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Abstract
The problem of successfully simulating ionic fluids at low temperature and low density states is
well known in the simulation literature: using conventional methods, the system is not able to
equilibrate rapidly due to the presence of strongly associated cation–anion pairs. In this paper
we present a numerical method for speeding up computer simulations of the restricted primitive
model (RPM) at low temperatures (around the critical temperature) and at very low densities
(down to 10−10σ−3, where σ is the ion diameter). Experimentally, this regime corresponds to
typical concentrations of electrolytes in nonaqueous solvents. As far as we are aware, this is the
first time that the RPM has been equilibrated at such extremely low concentrations. More
generally, this method could be used to equilibrate other systems that form aggregates at low
concentrations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Computer simulations have yielded invaluable insights into the
properties of ionic fluids. The nature of fluid–fluid (‘vapour–
liquid’) phase separation and the universality class of the
associated critical point have attracted particular attention. In
these studies, the restricted primitive model (RPM) has played
a central role [1–17]. The RPM is a simple representation of
molten salts and ionic solutions. It consists of an equimolar
binary mixture of positively and negatively charged hard
spheres with charges ±q and equal diameters σ , immersed
in a continuum with dielectric constant ε. In terms of
the model parameters, the reduced temperature is defined as
T ∗ = kBT Dσ/q2, where kB is Boltzmann’s constant, T is

the absolute temperature, D = 4πεε0 and ε0 is the vacuum
dielectric permittivity; the reduced density is defined as ρ∗ =
ρσ 3, where ρ = N/V is the total number of ions per unit
volume. The most recent high-precision Monte Carlo (MC)
simulations locate the critical point at a critical temperature
T ∗

c � 0.05 and a critical density ρ∗
c � 0.08 [18, 19]; the

critical point has been confirmed as belonging to the three-
dimensional Ising universality class [19]. Interestingly, the
critical temperature is close to room temperature conditions
for sub-nanometre monovalent ions in oily solvents with ε �
5–10. However, the ion concentrations in these nonaqueous
electrolyte solutions are often in the nM regime (ρ∗ ∼
10−10) [20–22] which motivates the parameter choice of the
present study.
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It has been clear for a long time that physical clustering of
the ions has an important effect in the vapour region [4, 23],
as strongly suggested by the Bjerrum theory [24]. Analysing
the features of this system in the low density–low temperature
regime, Valleau [25] and Gillan [26] showed that the ionic
fluid tends to form dimers, triplets and higher order clusters,
and that clustering has a crucial effect on the equilibrium
properties of the RPM. Weis and Caillol [27] and Bresme
et al [28] characterized the cluster structures quantitatively
at temperatures around Tc and at densities around ρc/5 and
ρc/3, respectively. Later on, Camp and Patey identified
different regimes of ion association well below ρc [29]: at low
temperature the system apparently consists of only clusters;
at intermediate temperature the system is predominantly
associated, but with some free ions; and at high temperature
the majority of ions are free. The RPM with screened
Coulombic interactions can serve as a model for charged
colloidal systems [30–32]. Caballero and co-workers studied
such a model with an inverse screening length of κ = 6σ−1,
mimicking the effect of added electrolytes present in the
medium: the critical point was located at T ∗

c � 0.17 and
ρ∗

c � 0.22, and the familiar clustering phenomenon (of the
colloids) in the dilute phase was observed.

The main obstacle to successfully simulating ionic fluids
in the low temperature regime, where coexistence occurs, is
the strong association of ions at distances close to contact
and the resulting extremely slow equilibration. Graham
and Valleau [8] pointed out that, when studying the low
temperature regime, conventional MC or molecular dynamics
methods are not sufficient to equilibrate the system. Therefore,
they first used a type of umbrella sampling named ‘temperature
scaling Monte Carlo’ at several densities [33]. Next,
Valleau proposed ‘density scaling Monte Carlo’, a novel
algorithm based on umbrella sampling over broad ranges of
densities [34], and applied it to the RPM near the critical point.
Orkoulas and Panagiotopoulos computed the vapour–liquid
phase diagram [11], and to accelerate convergence proposed
ion pair and cluster moves capable of grouping and moving
clustered ions. The primary motivation in this work was the
computation of the vapour–liquid phase diagram, and hence
reduced densities of no less than 10−4 were considered.

