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The sedimentation of an initially inhomogeneous distribution of hard-sphere

colloids confined in a slit is simulated using the multi-particle collision dynamics

scheme which takes into account hydrodynamic interactions mediated by the

solvent. This system is an example for soft matter driven out of equilibrium where

various length and time scales are involved. The initial laterally homogeneous

density profiles exhibit a hydrodynamic Rayleigh–Taylor-like instability. Solvent

backflow effects lead to an intricate non-linear behaviour which is analyzed via

the solvent flow field and the colloidal velocity correlation function. Our

simulation data are in good agreement with real-space microscopy experiments.
1 Introduction

Mesoscopic colloidal dispersions embedded in a molecular solvent are soft matter
systems which need multiscale modelling. For structural equilibrium correlations,
this is mainly a problem of different length scales which has been widely addressed
and is by now well-understood, e.g. by using the concept of effective interactions.1

For dynamical correlations and non-equilibrium situations, widely different time
scales require careful multiscale modelling. The dynamics of a molecular solvent
takes place on the picosecond level, while the time a colloid needs to diffuse over
its own radius, is in the second time scale for micron-sized colloids. The hydrody-
namic interactions2 between the colloidal particles are mediated by the solvent
flow on an intermediate time scale and are long-ranged and of many-body nature.
It is only at very low colloidal volume fractions that hydrodynamic interactions
can be neglected. Recently, various computational schemes have been developed
to tackle hydrodynamic interactions ranging from the lattice Boltzmann technique,3

fluidized particle methods4 to multi-particle collision dynamics (MPCD)5–7 where the
solvent flow is modelled as ideal gas particles which exchange momentum locally by
stochastic rotation of the relative velocities.
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Here we consider a hydrodynamic instability of sterically-stabilized colloids
(hard spheres) confined to a slit by inverting gravity which acts perpendicular to
the slit. We simulate the hydrodynamic instability and incorporate the crucial hydro-
dynamic interactions by using the MPCD scheme.

The motion of a colloid is characterised by the Peclet number Pe ¼ sD/sS, which is
the ratio between the time sD it takes a particle to diffuse its own radius and the time
sS it takes to sediment the same distance. A Peclet number of order unity is the
dividing line between colloidal (Pe # 1) and granular systems (Pe [ 1), i.e. Pe
measures the importance of Brownian motion. The classical Rayleigh–Taylor insta-
bility, which occurs if a heavy, immiscible fluid layer is placed on top of a lighter one
has been intensively studied for the case of a simple Newtonian fluid both by theory,8

simulation9 and experiment, and is observed in granular matter,10–12 in surface-
tension dominated colloid–polymer mixtures13 and in a suspension of dielectric
particles exposed to an ac electric field gradient.14 However, except for ref. 15, this
instability was never simulated on the particle scale in the context of colloidal
sedimentation in confinement including hydrodynamic interactions. Here we present
simulation data using the MPCD method. The instability is resolved on the colloidal
particle scale and good agreement with real-space experiments is observed. We
further show that the instability is accompanied by significant solvent backflow
effects. Finally, correlations of the colloidal velocities are calculated which reveal
strong lateral correlations and anticorrelations which are time-dependent.

The paper is organized as follows: in chapter II the simulation method is briefly
described. Results for the sedimentation problem are presented in chapter III and
compared to real-space confocal microscopy data. The instability and the concom-
itant solvent flow fields and colloidal velocity correlations are discussed. Finally, we
present our conclusions in chapter IV.
2 The simulation model

Our model consists of a suspension of N solute particles with mass M and hard
sphere diameter s immersed in a bath of Ns solvent particles with mass m and
a number density Ns ¼ Ns/V, here V is the volume of the simulation box. The system
is confined between two walls with distance L in x-direction and has periodic
boundary conditions otherwise. The N colloidal particles with space position Ri

and velocity Vi propagate according to Newton’s equation of motion

M
dVi

dt
¼ FSex �

X
jsi

VRj
V
�
Rij

�
þ FwðXiÞex

The first term on the right hand side is the constant driving force of strength FS

directed perpendicular to the walls in the x-direction and the second one represents
the force due to the interaction with other colloids (Rij ¼ |Ri � Rj| is the interparticle
distance). The third term is a repulsive wall–colloid force. To avoid overlap the
colloids interact via a screened Coulomb potential which diverges at Rij ¼ s, here
the reduced inverse screening length is ks ¼ 40. A similar potential is used for the
colloid–wall interaction. We integrate the equation of motion using a velocity Verlet
algorithm with a time step dt. Simultaneously, the solvent particles with space posi-
tion ri and velocity vi move ballistically also within the same time step dt, i.e.

ri(t + dt) ¼ ri(t) + vi(t)dt (2)

