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Simulation of nucleation in almost hard-sphere colloids: The discrepancy
between experiment and simulation persists
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In this paper we examine the phase behavior of the Weeks–Chandler–Andersen (WCA) potential
with βε = 40. Crystal nucleation in this model system was recently studied by Kawasaki and Tanaka
[Proc. Natl. Acad. Sci. U.S.A. 107, 14036 (2010)], who argued that the computed nucleation rates
agree well with experiment, a finding that contradicted earlier simulation results. Here we report an
extensive numerical study of crystallization in the WCA model, using three totally different tech-
niques (Brownian dynamics, umbrella sampling, and forward flux sampling). We find that all simu-
lations yield essentially the same nucleation rates. However, these rates differ significantly from the
values reported by Kawasaki and Tanaka and hence we argue that the huge discrepancy in nucleation
rates between simulation and experiment persists. When we map the WCA model onto a hard-sphere
system, we find good agreement between the present simulation results and those that had been ob-
tained for hard spheres [L. Filion, M. Hermes, R. Ni, and M. Dijkstra, J. Chem. Phys. 133, 244115
(2010); S. Auer and D. Frenkel, Nature 409, 1020 (2001)]. © 2011 American Institute of Physics.
[doi:10.1063/1.3572059]

I. INTRODUCTION

In a recent paper, Kawasaki and Tanaka1 examined the
crystal nucleation in an almost hard-sphere system using
Brownian dynamics (BD) simulations. The nucleation rates
reported in Ref. 1 appear to be in good agreement with those
that were found in earlier light scattering experiments.2–4 This
is in sharp contrast with previous simulation studies of hard
spheres, which show a large discrepancy between the experi-
mental and simulated rates for low volume fractions.5, 6 In the
present paper we revisit the system examined by Kawasaki
and Tanaka in order to determine the origin of the difference
between the simulated rates and, in particular, to clarify if
there is indeed a discrepancy between the experimental and
simulated nucleation rates. We study the system using a va-
riety of simulation techniques, including brute force Brown-
ian dynamics, umbrella sampling (US), and forward flux sam-
pling (FFS).

Colloidal solutions consist of small particles suspended
in another medium and are typically characterized by the dy-
namics of these suspended particles, i.e., colloidal particles
exhibit Brownian motion. As a result, BD simulations are the
natural choice to use when examining dynamical properties
of colloidal systems, such as crystal nucleation. Brownian dy-
namics are based on a simplified version of Langevin dynam-
ics and correspond to the “overdamped” limit. Specifically, in
BD it is assumed that the particles’ inertial motion is com-
pletely damped out by frictional forces. As a result, the mo-
tion of the particles is determined by the instantaneous forces
acting on the colloid plus a stochastic, diffusive displace-
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ment. However, unlike molecular dynamics (MD) simulations
where an event driven formalism exists which allows one to
apply MD to systems with hard-core interactions (see, e.g.,
Ref. 7), no such formalism exists for BD of hard particles.
Hence, when Brownian dynamics are applied to hard-core in-
teractions, the hard core is typically approximated. One such
approximation is the Weeks–Chandler–Andersen (WCA)
potential.

The WCA potential was introduced in 1971 in order to
address the short-range repulsive part of the Lennard-Jones
liquid separately from the longer range attractive tail. In con-
trast to the Lennard-Jones system, the phase diagram for the
WCA potential consists simply of liquid and solid phases; i.e.,
the liquid–gas phase coexistence is not present in this model.
The WCA potential8 is given by

βUWCA (r ) =
⎧⎨
⎩

4βε

((σ

r

)12
−

(σ

r

)6
+ 1

4

)
r/σ ≤ 21/6

0 r/σ > 21/6
,

(1)

where σ is a length scale, ε is the energy scale, and β

= 1/kB T where kB is Boltzmann’s constant and T is the tem-
perature. Note that the WCA potential is simply the Lennard-
Jones potential where the cutoff is chosen such that only the
repulsive part remains and the potential is shifted upward so
that the minimum occurs at zero. A plot of this potential is
shown in Fig. 1. The “hardness” of the interaction can be set
by tuning the interaction strength, βε. In Ref. 1, Kawasaki
and Tanaka studied a WCA model at an interaction strength
βε = 40, which corresponds to a low temperature.