In recent work, Allahyarov et al [35] showed that, around
the critical temperature, oppositely charged micro-ions tend to
form ‘Bjerrum pairs’, in which oppositely charged particles are
closer than the Bjerrum length λB = q2/kBT D. The authors
of [35] found that at the lowest salt concentrations (around
10−9 mol l−1, corresponding to a reduced density of around
10−10 for ions with σ = 5 Å), almost 90% of the ions resided
in pairs. In a later publication [36], the same authors used a
different definition of a cluster (with a cut-off of λ = 3σ ),
and narrowed their results down to a smaller concentration
range: the new results became valid only for salt concentrations
between 10−4 and 10−2 mol l−1 (or reduced densities between
10−5 and 10−3). The main problem found by the authors was
equilibrating the system at extremely low densities by means
of standard simulation techniques.

The aim of our work is to present a novel MC
technique that achieves rapid equilibration of the RPM at low

Table 1. Box edge L , Debye screening length λD, and Ewald
real-space screening parameter α for all of the simulated densities
and temperatures ranging from T ∗ = 0.04 to 0.07, and with
N = 256. For each density, the smallest value of λD corresponds to
the lowest temperature, and the largest λD to the highest temperature.

ρ∗ L/σ λD/σ ασ

1.73 × 10−1 11.39 0.135–0.179 0.49
8.68 × 10−2 14.34 0.191–0.253 0.39
2.73 × 10−3 45.45 1.080–1.428 0.12
1.10 × 10−3 61.48 1.700–2.249 0.091
1.00 × 10−4 136.13 5.642–7.460 0.041
6.70 × 10−6 336.75 21.790–28.812 0.017
2.29 × 10−6 481.62 37.283–49.296 0.012
1.05 × 10−6 624.44 55.059–72.800 0.009 0
9.48 × 10−9 2 999.78 579.457–766.167 0.001 9
9.03 × 10−11 14 154.79 5937.193–7850.244 0.000 40

temperatures (around Tc) and very low reduced densities (from
10−3 down to 10−10). This method might also be applied to
the equilibration of other systems that form aggregates at low
concentrations.

2. Simulations

The interaction potential for the RPM is

U(ri j) =
{

∞ ri j < σ

qi q j/Dr ri j � σ ,
(1)

where qi = ±q . The system comprises N/2 cations and N/2
anions in a cubic box of length L, with periodic boundary
conditions (PBCs) applied. We use MC simulations of N =
256 ions in the NV T ensemble. The choice of such a
relatively small number of particles is justified by the fact
that, as the densities under study are so low, the simulation
box is always large enough to exclude any significant finite-
size effects due to the PBCs; with N = 256 ions and ρ∗ ∝
10−10, the simulation box length is around 104σ . We checked
for finite-size effects by running simulations at ρ∗ = 10−4

with either 256 or 1000 particles, and making sure that the
computed energy per particle was the same within statistical
uncertainties. Moreover, the box lengths are large compared to
the range of Debye-like screening, equal to the Debye length
λD/σ = √

T ∗/4πρ∗. Table 1 shows the values of L and λD

at the densities and temperatures considered in our work; the
density range is 10−10 � ρ∗ � 10−3 and the temperature range
is 0.04 � T ∗ � 0.07. In this paper we will concentrate
on simulations at the lowest density and temperature; the
full range of state points will be considered in a forthcoming
publication.

The long-range interactions were handled using the Ewald
sum with tin-foil boundary conditions [37–40]. For each
density we carefully tuned the Ewald parameters α, rc and kmax,
being the width of the Gaussian distribution characterizing the
screening term in real space, the real-space cut-off and the
reciprocal-space cut-off, respectively. α was chosen using the
empirical rule αL = 5.6 [41], rc was set to L/2, and kmax such
that the relative error in the reciprocal-space sum was of the
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order of 10−5 [38]. The values of α are indicated in table 1;
kmax was always set to 10 × (2π/L). To test our code, we
computed the energy per ion pair up in a liquid at T ∗ = 0.042
and ρ∗ = 0.17; we obtained 〈βup〉 = −1.26 ± 0.01, which
is in perfect agreement with that computed for the same state
point by Romero-Enrique et al [42]. We have also computed
the energy per particles at ρ = 0.175 and T = 0.05, and
compared with the results in table 7 of [27] our result is
〈U/NkBT 〉 = −12.38 ± 0.01 in perfect agreement with their
results of U/NkBT = −12.38. Moreover, we computed the
energy per particle at lower densities where the system is in a
vapour phase, at ρ∗ = 0.002 and T ∗ = 0.05 [27], and found
〈U/NkBT 〉 = −10.20 ± 0.05, in good agreement with that
computed for the same state point by Caillol and Weis [27]
(U/NkBT = −10.15).