To enforce no-slip boundary conditions on the colloid surface a stochastic reflec-
tion method16,17 is applied. If a solvent particle i hits a colloid it gets a new velocity
ui¼ un, i + ut, i relative to the velocity of the colloids boundary from a distribution for
the normal velocity component PnðunÞ ¼ mbune�mbu2

n=2 and the tangential velocity
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component PtðutÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mb=ð2pÞ

p
e�mbu2

t =2 with b�1 ¼ kBT. Then the new velocity of

the solvent particle i after collision with the colloid j reads as

vi(t + dt) ¼ Vj(t) + Uj(t) � (~ri � Rj(t)) + ui (3)

where Uj is the angular velocity of the colloid and ~ri is the point of contact at the
colloid surface. After all collisions within dt are completed, the new velocity of the
colloid j is updated as

Vjðtþ dtÞ ¼ VjðtÞ þ
m

M

X
i˛C

�
viðtÞ � viðtþ dtÞ

�
(4)

and the new angular velocity is

Ujðtþ dtÞ ¼ UjðtÞ þ
m

I

X
i˛C

�
~ri � RjðtÞ

�
�
�
viðtÞ � viðtþ dtÞ

�
(5)

where C is the set of solvent particles colliding with colloid j in the time interval

[t, t + dt] and I ¼ 2/5M(s/2)2 is the moment of inertia of the spherical colloids.
After a time Dt ¼ ndt the solvent particles interact with each other via a multi-

particle collision.5 The particles are sorted in cubic cells of size a and the center-
of-mass velocity Ux ¼ Nx

�1
P

j˛x vj of each cell x is calculated (Nx is the number of
particles in the cell x). Then in each cell the relative velocities dvi ¼ vi � Uxi

are
rotated by an angle a around a random axis, i.e.

vi(t + Dt) ¼ Uxi
(t) + Sxi

ûxi
(a)dvi(t) (6)

where ûxi
(a) is the stochastic rotation matrix and Sxi

is a thermostat operator (see
below). ûxi

(a) is equal for all particles within the same cell but uncorrelated between
different cells and in time. Due to this operation the particles exchange momentum in
the cell while the total kinetic energy and the total momentum in the cell are
conserved. It was shown5 that (2) and (6) lead in equilibrium to a Maxwell–Boltzmann
distribution of the velocities and that Navier–Stokes-hydrodynamics is generated.

Since in any kind of a non-equilibrium simulation thermostating is required to
avoid viscous heating, we rescale the relative velocities dvi in each cell by a factor

Sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðNx � 1ÞkBT

m
P
i˛x

dv2
i

vuut (7)

This thermostat acts locally and is unbiased with respect to the flow field and
hence does not destroy the hydrodynamic behaviour, see ref. 18.

For a small mean free path l ¼ Dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
� a the same set of particles interact

over several Dt with each other before leaving this cell and hence they remain corre-
lated over several Dt. If one imposes a flow field the degree of correlation and there-
fore the transport coefficients depends on the magnitude of the flow field. The
violated Galilean invariance can be restored if all particle positions are shifted by
a random vector before the collision step.19

At the wall surfaces we also enforce no-slip boundary conditions using a stochastic
reflection method but additionally we fill the wall cells with nsa

3 � Nx ‘‘ghost’’ parti-
cles during the collision step (nsa

3 is the average number of solvent particles in the
collision cell), because due to the random shift partially occupied boundary collision
cells occur.20 The velocities of the ‘‘ghost’’ particles are drawn from a Maxwell–
Boltzmann distribution with zero mean and variance kBT.

We employed the parameters Dt ¼ 0.2s, a ¼ 3p/4, nsa
3 ¼ 5 with s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2=ðkBTÞ

p
.

With these parameters the total solvent kinematic viscosity is n ¼ h/r z 0.5a2/s
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(r ¼ mns is the mass density and h the dynamic viscosity).21 For the colloids we use
M ¼ 167m, hard core diameter s ¼ 4a and dt ¼ Dt/4. We calculate the diffusion
constant in a bulk simulation from the integral of the velocity autocorrelation function
and obtain D ¼ 0.013a2/t0.

17 With these parameters we achieve the hierarchy of time
scales for a colloidal particle Dt ¼ 0.2s < sc ¼ 1.5s < sB ¼ 2.2s < sn ¼ 8s < sD ¼
307s, see ref. 22. Here sc is the time a sound wave needs to propagate over one colloidal

radius (the speed of sound is c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5kBT=ð3mÞ

p
), sB is the time the velocity of a colloid

is correlated and sn is the time over which the solvent momentum diffuses over one
colloidal radius. We performed simulations up to Pemax ¼ 4.8 which correspond to
a maximal Reynolds number of Remax ¼ D/nPemax z 0.125 < 1, such that inertial
effects are negligible. To avoid compressibility effects we also ensure that the Mach
number is smaller than unity, Mamax ¼ 2D/(sc)Pemax ¼ 0.024� 1. With these values
of the hydrodynamic numbers and the hierarchy of time scales we are sure that
a comparison with a real physical system is reasonable.