This paper is organized as follows: in Sec. II we use free-
energy calculations to determine the phase diagram for this
model, in Sec. III we describe the nucleation rates, in Sec. IV
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FIG. 1. The WCA potential and hard-sphere potential βU (r ) as a function
of center-to-center distance r .

we compare our results to the previous work of Kawasaki
and Tanaka1 and to hard-sphere crystal nucleation rates found
both in simulations as well as light scattering experiments.
Our conclusions are found in Sec. V.

II. PHASE DIAGRAM

To calculate the coexistence densities for the WCA po-
tential, we used full free-energy calculations in combination
with common tangent constructions. For the crystal phase,
the excess free energy Fex was calculated using Einstein
integration10–12 at a density of ρσ 3 = 0.8 for systems of
N = 500, 864, 1372, and 2048 particles. Note that the excess
free energy is defined by Fex = Ftot − Fid where Ftot is the
total free energy and Fid is the ideal gas free energy. Fol-
lowing Ref. 11, we plotted βFex/N + log N/N as a func-
tion of 1/N and extrapolated to an infinite system yielding
a free energy of βFtot/N = 4.8975. The free energy at other
densities was determined using thermodynamic integration of
the equation of state.12 The equation of state was determined
using Monte Carlo N pT simulations with N = 4000 parti-
cles. We note that no significant difference was found in the
coexistence densities for equations of state determined us-
ing N = 1372 and N = 4000. To test our Einstein integra-
tion and integration over the equation of state, we determined
the free energy at ρσ 3 = 0.9 for N = 1372 and integrated
over the equation of state calculated for N = 1372. The free
energies agreed within 0.000 46 kB T per particle. The fluid
chemical potential was determined using the Widom insertion
technique12 at ρσ 3 = 0.4 with N = 4000 and was found to be
βμ = 3.3173; for N = 1372 we find βμ = 3.3194. Again in-
tegration over the equation of state was used to determine the
free energy as a function of density. To test the Widom in-
sertion calculations, and our integration over the equation of
state, we also calculated the chemical potential at ρσ 3 = 0.3
for N = 1372. The difference in the free energy at ρσ 3 = 0.3
associated with the Widom insertions and integration over
the equation of state results in a free-energy difference of
0.000 75 kB T per particle, and hence we concluded that the
Widom insertions and integration over the equation of state
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FIG. 2. The triangles correspond to the freezing number density (ρ A
F ) from

Ahmed and Sadus (Ref. 9) as a function of T ∗ where T ∗ = kB T/ε. The fit
corresponds to σρF = 0.635 + 0.473(T ∗)1/2 − 0.236T ∗. The square corre-
sponds to the freezing number density (ρ∗

F ) determined using full free-energy
calculations as described in this paper. The circle corresponds to the freezing
number density determined by Kawasaki and Tanaka (Ref. 1).

were correct. Using these free energies and common tangent
constructions we find freezing and melting coexistence densi-
ties ρ∗

Fσ 3 = 0.712 and ρ∗
Mσ 3 = 0.785, respectively.

The phase diagram for the WCA potential has been ex-
amined previously by Ahmed and Sadus9 for a range of
T ∗ = 1/βε using a phenomenological method based on
nonequilibrium MD simulations. The results of Ref. 9 for the
freezing density are plotted in Fig. 2. We find that their results
for the freezing number density ρF as a function of βε fit well
to ρFσ 3 = 0.635 + 0.473(T ∗)1/2 − 0.236T ∗. From this fit we
approximate a freezing number density of ρ A

F σ 3 = 0.704 at
βε = 40. We note that this is in good agreement with our
predictions. Hence, our free-energy calculations support the
phenomenological procedure of Ref. 9. However, we find that
the nonequilibrium MD estimate of the freezing density is
slightly lower than the true equilibrium coexistence density
reported here. Additionally, Kawasaki and Tanaka1 found the
freezing number density for βε = 40 to be ρK

F σ 3 = 0.725. To
locate the freezing point, these authors performed BD simula-
tions of a face-centered-cubic (FCC) crystal and identified the
density at which the crystal becomes mechanically unstable
as the freezing density.13 Such calculations cannot be used to
accurately determine the coexistence densities, but rather give
an approximate lower bound for the melting density. As can
be seen in Fig. 2, the freezing density estimated in Ref. 1 is
some 2% higher than the value that we find using free-energy
calculations.