It is well known that the RPM forms clusters in the
subcritical vapour phase. In order to identify the clusters,
we use Gillan’s definition, according to which two particles
belong to the same cluster if they are separated by a distance
shorter than a given cut-off λ [26]. In this way, we detect the
total number of isolated ions, the total number of associated
ions, and the total number of clusters of a given size. In what
follows, and unless stated otherwise, we will study the cluster
formation when λ = 2σ .

3. Techniques to equilibrate the RPM at low
temperatures and densities

In order to study the RPM at low temperatures and densities,
ad hoc simulation methods have been employed to overcome
the problem of slow convergence towards equilibrium. The
main obstacle to simulate the RPM in the low temperature
region is the strong binding effect of oppositely charged ions
at short distances, as the thermal energy available to drive two
oppositely charged particles away from each other is much less
than the attractive Coulomb energy, i.e. T ∗ 
 1. Therefore,
in order to reach equilibrium, the system would have to be
simulated for a prohibitively long time. In our simulations, this
equilibration problem is going to be even more pronounced,
since we aim to study very dilute systems where isolated
ions are so far apart from each other that they spend most
of the time freely diffusing in the empty space. Once they
finally find an oppositely charged ion, they strongly bind to
it forming a neutral dimer (or a higher cluster) that rarely
breaks. As a consequence, the computational time needed to
equilibrate the system can be astronomically long. To improve
the equilibration time in our NV T MC scheme, we have
adopted two established MC moves and implemented a new
one:

• small and large particle displacements;
• small and large cluster displacements;
• formation and breakage of clusters.

3.1. Small and large particle displacements

The first move we select is the standard single-particle
displacement, where the x , y and z coordinates of a randomly
selected particle are each displaced by a small amount

δ chosen randomly from the interval {−δmax, δmax}. The
move is accepted with the standard Metropolis probability
min (1, e−β[u(n)−u(o)]), where u(o) and u(n) are the energies
of the particle before and after the trial move, respectively,
and β = 1/kBT . According to normal practice, δmax can be
adjusted to give some desired acceptance rate for the move
over the course of the simulation. In principle, such moves
should allow each particle to diffuse as a free ion, and join
or leave a cluster. However, when the density is very low
(and the simulation box is very large), short single-particle
displacements are not sufficient to sample the phase space
properly. Thus, we also randomly attempt displacements
where δmax = L/2. These occasional large displacements are
intended to accelerate cluster formation (if thermodynamically
favourable) and to allow the system to explore more significant
regions of phase space within the simulation timescale.

3.2. Small and large cluster displacements

Single-particle MC moves are not enough to equilibrate highly
clustered systems, and so we also implement a cluster move
similar to that proposed by Orkoulas and Panagiotopoulos [11]:
we first identify all of the clusters in the system, then choose
a cluster at random and select displacements from either a
small or a large interval, as in the single-particle moves.
Cluster moves that result in the merging of two or more
clusters have to be treated extremely carefully in order to
respect detailed balance; the reverse move has to be attempted
with equal probability to the forward move. Here we take
a simple solution, and simply reject all cluster moves that
lead to the merging of clusters [11, 27]. In this way, the
instantaneous cluster distribution is left intact, and detailed
balance cannot be violated. With this simple approach,
the cluster move is accepted with the normal Metropolis
probability min (1, e−β[U(n)−U(o)]), where U(o) and U(n) are
the energies of the system before and after the trial move,
respectively. Of course, this move does not lead to the
formation or breakage of clusters; a specific move to effect
these transformations is detailed next.

3.3. Novel move for the formation and breakage of clusters

The last attempt we make to improve the equilibration of
the system is to introduce a novel move that offers the
opportunity of forming and breaking clusters. This ‘cluster
formation/breakage’ (CFB) MC move is designed to respect
detailed balance, and is implemented as follows:

(i) we choose a particle at random (particle 1), without
knowing a priori whether it belongs to a cluster;

(ii) we identify all of its neighbours within a cut-off distance
�, which can be tuned to give optimal performance, as
described below;

(iii) we choose a neighbour at random (particle 2), irrespective
of its charge, and store its separation from particle 1,
r12(o);

(iv) we then move particle 2 to a new separation from
particle 1, r12(n), chosen randomly and uniformly from
the interval σ � r12(n) � �, and with a random
orientation of the corresponding separation vector;
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Figure 1. Concentration of associated ions ρa against the total ion
concentration ρ. The open circles are results from [36] and the red
squares are our results. The cut-offs chosen to identify the clusters
are indicated in the legend.