The system we consider contains N ¼ 15 048 hard sphere particles and Ns ¼
14 274 843 solvent particles in a box of L/s ¼ 18 and Ly/s ¼ Lz/s ¼ 54. We start
our simulation with a fully equilibrated system under the influence of a constant force
in the x-direction, i.e. particles have collected and settled at the top of the box. Then at
time t¼ 0 we instantaneously reverse the direction of the force and monitor the evolu-
tion of the system until all particles have sedimented to the bottom.

We compare our simulation to single-particle level confocal microscopy experi-
ments with sterically stabilised polymethylmethacrylate colloids. The value of the
Peclet number can be adjusted by variation of the density mismatch between colloid
and solvent mass density. Prior equilibration was achieved by placing the suspension
overnight such that it sedimented across a thin (typically 50 mm) capillary. The capil-
lary was then inverted, and the evolution under sedimentation was followed. More
details of the experiment are described in ref. 23,24.
3 Results

A situation where a layer of a heavy fluid is on top of a lighter one is clearly mechan-
ically unstable, i.e. the system is inclined to invert. During this process the initially
Fig. 1 Simulation and confocal microscopy snapshots. (a) A schematic illustrating the spatial
parameters s, l and L. (b–e) Simulation snapshots of a system which contains N ¼ 33 858
colloidal particles and Ns ¼ 32 118 397 solvent particles (not displayed) in a simulation box
with dimensions L/s ¼ 18 and Ly/s ¼ Lz/s ¼ 81. The value of the Peclet number is Pe ¼
1.6. (b–d) Time series of the system at time t/sS¼ 3.2 (b), 6.4 (c), 9.6 (d). The snapshots are slices
of thickness 2s done in the xy plane. (e) Slice of thickness 2s in the yz plane at time t/sD ¼ 9.6.
The height of the yz plane is x/L¼ 2/3, as indicated by the dashed line in (d). (f–i) Experimental
realisation of the Rayleigh–Taylor-like instability in sedimentation of confined colloids. (f–h)
Time series of images taken with a confocal microscope in the xy plane for the parameters f
¼ 0.15, Pe ¼ 1.1 and L/s ¼ 18 at times t/sS ¼ 1.43 (f), 5.5 (g), 11.22 (h). (i) Slice in the yz plane
at a height x/L ¼ 2/3 (indicated by the dashed line in (h)) at time t/sS ¼ 11.22. In (f–h) the scale
bars denote 20 mm and in (i) 40 mm.
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flat interface starts to develop perturbations with a characteristic wavelength l¼ 2p/k,
where k is a wave number.

We present snapshots of the time evolution of the system, in Fig. 1b–e from
computer simulation, and in Fig. 1f–i from confocal microscopy. The similarity is
remarkable, and we note that, at the very least, our simulation qualitatively repro-
duces the experiment. The time evolution in the development of the instability with
a characteristic wavelength is clear. While snapshots in the gravity plane (Fig. 1b, c,
d, f, g, and h) illustrate the overall process of sedimentation, snapshots in the hori-
zontal yz plane show the transient pattern or network-like structure that results from
the instability (Fig. 1e and i). At later times, the network structure decays and a later-
ally homogenous density profile develops where the colloids start to form a layer at
the bottom of the cell which becomes more compact with time. In the initial regime
of the instability, more precisely in a regime where the amplitude of an undulation is
smaller than the corresponding wave length, the experimental and the simulation
data are in line with the results of a linear stability analysis. A detailed comparison
is presented in ref. 23 revealing a fastest growing mode with a wave number kmax.†
Fig. 2 Solvent flow field. (a) Solvent velocity field in the yz plane. Slice of the simulation box in
the yz plane at a height x/L¼ 1/2 at time t/sS¼ 11.2. The parameters are Pe¼ 1.6 and L/s¼ 18.
The colour plot represent the magnitude of the solvent velocity vx(y, z)/Vs in gravity direction,
where Vs is the sedimentation velocity at infinite dilution. The Voronoi diagram of the colloid
positions in this plane is indicated by green lines. (b) Solvent velocity field in the xz plane. Slice
of the simulation box in the xz plane for the same parameters as in (a). The colour plot repre-
sent vx(x, z)/Vs, the red arrows the velocity field (vx + vz)(x,z)/Vs and the green lines the Voronoi
diagram of the colloid positions in this plane.