III. NUCLEATION RATES

In this section we apply BD, US, and FFS to study
the crystal nucleation of the WCA model. The methods for
predicting nucleation rates have been discussed in detail in
Ref. 5 and so only a short overview will be presented here.
An overview of the state points discussed in this paper is
found in Table I where we list for various pressures βpσ 3
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TABLE I. Reduced pressure (βpσ 3), reduced chemical potential difference
between the fluid and solid phases (β|�μ|), reduced number density of the
metastable liquid ρliqσ

3, reduced number density of the solid phase ρsolσ
3,

and the effective hard-sphere packing fraction φeff for the state points studied
in this paper.

βpσ 3 β |�μ| ρliqσ
3 ρsolσ

3 φeff

12.0 0.41 0.762 0.844 0.526
13.0 0.54 0.775 0.858 0.535
13.3 0.58 0.778 0.862 0.538
13.4 0.59 0.780 0.863 0.539
13.6 0.61 0.782 0.865 0.540
13.9 0.65 0.785 0.868 0.542
14.0 0.66 0.787 0.870 0.544
14.4 0.71 0.791 0.874 0.547
14.6 0.73 0.793 0.876 0.548

the corresponding chemical potential difference between the
fluid and solid phases |β�μ|, the reduced number density of
the metastable liquid phase ρliqσ

3 and the stable solid phase
ρsolσ

3, and the effective packing fraction φeff (as defined be-
low).

In all of the simulations methods examined in this paper,
an order parameter is needed to differentiate between liquid-
like and solid-like particles and a cluster algorithm is used
to identify the solid clusters. The order parameter we use
is the local bond order parameter introduced by Ten Wolde
et al.14, 15 To measure the local bond order parameter a list of
“neighbors” is determined for each particle where the neigh-
bors of particle i consist of all particles found within a radial
distance rc of particle i . The total number of neighbors is de-
noted Nb(i). For each particle i , a bond orientational order
parameter ql,m(i) is then defined as

ql,m(i) = 1

Nb(i)

Nb(i)∑
j=1

Yl,m(θi, j , φi, j ), (2)

where Yl,m(θ, φ) are the spherical harmonics, m ∈ [−l, l] and
θi, j and φi, j are the polar and azimuthal angles of the center-
of-mass distance vector ri j = r j − ri and ri the position vec-
tor of particle i . Solid-like particles are identified as particles
for which the number of connections per particle ξ (i) is at
least ξc and where

ξ (i) =
Nb(i)∑
j=1

H (dl (i, j) − dc), (3)

H is the Heaviside step function, dc is the dot-product cutoff,
and

dl (i, j) =
∑l

m=−l
ql,m(i)q∗

l,m( j)
(∑l

m=−l
|ql,m(i)|2

)1/2(∑l

m=−l
|ql,m( j)|2

)1/2 .

(4)

All other particles are identified as liquid-like. A cluster con-
sists of all solid-like particles with at least one solid-like
neighbor in the same cluster and so each particle can be
a member of only a single cluster. We note that this order

TABLE II. Nucleation rates, kσ 5/D0, obtained from (N V T ) Brownian dy-
namics simulations for various densities ρσ 3 with ntr and ne the number of
simulations and the number of observed nucleation events, respectively and
〈t〉 is the average waiting time for a nucleation event.

ρσ 3 ntr ne 〈t〉/τB kσ 5/D0

0.792 28 5 5 13.8 1.4 × 10−5

0.785 07 5 5 159 1.2 × 10−6

0.781 53 10 10 260 7.3 × 10−7

0.777 00 20 10 3282 5.8 × 10−8

0.774 68 50 5 23 340 8.1 × 10−9

parameter depends on four parameters, namely, the nearest
neighbor cutoff defined as rc, the dot-product cutoff defined
as dc, the minimum number of solid-like neighbors required
for a particle to be identified as crystalline denoted ξc, and the
symmetry index for the bond orientational order parameter l.
Since the nucleus is expected to have random hexagonal order
we set l = 6. Additionally, we used dc = 0.7, ξc = 6 or 8 as
identified and rc is always either 1.5σ or 1.6σ and is explicitly
indicated in each section.

