the LAPACK methods, we load
the elements of the matrix in memory to the numerical precision specified
in the “Precision” column and use the routines in the LAPACK package to
solve the relevant set of linear equations. The Gauss-Seidel methods involve
(re-)calculating the elements of the matrix on the fly and, starting from an
initial guess, using 20 iterations of the Gauss-Seidel method to solve the set
of linear equations. The “Symmetries” column refers to whether or not the
symmetries of the dielectric cube were exploited. The “Lmax” column lists
estimates for largest feasible rib lengths that each method can handle, given
our available resources.

Acronym Method Symmetries Precision Lmax

NDL LAPACK No Double 20
SDL LAPACK Yes Double 40
SSL LAPACK Yes Single 48
NGS Gauss-Seidel No Double 60
SGS Gauss-Seidel Yes Double 120

As an initial guess we construct P (0) as follows: we sum
the Zij horizontally and then solve the equation⎛

⎝ N∑
j=1

Zij

⎞
⎠ · p(0)

i = E0

for each p(0)
i . Using this guess, the enhancement factor could

be calculated to a precision of 10 digits within 20 iterations.
Since Zij can be (re-)calculated on the fly as needed

and the elements of E can be inferred using only a three-
dimensional vector, we only need to store ∼3N numbers, i.e.,
the elements of P . This effectively eliminates the memory
problem. However, as a consequence, the resulting calculation
is much slower than the one that uses the LAPACK routine.

By combining the two techniques (symmetry exploitation
and the Gauss-Seidel method), we were able to calculate the
enhancement factor for cubes as large as 120 × 120 × 120.
The data points presented in Subsection V C have been
calculated using various methods, corresponding to combi-
nations of applying the two aforementioned techniques. In
Table II, we give an overview of these methods, and define
the acronyms that are used in the caption of Fig. 7.

The different methods have all been tested for consis-
tency and the agreement between them is excellent. Computa-
tionally, the most practical techniques were the SDL-method
for small rib lengths, because of its speed and simple imple-
mentation, and the SGS-method for large rib lengths, because
of its negligible memory usage.

C. Numerical results

In Fig. 7(a), the (scalar) enhancement factor f of L

× L × L cubes, as calculated numerically, is plotted as a
function of L, for several (dimensionless) lattice spacings ã.
For all of the lattice spacings, the qualitative behavior of the
enhancement factor is the same: for low L, it increases rapidly
as a function of L, but starts to level off at L ≈ 10, seem-
ingly reaching a limiting value f (L) > 1 around L ≈ 20.
This agrees reasonably well with prediction (25) made us-
ing the Clausius-Mossotti relation, and contradicts the pre-
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FIG. 7. The enhancement factor f of a cubic L × L × L cluster with atoms
on a cubic lattice, as a function of the number of atoms along the rib L,
in (a) for the dimensionless lattice spacings ã = 1.75 (blue), ã = 1.8 (red),
ã = 2.0 (yellow), ã = 2.05 (green), ã = 2.64 (light blue), and ã = 3.0 (pur-
ple), and in (b) a zoom-in (along the vertical axis) for ã = 2.0 with the data
points generated by different numerical methods (see text and Table II): SGS
(dark yellow points and curve), NGS (red points), SSL (green points), SDL
(bright yellow points), and NDL (light blue points). Note that SSL slightly
underestimates f for L ≈ 40.

diction f (∞) = 1 (made by ignoring the edges of the cube).
We investigate the behavior with a particular lattice spacing,
ã = 2, in full detail. Figure 7(b) shows a (vertical) zoom-in
of Fig. 7(a), including data points as generated by various
numerical methods. It can be seen from Fig. 7(b) that the
enhancement factor (for ã = 2) reaches a maximum value
of f ≈ 1.05814 at L = 20, after which it starts decreasing,
where the rate of decrease reaches a maximum at L = 34.
This behavior is the same for all other values of ã, albeit with
different values of f .

The decrease of f observed beyond L = 34 is so slow
that it could, conceivably, be caused by systematic rounding
errors in the calculation of the elements of the matrix. This
is still an open question that may be approached in a number
of different ways, for example, by increasing the cube size
and observing whether the enhancement factor keeps decreas-
ing; another approach might be to increase the precision to
which the elements of the matrix are calculated and observe
whether this affects the value of the enhancement factor. A
relevant observation here is that the single precision method
SSL gives slightly lower results (for large L) than the double
precision methods. However, the difference does not appear
to be large enough to expect the decline to vanish for asymp-
totically large precisions.