† We remark that both the wave length and the growth rate of the most unstable undulation
depends on the slit size L, more details on the slit size dependence are discussed in ref. 23.
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Let us now study the solvent flow accompanying the colloidal instability. In
Fig. 2 a, the solvent velocity field in the yz plane perpendicular to the driving force
is shown at an intermediate height x ¼ L/2. Inhomogeneities are revealed on the
same length scale lmax as in the colloidal density profile. Actually there is a back-
flow effect associated with colloid-rich regions moving downwards and with
solvent-rich regions of upward motion. This is clearly revealed in Fig. 2 b where
a region rich in colloidal particles is shown as a dense Voronoi tesselation and
clearly correlates with a downwards solvent velocity and vice versa. Again, the
structures exhibit the characteristic length scale lmax ¼ 2p/kmax, the fastest growing
wavelength in the linear regime.

We finally consider the spatial correlations of colloid-velocity fluctuations in
the gravity direction in the plane perpendicular to gravity Cx(x,r,t) ¼
hdVx(x,0,t)dVx(x,r,t)i, where dVx(x,r,t) ¼ hvx(x,t)i � vx(x,r,t) are the deviations
from the mean velocity in the yz plane at height x from distance r in this plane.
We anticipate both positive correlations at short distances (within the same ‘branch’
of the network) and negative correlations at slightly longer length scales. At longer
length scales again, the lack of long-ranged order in the network leads to a loss of
correlation and a decay limr / NCx(x,r,t) ¼ 0. In Fig. 3 a–c the chronological devel-
opment of the logarithm of the absolute value of Cx(x, r, t) is shown at the height x¼
L/2 for Pe ¼ 0.8, 1.6, 4.8, respectively. The maximum in anticorrelation of Cx(x, r, t)
is found at r z lmax/2, see Fig. 3 d, in other words the length scale of the network
Fig. 3 Spatial correlation functions of the colloid velocity fluctuations. (a–d) The spatial
correlation function. The spatial correlation function Cxðx ¼ L=2; r; tÞ of the colloid velocity
fluctuations in the gravity field direction is measured as a function of the distance r perpendic-
ular to gravity. Cxðx ¼ L=2; r; tÞ was obtained in the yz plane at x/L¼ 1/2 for Pe¼ 0.8 (a), Pe¼
1.6 (b,d), Pe ¼ 4.8 (c) and L/s ¼ 18. Cx(r) is scaled by thermal fluctuation strength kBT=M
(M is the colloid mass). In (a–c) r is scaled by the diameter s of the colloidal particle and in
(d) by the wave length lmax of the fastest growing undulation for Pe ¼ 1.6. The chronological
development of the logarithm of the absolute value of Cxðx ¼ L=2; r; tÞ is shown in (a–c),
whereas in (d) Cxðx ¼ L=2; r; tÞ is plotted for times t/sS ¼ 6.4, 8, 9.6, 11.2, 12.8, 14.4.
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structure corresponds very closely to the fastest growing wavelength predicted by the
linear stability analysis. The velocity correlations become more pronounced in the
non-linear mixing regime which is an indication of fully developed swirls of solvent
and particle-rich regions. For Pe ¼ 0.8 (Fig. 3 a) and for Pe ¼ 1.6 (Fig. 3 b,d) the
correlation length slightly increases in time, while for Pe ¼ 4.8 (Fig. 3 c) it is mark-
edly non-monotonic in time revealing a non-trivial interplay between sedimentation,
hydrodynamics and confinement.
4 Conclusions

Using the MPCD simulation technique, we have presented an analysis of a hydrody-
namic instability in a colloidal system confined in a slit of micrometre dimensions.
Our results show good agreement between experiment and simulation, showing
that the latter accurately describes the fundamentally and practically important
phenomena caused by hydrodynamic instabilities.

Let us finally discuss some possible extensions of the present work: here we started
with a sedimentation density distribution, typical for an experimental situation
before turning over the cell. A sharp initial interface as often encountered after
flow junctions in microfluidics as well as a linear density gradient, as often found
in systems with source–drain stabilized electrolyte concentrations could also be
addressed in principle by simulation. We would expect that the instability is most
pronounced for high initial density gradients.

Finally, it is tempting to consider more complex interactions between the colloidal
particles as realized, for example, for colloid-polymer mixtures where strong attrac-
tions can be realized.‡ One would then expect a Rayleigh–Taylor-like instability
with surface tension.27 Also binary systems will establish a playground for sedimen-
tation instabilities where separation and mixing could be tuned by the strength of the
drive. External drives which are oscillatory in time could lead to segregation effects
in the axial direction28 and might be interesting for further study. If the initial density
profile is crystalline in the lateral direction,23 surface melting behaviour in non-
equilibrium becomes relevant.29 The recrystallization at the bottom of the cell30

might be a complex process, in particular for attractive interactions and binary
systems.
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