A. Brownian dynamics

Brownian dynamics is a simplified Langevin dynamics
which can be used to describe the motion of Brownian parti-
cles. In Brownian dynamics simulations, the motion of each
particle i is described by16

dri

dt
= 1

mγ
[−∇iU + Wi (t)] , (5)

where γ and Wi (t) are the friction coefficient and the
stochastic force of the solvent, m is the mass of the par-
ticles, and U is the potential energy of the system. They
are linked through the dissipation-fluctuation theorem 〈Wi (t)
· W j (t ′)〉 = 6mγ kB T δi jδ(t − t ′) where δ is the Kronecker
delta function. In our simulations, γ and m are both set
to 1 and we use the time step �t = 10−5τB to integrate
Eq. (5). Note that τB is the Brownian time which is defined
as τB = σ 2/D0 where D0 is the diffusion coefficient of the
particle in the infinitely dilute system.

To calculate the nucleation rates from Brownian dynam-
ics simulations, we perform multiple independent simulations
of systems with N = 4096 particles and with the volume V
chosen such that the density of interest is acquired. Each sim-
ulation stops when a nucleation event happens, and the nucle-
ation rate is determined by

k = 1

〈t〉V , (6)

where 〈t〉 is the average waiting time for a single nucleation
event. Thus 〈t〉 = ∑

i ti/ne where ti is the simulation time of
the independent simulation i and where ne is the number of
nucleation events observed. The results from our BD simula-
tions for varying densities are shown in Table II.

Additionally, for ρσ 3 = 0.770 00, we performed 50 in-
dependent Brownian dynamics simulations. After a total sim-
ulation time

∑
i ti = 116 700τB we have not observed a sin-

gle nucleation event in a system of N = 4096 particles. Since
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nucleation is a rare event, the probability distribution of a nu-
cleation event happening at time t is an exponential distribu-
tion given by

p(t) = 1

〈t〉 exp

(
− t

〈t〉
)

, (7)

where 〈t〉 is the average waiting time for a nucleation event.
The probability of a nucleation event happening before time
t is

∫ t
0 p(t)dt = 1 − exp(−t/〈t〉). Thus for ρσ 3 = 0.77, we

can estimate the upper boundary for the nucleation rate. We
find that if the nucleation rate is 4.855 03 × 10−9 D0/σ

5, the
probability to observe a nucleation event before 116 700τB in
a system of N = 4096 is 95%. Additionally, if the nucleation
rate is 1.484 99 × 10−9 D0/σ

5, this probability is 60%.

B. Umbrella sampling

The crystal nucleation rate k is related to the free-energy
barrier �G(n) by6

k = Ae−β�G(n∗), (8)

where

A ≈ ρ fn∗

√
|β�G ′′(n∗)|

2π
, (9)

n∗ is the number of particles in the critical nucleus, ρ is the
number density of the supersaturated fluid, fn∗ is the rate par-
ticles are attached to the critical cluster, and �G ′′ is the sec-
ond derivative of the Gibbs free-energy barrier. Hence, to de-
termine the nucleation rate, we need to determine the Gibbs
free-energy barrier �G(n) and the attachment rate fn∗ . In this
section, we use umbrella sampling to determine the Gibbs
free-energy barriers, and subsequently we calculate the crys-
tal nucleation rates from these barriers.