(v) we accept the move with a probability min(1, [r12(n)/

r12(o)]2 e−β[U(n)−U(o)]), where U(o) and U(n) are the
energies of the system before and after the trial move,
respectively.

This CFB move respects detailed balance, and does not add
any bias towards the formation or breakage of a cluster, since
clusters can form and break, and isolated ions can simply be
displaced (see the appendix).

In the current work, the target acceptance rate for the
single-particle and cluster moves is approximately 40%, while
the acceptance rate for the CFB moves varies between a few
per cent (at high density) and 40% (at very low density).

4. Results

We start by comparing our simulation results (using single-
particle, cluster and CFB moves) with those obtained by
Allahyarov et al [36] under the conditions T = 300 K, ε = 8,
q = e, and σ = 10 Å, corresponding to a reduced temperature
T ∗ � 0.14. The molar concentrations of salt lie in the range
10−4–10−2 mol l−1. Allahyarov et al counted ‘the number of
oppositely charged pairs which are closer than 3σ ’, whereas
we consider associated ions belonging to clusters with two or
more ions (with the same cut-off). Figure 1 shows the total
concentration of associated ions ρa as a function of the total
ion concentration ρ. Data from figure 1 of [36] are included
after multiplying the salt concentration and associated ion pair
concentration by 2; in keeping with these data, we quote the
concentrations in units of mol l−1, assuming a particle diameter
σ = 10 Å. All we want to emphasize here is that we get good
agreement with the established results for concentrations in the
range 10−4–10−2 mol l−1.

After having confirmed that the algorithm is working in
the density regime that has already been studied, we move
to the central aim of this paper, i.e. equilibrating the RPM
at extremely low density. The lower the temperature and the
density, the longer it takes to equilibrate the system. Thus, a

Figure 2. Reduced density of associated ions versus Monte Carlo
cycle for the MC0, MC1 and MC2 protocols and the same initial
configuration at T ∗ = 0.04 and ρ∗ = 9.03 × 10−11. The legend
indicates the cut-off � chosen for CFB.

good test for the algorithm is to equilibrate the system at the
lowest density and lowest temperature of interest, i.e. T ∗ =
0.04 and ρ∗ = 9.03×10−11. From preliminary tests, it appears
that at the same temperature and higher densities of around
ρ∗ = 10−6 the system equilibrates in a reasonably short time.

For clarity, we define three different MC cycles:
Monte Carlo cycle 0 (MC0) consists of N moves, 90% of
which are small displacements of single particles, 3% are large
displacements of single particles, 3% are small displacements
of randomly chosen clusters, and 4% are large displacements
of randomly chosen clusters; Monte Carlo cycle 1 (MC1)
consists of N moves, 90% of which are small displacements of
single particles, 3% are large displacements of single particles,
3% are small displacements of randomly chosen clusters, 2%
are large displacements of randomly chosen clusters, and 2%
are CFB moves; Monte Carlo cycle 2 (MC2) consists of
N moves, 70% of which are small displacements of single
particles, 10% are large displacements of single particles, 5%
are small displacements of randomly chosen clusters, 5% are
large displacements of randomly chosen clusters, and 10% are
CFB moves. In all cases, we define a cluster according to
λ = 2σ ; in MC1 we choose � = L/2, whereas in MC2 we
consider different values of �.

In figure 2 we show the reduced density of associated ions,
ρ∗

a , versus MC cycle for simulations run according to the MC0,
MC1 and MC2 protocols, and starting from the same initial
configuration. MC0 shows almost no structural evolution on
the simulation timescale, and hence is entirely inadequate for
simulations at low temperature and density. This is caused by
the incredibly long distances an ion must cover in order to find
another ion (difficult cluster formation), and at the same time
by the low probability of thermally activated dissociation of ion
pairs at very low temperature (difficult cluster breakage). It is
evident that all of the MC2 runs and the MC1 run equilibrate to
the same structure, within our simulated timescale. Moreover,
the equilibration times are quite different: MC2 (with 10%
CFB moves) equilibrates faster than MC1 (with 2% CFB
moves).
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Figure 3. Reduced density of associated ions versus Monte Carlo
cycle in simulations started from configurations (a), (b) and (c) (see
text), at T ∗ = 0.04 and ρ∗ = 9.03 × 10−11.