It is clear that we have not been able to determine a
limiting value for f . The decay observed beyond L = 34
slows down as L increases, but a reliable extrapolation to
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FIG. 8. The enhancement factor f of a 120 × 120 × 120 cube of atoms,
as a function of the (dimensionless) lattice constant ã = a/α

1/3
0 . In blue,

the numerical results are plotted, while in red, the prediction as given by
the Clausius-Mosotti relation, Eq. (25), is shown. The dashed green line is
Eq. (22) of Ref. 32, where the enhancement factor is calculated using contin-
uum theory. Note the excellent agreement between the latter and our result,
despite the completely different approaches.

asymptotically large cubes could not be determined. There-
fore, bulk behavior was not reached for our cube sizes. We
stress again that this conclusion was reached not based on the
absolute value of f at L = 120, but based on the variation
that we observe for large L.

In Fig. 8, we plot the enhancement factor of a 120
× 120 × 120 cube as a function of its dimensionless lattice
constant ã, together with the Clausius-Mosotti prediction of
Eq. (25). As expected, the Clausius-Mosotti prediction is bet-
ter for larger lattice constants (i.e., lower densities). Note that
with increasing ã, Eq. (25) changes from an under- to an over-
estimation of the enhancement factor. In the same figure, we
plot the results as presented in Eq. (22) of Ref. 32. We note
the excellent agreement, despite the fact that the two results
are calculated in completely different ways.

1. Local enhancement factor

Apart from the global enhancement factor f discussed un-
til now, it is also of interest to consider its local counterpart
in finite clusters. Choosing the z direction to lie along the ex-
ternal electric field E0 [see Fig. 9(a)], we define the local en-
hancement factor f ′ as the z-component of the polarization
of the local atom, divided by α0E0. Note that, using this def-
inition, the analogy with the global enhancement factor f is
not complete, because even when the electric field is applied
in the z direction, the polarization of the individual atoms can
have nonzero components in the x and y directions. Conse-
quently, if we were to express the local polarization as

p = f′ · α0E0,

where f′ would be a 3 × 3 matrix, then f′ would not be
diagonal.

In Figs. 9(b) and 9(c), we plot the local enhancement
factor f ′ along two planes cut through the middle of a
120 × 120 × 120 cube, as illustrated in Fig. 9(a). From the
shape of the graph we clearly see that f ′ is not a spatial con-
stant and varies most pronouncedly on the faces and in the
corners of the cube. In Fig. 9(b) we observe that the sides
of the cube normal to the electric field (z = ±60a) experi-

FIG. 9. (a) The orientation of the planes, cube, electric field, and coordinate
system with respect to each other: the planes are cut through the middle of the
cube, in the x-z plane and the x-y plane, while the electric field is applied in
the z direction. The cube is oriented such that the ribs lie along the Cartesian
directions. The (green) line along the x axis denotes the intersection of the
two planes and is also represented in panels (b) and (c). (b) and (c) The local
enhancement factor f ′ (defined in the text) of two sheets of dipoles lying on
perpendicular planes, cut through the middle of a 120 × 120 × 120 cube of
dipoles on a cubic lattice, with lattice constant ã = 2. Panel (b) corresponds
to the blue and panel (c) corresponds to the red plane as depicted in panel
(a). The yellow and green lines appearing in this figure also correspond to the
directions along which we plot the local enhancement factor in Fig. 10.

ence a clear polarization reduction (i.e., f ′ < 1), e.g., reach-
ing a local enhancement factor of f ′ ≈ 0.71335 in the mid-
dle of the face (at x = 0, y = 0, and z = ±60a). The interior
of the cube turns out to experience a slight enhancement of
f ′ ≈ 1.04530 in the center x = y = z = 0 (not visible from
the graphs). A more dramatic enhancement is experienced by
the faces of the cube that lie in-plane with the electric field
(e.g., x = ±60a); for example, at z = 0, the enhancement on
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FIG. 10. The local enhancement factor f ′ along a straight line in (a) the x

direction (⊥ E0, illustrated in green in Fig. 9) and (b) the z direction (‖ E0,
illustrated in yellow in Fig. 9), through the middle of a cubic cluster of atoms
on a simple cubic lattice with lattice spacing ã = 2, for cube rib lengths L

= 10, 20, 50, and 120. In both panels, the rib length was scaled out, but in the
inset of panel (a), we also plot f ′ as a function of the absolute x-coordinate.

the faces is f ′ ≈ 1.23876, while in the corner (z = ±60a),
f ′ ≈ 1.29005, as mentioned earlier.

In Fig. 10, we plot the local enhancement factor along a
line parallel and one perpendicular to the electric field, both
through the middle of the cube (these lines are also illustrated
in Fig. 9), for several values of L, as a function of scaled co-
ordinates. The behavior of the local enhancement factor, as
seen in Figs. 9 and 10, shares many features also seen in the
case of two-dimensional squares, as discussed in Ref. 26: we
observe high local enhancement on all edges of planes per-
pendicular to the electric field, high local enhancement on the
edges parallel to the electric field of planes in-plane with the
electric field, and low local enhancement on the edges perpen-
dicular to the electric field of planes in-plane with the electric
field. Furthermore, the local enhancement varies by far the
most rapidly at locations close to the edge. Like in Ref. 26,
for all values of L the outer layer of atoms in faces parallel
to the electric field is especially polarized. This is illustrated
in the inset of Fig. 10(a), but is also visible in Fig. 9. In this
layer of atoms, the local enhancement factor appears to de-
pend more strongly on L and a limiting value for the on-edge
local enhancement was not reached for the cube sizes con-
sidered in the present work (up to L = 120). Whether such a
limiting value exists for the edge is therefore unclear at this
point.