The Gibbs free-energy barrier can be determined by17

β�G(n) = constant − ln(P(n)), (10)

where P(n) is the probability of observing a cluster of size
n. We measure P(n) using umbrella sampling. In US a bias-
ing potential is added to the true interaction potential in order
to facilitate the sampling of regions of configurational space
which are inaccessible by traditional schemes, e.g., Metropo-
lis Monte Carlo simulations. The typical US biasing potential
for studying nucleation is given by14, 18

βUbias(n(rN )) = λ

2
(n(rN ) − nC )2, (11)

where λ is a coupling parameter, n(rN ) is the size of the
largest cluster associated with configuration rN , and nC is the
targeted cluster size. It follows that the expectation value of
an observable A is given by

〈A〉 = 〈1/W (n(rN ))〉bias

〈1/W (n(rN ))〉bias
, (12)

where

W (x) = e−βUbias(x). (13)

This strategy is used to determine P(n). A thorough descrip-
tion is given in Ref. 19.
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FIG. 3. Gibbs free-energy barriers β�G(n) as a function of cluster size n
as obtained from umbrella sampling MC simulations at reduced pressures
βpσ 3 = 12, 13, and 13.3 as labeled.

The attachment rate fn∗ is related to the mean square
deviation (MSD) of the cluster size 〈�n2(t)〉 = 〈(n(t) − n∗)2〉
at the top of the barrier by17

fn∗ = 1

2

〈�n2(t)〉
t

. (14)

The MSD can be calculated by employing either a kinetic
Monte Carlo (KMC) simulation or a MD simulation at the
top of the barrier. For more information see Ref. 19.

For pressures βpσ 3 = 12, 13, and 13.3, the free-energy
barriers are shown in Fig. 3 and the attachment rates fn∗ and
nucleation rates k are listed in Table III. Note that in these
simulations we used a neighbor cutoff of rc = 1.5σ and cou-
pling parameter λ = 0.2.

C. Forward flux sampling

We use forward flux sampling to determine the nucle-
ation rates for pressures βpσ 3 = 12, 13, and 14. The method
is the same as the one described in Ref. 5 which was employed
to determine the crystal nucleation rates for hard spheres and
hence we will only give a brief overview here.

In FFS, phase space is mapped onto a reaction coordinate
which is used to separate phase space by a sequence of inter-
faces (λ0, λ1, ... λN ) associated with increasing values n(rN ).
In this case we use the order parameter described previously.
The nucleation rate from the fluid phase A to the solid phase

TABLE III. Nucleation rates, kσ 5/D0, as obtained from (N pT ) umbrella
sampling MC simulations at various pressures, βpσ 3, with ρσ 3 the corre-
sponding density of the supersaturated fluid. β�G(n∗) is the height of the
free-energy barriers with n∗ the size of the critical cluster, and β�G

′′
(n∗)

and fn∗/D0 are the second order derivative and attachment rate at the top of
the free-energy barrier, respectively.

βpσ 3 n∗ fn∗/D0 β�G(n∗) β�G
′′
(n∗) ρσ 3 kσ 5/D0

12 130 586.17 32.5 0.0015 0.762 5.23 × 10−14

13 60 319.05 18.5 0.0030 0.774 4.98 × 10−8

13.3 50 361.86 17.200 0.0030 0.777 2.08 × 10−7
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TABLE IV. Probabilities P(λi+1|λi ) for the interfaces used in calculating
the nucleation rate for pressure βpσ 3 = 12.

i λi P(λi |λi−1)

2 20 0.133
3 26 0.132
4 34 0.107
5 45 0.068
6 60 0.066
7 80 0.041
8 110 0.036
9 150 0.130
10 200 0.317
11 250 0.842

B is then given by

kAB = �Aλ0 P(λN |λ0) (15)

= �Aλ0

N−1∏
i=0

P(λi+1|λi ), (16)

where �Aλ0 is the steady-state flux of trajectories leaving the
A state and crossing the interface λ0 in a volume V , and
P(λi+1|λi ) is the probability that a configuration starting at
interface λi will reach interface λi+1 before it returns to the
fluid (A). As in Ref. 5 we regroup the elements of the rate
calculation such that

kAB = �̃Aλ1

N−1∏
i=1

P(λi+1|λi ), (17)

where

�̃Aλ1 = �Aλ0 P(λ1|λ0). (18)

If λ1 is chosen such that it is a relatively rare event for trajec-
tories starting in A to reach λ1, then

�̃Aλ1 ≈ 1

〈tAλ1〉V
(19)

where 〈tAλ1〉 is the average time it takes a trajectory in A to
reach λ1. This approximation has been discussed in more de-
tail in Ref. 5.