Next, we select the MC2 Monte Carlo scheme and
equilibrate the system using different values of �, to show
that the final equilibrium state does not depend on the choice
of � but that its equilibration rate does. To this end, we
use different values of �, ranging from 1000σ up to half of
the box length L/2 (7070σ ), and plot the reduced density of
associated ions versus MC cycle. Figure 2 shows that all of
the chosen values of � lead to the same equilibrium density
of associated ions. Strikingly, the equilibration rate decreases
with increasing �. Choosing a small value for � allows
for a faster equilibration; however, � cannot be too small
compared to the mean separation of clusters, as it will lead
again to inefficient sampling, not allowing clusters to merge or
break. Therefore, the optimal value of � should decrease with
increasing density.

We now demonstrate that the convergence of the algorithm
does not depend on the initial configuration chosen, and that
the system is quasi-ergodic on the simulation timescale. To
this end, we set � = 1000σ and compute the density of
associated ions in simulations starting from three completely
different initial configurations: (a) a configuration containing
only isolated ions; (b) a configuration containing 40%
isolated ions and 60% ions in pairs; and (c) a configuration
containing 25% isolated ions and 75% ions in pairs. Figure 3
shows that convergence is achieved irrespective of the initial
configuration. It is also encouraging that the algorithm allows
for significant fluctuations in the number of associated ions,
which indicates that there is a dynamic equilibrium involving
the formation and breakage of clusters.

5. Conclusions

In this paper we have presented a numerical method for
speeding up computer simulations of the restricted primitive
model at low temperatures (around Tc) and very low reduced
densities (down to 10−10). Our method involves the
combination of conventional single-particle and cluster moves
with a novel ‘cluster formation/breakage’ move, designed
specifically to equilibrate the system in a reasonable time, even

at such extreme thermodynamic conditions. The suggested
Monte Carlo scheme is straightforward to implement: after
having set the value of the maximum neighbour distance
� the method is inherently efficient, in that the system
quickly converges to its equilibrium state. This method might
also be applied to the equilibration of other systems that
form aggregates at low concentrations. We should mention
that we are aware of other techniques that might prove
useful to equilibrate very low concentration systems, such as
the ‘geometric cluster algorithm’ by Liu and Luijten [43],
demonstrated to speed up simulations of complex fluids near
criticality and/or with differently sized components, and a
novel cluster move by Almarza [44, 45]. As far as we
are aware, our results extend to far lower concentrations
than in any previous studies on the vapour phase of the
restricted primitive model. The algorithm presented here
allows for a comprehensive study of the vapour phase around
the critical temperature and at reduced densities down to 10−10:
such low densities seem to be relevant for experiments on
low concentration solutions of ions in low-dielectric organic
solvents. A detailed report of our investigations is in
preparation.
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Appendix. Acceptance move of the cluster
formation/breakage move

Below we derive the acceptance rule for the CFB move, and
show that it satisfies the detailed balance condition. Detailed
balance requires that

p(o)π(o → n) = p(n)π(n → o) (A.1)

where p(o) is the probability that the system is initially
in the old configuration o, π(o → n) is the transition
probability from the old to the new configuration n, p(n) is
the probability the system is initially in the new configuration,
and π(n → o) is the transition probability from the new to the
old configuration. Each transition probability in equation (A.1)
can be expressed as the product of two terms:

π(o → n) = α(o → n) × acc(o → n). (A.2)

α(o → n) is the probability of generating a new configuration
n starting from o, and acc(o → n) is the probability of
accepting the move. A similar equation holds for π(n → o).
In our simulations, the old configuration is defined by choosing
two particles (1 and 2) at random, and computing their relative
distance r12(o), and the total energy of the system U(o);
the new configuration is generated by displacing particle 2

5
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with respect to particle 1, and computing their new relative
distance r12(n), and the new total energy of the system U(n).
r12(n) is generated uniformly on the interval {σ,�}, and hence
α(o → n) = α(n → o). The Boltzmann probability goes like
p ∝ r 2

12e−βU . Combining equations (A.1) and (A.2) gives

acc(o → n)

acc(n → o)
= α(n → o)

α(o → n)

p(n)

p(o)
=

[
r12(n)

r12(o)

]2

e−β[U(n)−U(o)].

(A.3)
To conclude, we implement a Metropolis sampling scheme
using an acceptance probability for a move from o to n of

acc(o → n) = min

(
1,

[
r12(n)

r12(o)

]2

e−β[U(n)−U(o)]
)

. (A.4)
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