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Abstract
Nonlinear ionic screening theory for heterogeneously charged spheres is developed in terms of a
mode decomposition of the surface charge. A far-field analysis of the resulting electrostatic
potential leads to a natural generalization of charge renormalization from purely monopolar to
dipolar, quadrupolar, etc, including ‘mode couplings’. Our novel scheme is generally applicable
to large classes of surface heterogeneities, and is explicitly applied here to Janus spheres with
differently charged upper and lower hemispheres, revealing strong renormalization effects for
all multipoles.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The past few years have seen an explosion of newly
synthesized colloidal (nano)particles that are not spherically
symmetric, either by shape (e.g. dumbbells, snowmen, cubes)
or by surface pattern (patches, stripes) [1]. A broken
rotational symmetry also occurs when particles are adsorbed
to air–water or oil–water interfaces [2], as in for example,
colloidal monolayers [3, 4], Pickering emulsions [5], or
bijels [6]. Moreover, recent atomic force microscopy studies
have shown that even supposedly homogeneous colloidal
surfaces can actually be heterogeneous on length scales
as large as 100 nm [7], while atomic corrugations and
facets render any nm-sized particle strictly heterogeneous.
An important consequence of surface heterogeneity is
anisotropy of the mutual effective forces, which directly
affects the self-assembly process of the (nano)colloids into
large-scale structures, for instance into ill-understood linear
chains [4, 7, 8].

A fundamental problem is thus to establish relationships
between shape and surface heterogeneity on the one hand
and effective interactions and large-scale self-assembly
structures on the other [1]. Apart from specific forces
(e.g., hydrophobic, van der Waals) the effective interactions
between dispersed particles often involve a strong generic
electrostatic component, which is well described, for

homogeneously charged objects, by linear screening theory
provided renormalized charges instead of bare charges are
used [9]. Renormalization of heterogeneously distributed
surface charge is an open problem, for which we develop a
systematic theory in this paper. We go beyond recent linear
screening treatments [11] and formulate a new and efficient
framework for computing nonlinear ionic screening effects of
heterogeneously charged spheres dispersed in a 1:1 electrolyte.
Our theory generalizes Alexander’s notion of ion-condensation
induced charge renormalization [9] to include not only the
monopole but also the dipole, quadrupole, etc, as well as their
nonlinear couplings. These multipole modes can be important
if one wishes to calculate the electrostatic force between
particles, which was already shown for clay platelets [10]. Our
scheme is versatile and can be applied to essentially any type
of charge heterogeneity. We focus on applications to Janus
spheres composed of two differently charged hemispheres [12].

We consider an index-matched suspension of N colloidal
spheres of radius a in a bulk solvent of dielectric constant ε

and volume V at temperature T . The solvent also contains
point-like monovalent cations (charge +e) and anions (charge
−e) at fugacity ρs . Here e is the elementary charge. A
relatively simple treatment of this many-body problem is the
cell model [9], in which a single colloid is considered in the
centre of a spherical cell of radius R and volume (4π/3)R3 ≡
V/N . We denote the surface charge density of this central
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colloidal particle by eσ(θ, ϕ), where θ and ϕ are the standard
polar and azimuthal angle, respectively, with respect to a
laboratory frame. Within a mean-field approximation, the
concentration profiles of the cations and anions can be written
as Boltzmann distributions ρ±(r) = ρs exp[∓�(r)], where
kBT�(r)/e is the electrostatic potential at r = (r, θ, ϕ), with
kB the Boltzmann constant and r = |r|. Note that �(r) = 0 in
the salt reservoir, and that ρ±(r) = 0 for r < a due to hard-
core exclusion. The potential must satisfy the Poisson equation
∇2�(r) = −4πλB(ρ+(r) − ρ−(r)), where we defined the
Bjerrum length λB = e2/εkBT . Combining the Poisson and
Boltzmann equations gives

�′′(r) + 2�′(r)
r

− L2�(r)
r 2

=
{

0 r < a;

κ2 sinh �(r) r > a,
(1)

where a prime denotes a radial derivative, L2 =
−[(sin θ)−1∂θ sin θ∂θ + (sin θ)−2∂2

ϕϕ] the angular momentum
operator, and κ−1 = (8πλBρs)

−1/2 the screening length. On
the colloidal surface, r = a, Gauss’ law imposes the boundary
condition (BC)

lim
r↓a

�′(r, θ, ϕ) = lim
r↑a

�′(r, θ, ϕ) − 4πλBσ(θ, ϕ). (2)

Electro-neutrality of the cell imposes
∫

dϕ dθ sin θ�′(R, θ, ϕ)

= 0 at r = R, which is a sufficiently stringent BC to close the
system of equations in the spherically symmetric case. Now,
however, an additional BC is to be specified for the angular
dependence at r = R, depending on the environment of the
cell. For now, we assume an environment that is characterized
by ‘isotropic’ boundary conditions,

∂θ�(R, θ, ϕ) = ∂ϕ�(R, θ, ϕ) = 0. (3)

We will discuss this choice, and its consequences, in section 4.