The dynamics in the forward flux sampling simulations
were approximated using kinetic Monte Carlo simulations
with a step size of �KMC = 0.05σ and measuring the order
parameter every �tord = 2 MC cycles. The nearest neighbor
cutoff for the order parameter was taken to be rc = 1.5σ . The
probabilities P(λi |λi−1) of going from interface λi−1 to λi re-
quired in the forward flux sampling rate calculation for pres-
sures βpσ 3 = 12, 13, and 14 are given in Tables IV,V, and
VI, respectively. The resulting rates in terms of the short-time
diffusion coefficient D0 are given in Table VII .

IV. DISCUSSION

In this section we compare our predicted nucleation rates
to previous theoretical and experimental studies. In Fig. 4 we

TABLE V. Probabilities P(λi+1|λi ) for the interfaces used in calculating
the nucleation rate for pressure βpσ 3 = 13.

i λi P(λi |λi−1)

2 20 0.132
3 30 0.124
4 40 0.193
5 60 0.132
6 100 0.166
7 150 0.633

show our predicted WCA crystal nucleation rates and com-
pare them with those found in Ref. 1. Note that the nucle-
ation rates shown in Fig. 4 (and Fig. 6) cannot be obtained
directly from Ref. 1 as there is a mistake in that paper re-
garding the mapping from effective packing fraction units to
number densities.13, 20 We first note that our BD results match
well with previous BD nucleation rates.1 We also note that
the uncertainty in the BD results is approximately 1 order of
magnitude and the uncertainty in the US and FFS results is
approximately 2 orders of magnitude. Within this uncertainty,
the BD, US, and FFS nucleation rates all agree. This is con-
sistent with a recent study5 on hard spheres which found that
molecular dynamics and FFS rates agreed well with the US
rates of Auer and Frenkel.6

We note that the US and FFS simulations were performed
at constant pressure, i.e., in an N pT ensemble, while the BD
simulations were at constant volume (N V T ). While we have
not examined in detail the nuclei appearing in these simula-
tions, no significant difference was found between the nuclei
forming in the BD simulations and the nuclei forming in the
FFS and US simulations. This question was addressed in more
detail in a recent nucleation study on hard spheres.5 In that
case, the radius of gyration tensor of the resulting clusters
was measured as a function of cluster size for constant vol-
ume molecular dynamics simulations, and constant pressure
FFS, and US simulations. No difference between the result-
ing nuclei was found. Additionally, in an N V T ensemble, the
formation of a nucleus depletes the number of particles in the
fluid and lowers slightly the number density of the fluid. How-
ever, when the system size is sufficiently large, this effect is
negligible. While this effect was not studied in this paper, it
was examined by Kawasaki and Tanaka1 who found that the
nucleation rates for this model (i.e., the WCA potential) at
high supersaturation converged for approximately 4000 parti-
cles. For lower supersaturations, we can approximate the ef-
fect of the system size by determining the number density of
the fluid when a critical nucleus is present at fixed volume.
For a system containing N = 4096 particles, at the lowest

TABLE VI. Probabilities P(λi+1|λi ) for the interfaces used in calculating
the nucleation rate for pressure βpσ 3 = 14.

i λi P(λi |λi−1)

2 40 0.164
3 70 0.453
4 100 0.847
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TABLE VII. Nucleation rate kσ 5/D0, flux �Aλ1 , and P(λB |λ1) at various
pressures βpσ 3 as obtained by (N pT ) forward flux sampling.

βpσ 3 �Aλ1 σ
5/D0 P(λB |λ1) kσ 5/D0

12 2.96×10−6 4.32×10−10 1.27×10−15

13 1.10×10−5 4.38×10−5 4.80×10−10

14 1.06×10−5 6.29×10−2 6.69×10−7

density we studied using BD simulations, namely, ρσ 3

= 0.775, we find the fluid density to be approximately ρσ 3

= 0.774 when a critical nucleus containing 60 particles is
present. As a result, we expect at the very most a horizon-
tal error bar of 0.001 in the number density of the BD rates.
Hence, we do not expect a significant effect from the system
size in our BD simulations.