An important difference with two-dimensional squares is
that the local enhancement factor in a cube varies significantly
in the interior of the cube (albeit less than on the edge). Focus-
ing now on Fig. 10, we observe that, upon varying L, the local

enhancement factor in the interior of the cube, as a function
of scaled coordinates, goes to a limiting behavior for large
L. This means that the (absolute) “penetration depth” of the
electric field into the cluster is not, as in Ref. 26, independent
of the cluster size, but is instead approximately proportional
to L.

An analysis of the “polarization charge” density ∇ · P
(where P stands for the local polarization density) shows that
it is nonzero (albeit small) for the cube sizes achieved here,
but that its magnitude is inversely proportional to the cube rib
length. In the limit of infinitely large cubes, we thus expect
to reach ∇ · P = 0, as required by continuum theory. Indeed,
already for a 120 × 120 × 120 cube, most of the variation of
the local enhancement can safely be ascribed to the electric
field varying inside the cube like that seen in continuum the-
ory. However, this does not change the fact that the interior
of the cube does not behave like a bulk substance, since in
bulk one expects the system to be translation invariant, with
no surface effects. The reason that in our system the edges re-
main important even as the cube is scaled is the long range of
the dipole-dipole interaction (∝ r−3). If we were to include
retardation effects, the dipole-dipole interaction would scale
(for large r) as ∝ r−4, and upon scaling the cube, the interior
would become a bulk substance, with surface effects vanish-
ing as the cube size is taken to infinity. Thus, the very exis-
tence of bulk dielectric substances in nature may be seen as a
retardation effect.

VI. CONCLUSIONS AND OUTLOOK

The CDM is a rigorous tool to include many-body inter-
atomic interactions on the basis of a polarizable atom model,
not only in the potential energy but also in other quantities
such as the polarizability of a cluster of atoms. The applicabil-
ity of the method is limited by computing power and becomes
unfeasible for atom numbers larger than O(104). This corre-
sponds to very small nanoparticles, slightly below the exper-
imentally realizable regime. However, as has been shown in
this article, it is in most cases fairly straightforward to extrap-
olate some of the key properties to larger cluster sizes.

We have discussed the polarizability and orientational
energy of cuboids, bowls, dumbbells, and cubes. In general,
these clusters are all most polarizable in the direction of their
largest dimension: for cuboids along their longest rib, for
bowls in the directions perpendicular to their axis of rotational
symmetry, and for dumbbells along their rotational symmetry
axis. These directions are also the preferred orientations of the
cluster in an external electric field. Cubes are equally polariz-
able in all directions, and thus have no preferred orientation
in an external electric field.

We then turned our attention to the magnitude of the en-
ergy difference � between the most- and least-favored ori-
entations of each cluster shape. We found that, for typical
experimental values for electric field strength, temperature,
and atomic polarizability, these energy differences are small
compared to the thermal energy (for the atom numbers that
are feasible with our computer resources). However, we also
found an almost exact linear dependence of � on the num-
ber of cluster atoms N , and related the slope of the graph to
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the difference �f in enhancement factor diagonal elements,
a quantity that turns out to be independent of the cluster size
and that depends only on the cluster shape and lattice spacing.
The dependence of �f on the cluster shape was then investi-
gated. This was done for several cluster sizes in order to prove
the size-independence of �f . Using the linear dependence of
� on N , we estimated, for some chosen cluster shapes, the
number of atoms (and hence the spatial dimensions of the
cluster) for � to be of the order of the thermal energy. This is
relevant because it gives an estimate for when a dielectric col-
loid might be aligned in an external electric field. The esti-
mates, for some typical experimental parameters, all have val-
ues of roughly 1 μm for the longest dimension of the colloid.
In other words, dielectric nanoparticles are not easily aligned
by external electric fields.

The enhancement factor of a cubic cluster of atoms on
a simple cubic lattice at first glance seems to go to a well-
defined asymptotic value. However, closer inspection reveals
that, in fact, the enhancement factor starts decreasing again
as the rib length increases and whether a limiting value of
the enhancement factor exists is still unclear at this point. As
shown, the local enhancement factor does not reach a plateau
in the interior of the cube, even for the largest cubes, and so
the question of whether bulk behavior will be reached, judg-
ing from the results presented here, seems to have “no” as
an answer. This can be attributed to the long range (∝ r−3)
character of the dipole-dipole interaction, and hence retarda-
tion (which results in an interaction ∝ r−4) may be seen as
the cause of the well-defined bulk dielectric properties as ob-
served in nature.
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