In Fig. 5 we compare our predicted WCA rates with the
crystal nucleation rates of hard spheres as a function of super-
saturation, i.e., the chemical potential difference between the
bulk crystal and the supersaturated fluid (�μ). We find good
agreement between the nucleation rates in these two systems.

We further compare our WCA results with those of the
hard-sphere system examined in Ref. 5 and the experimental
light scattering results from Refs. 2–4. To do this, we scale
our WCA results in terms of an effective packing fraction in
the same manner as is done experimentally. Specifically, we
scale the freezing number density of the WCA model (ρFσ 3

= 0.712) to the freezing packing fraction of hard spheres.
Note that in literature there is a range of freezing packing frac-
tions for hard spheres, namely, 0.491 ≤ φH S

F ≤ 0.494 (see,
e.g., Refs. 12,21, and 22). Here we follow Frenkel and Smit12

which we believe to be the most accurate. In their work, finite
size effects are taken into consideration when calculating the
free energy of the FCC crystal, i.e., they use the result from
Ref. 11. In addition, the Speedy equations of state for the solid
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and fluid phase were employed.23, 24 The resulting freezing
packing fraction is found to be φH S

F = 0.492.12 The WCA nu-
cleation rates kσeff/D0 scaled to φH S

F = 0.492 are compared
to the hard-sphere results in Fig. 6 where σeff is the size of
a hard-sphere particle which has the same freezing number
density as the WCA model. We stress here that any error in
the freezing coexistence results in a horizontal shift in the nu-
cleation rates. Hence, in addition to an uncertainty of approx-
imately 2 orders of magnitude in the nucleation rates, there is
an additional uncertainty of approximately �φerror = ±0.005
in the effective packing fractions. Thus, within these error
bars, we find good agreement between our predicted hard-
sphere and WCA crystal nucleation rates.

Previous studies25, 26 have shown that softness in the po-
tential increases the nucleation rate, however, this cannot be
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confirmed from our predictions as the uncertainty in the nu-
cleation rates is too large. We stress that the experimen-
tal hard-sphere nucleation rates differ significantly from our
predicted rates for low supersaturations. This is in contrast
to the results presented in Ref. 1 where good agreement was
found between the WCA rates and the light scattering exper-
imental nucleation rates. This difference originates from the
freezing number density which was used to map the WCA
number densities to effective packing fractions. As described
in Sec. II, in this paper we have determined the freezing den-
sities using full free-energy calculations which are known to
be very accurate. In contrast, the method used in Ref. 1 ap-
pears to yield results that differ significantly from the “exact”
coexistence densities.

The large difference between the nucleation rates when
plotted in terms of effective packing fractions emphasizes one
possible problem in the comparison between the experimental
and simulated nucleation rates: the determination of the effec-
tive packing fractions. A difference of 1–2% in the freezing
density has a significant effect on the position of the drop-
off of the nucleation rates. Whereas it is straightforward to
evaluate the correct effective volume fractions in simulations,
the procedure required to deduce the same information from
experiments is more subtle. Hence, part of the discrepancy
between the computed and measured crystal-nucleation rates
of “hard-sphere” colloids may be due to a small difference in
the definition of the effective packing fraction. Yet, this is cer-
tainly not the whole story: the very large discrepancy between
experimental and numerical nucleation rates at lower densi-
ties cannot be accounted for by a simple rescaling of the den-
sity axis. Hence, unlike Kawasaki and Tanaka, we conclude
that the discrepancy between simulation and experiment is as
large as ever, and still unexplained

V. CONCLUSIONS

In conclusion, we have examined the crystal nucleation
of particles interacting with the WCA potential with βε

= 40 using Brownian dynamics, umbrella sampling, and for-
ward flux sampling. As in Ref. 5, we find good agreement
between the nucleation rates predicted using these differ-
ent methods. Additionally, we find that the nucleation rates
predicted for the WCA model agree well with those of

hard spheres as a function of the effective packing fraction
φeff defined such that φeff at freezing matches that of hard
spheres.
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