2. Theory

For a given σ(θ, ϕ) one can solve (1) with BCs for �(r),
for example, numerically on a discrete (r, θ, ϕ) grid. The
approach we take, however, avoids a cumbersome two-
dimensional grid in favour of a systematic expansion of the
angular dependence in spherical harmonics. For notational
convenience and illustration purposes we restrict attention here
to ϕ-independent cases where the expansion involves only
Legendre polynomials P�(x) with x = cos θ .

The first step in this analysis is the decomposition of
the colloidal surface charge into surface multipoles σ� =
2�+1

2

∫ 1
−1 dxσ(x)P�(x), such that σ(x) = ∑∞

�=0 σ� P�(x).
Similarly we decompose �(r, x) = ∑∞

�=0 ��(r)P�(x). With
��(r) = (r/a)���(a) the regular solution to (1) for r ∈ [0, a],
the BCs for r ∈ {a, R},

�′
�(a) = �

a
��(a) − 4πλBσ� (� � 0); (4)

�′
0(R) = 0 and ��(R) = 0 (� � 1), (5)

conveniently decouple for the different �’s. By contrast, the
nonlinear sinh term in (1) induces ‘mode coupling’ between

all Legendre components ��(r)—not to be confused with
mode couplings in dynamical slowing down. This coupling
is obviously impractical for a numerical treatment.

The second step of our analysis resolves this mode cou-
pling problem by ‘ordering’ the modes systematically. We in-
troduce a dimensionless ‘switching’ parameter A, and consider
the auxiliary distribution σ (A)(x) = ∑∞

�=0 A�σ� P�(x), such
that A = 0 describes a homogeneous distribution and A = 1
the heterogeneous one of interest. We also define the corre-
sponding auxiliary potential �(A)(r, x) = ∑L

n=0 Anφn(r, x),
where L sets the order of the truncation and where the expan-
sion coefficients can themselves be expanded as φn(r, x) =∑n

�=0 fn�(r)P�(x). The functions fn�(r) are independent of A
and will be calculated numerically below for the cases of inter-
est n � � (which is assumed implicitly from now on). Since
the problem is invariant under the simultaneous transformation
A → −A and x → −x one checks that fn�(r) = 0 for n + �

odd, that is, we only consider � and n both even or both odd.
Replacing σ(x) by σ (A)(x) and �(r, x) by �(A)(r, x),

inserting the corresponding expansions into the BCs, and
equating all orders of A yields at r ↓ a and r = R

f ′
n�(a) = �

a
fn�(a) − 4πλBσ�δn�; (6)

f ′
n�(R) = 0 (� = 0) and

fn�(R) = 0 (� � 1),
(7)

where δn� is the Kronecker delta. When the same replacement
and expansion procedure is applied to the PB equation (1),
one finds upon expanding the argument of the sinh term with
respect to A a hierarchy of second-order differential equations
for fn�(r), with a structure that allows for an order-by-order
sequential solution. For n = � = 0 we obtain for r ∈ [a, R]
the spherically symmetric nonlinear PB equation in the cell,
f ′′
00(r) + 2 f ′

00(r)

r = κ2 sinh f00(r), which we solve explicitly
with the BCs given in (6) and (7) on a radial grid. We thus
consider f00(r) as a known function from now on. For n � 1
we obtain

f ′′
n�(r) + 2 f ′

n�(r)

r
−

(
�(� + 1)

r 2
+ κ2 cosh f00(r)

)
fn�(r)

= κ2Sn�(r), (8)

where Sn�(r) acts as a source term of the form S11 = 0, S20 =
1
6 f 2

11 sinh f00, S22 = 2S20, S31 = f11( f20 + 2
5 f22) sinh f00 +

1
10 f 3

11 cosh f00, S33 = 3
5 f11 f22 sinh f00 + 1

15 f 3
11 cosh f00, and

explicit expressions for higher-order terms can be generated
straightforwardly. The key observation is that Sn� only depends
on fn′�′ ’s with n′ < n, that is, a hierarchy of terms follows
spontaneously. Thus (8) with the BCs (6) and (7) can be solved
for n = � = 1, which in turn determines S20(r) and S22(r) such
that f20(r) and f22(r) can be solved, etc. The nonlinear mode
coupling, represented explicitly by cosh f00(r) and Sn�(r),
renders the linear equation (8) highly nontrivial, yet numerical
solution on a radial grid r ∈ [a, R] is straightforward. With
fn�(r) determined for L � n � � � 0 for some cut-off L, we
can set A = 1 to explicitly construct the potential of interest
�(r, x) = ∑L

�=0 ��(r)P�(x) with ��(r) = ∑L
n=� fn�(r).
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3. Results

The theory developed so far is directly applicable to any
uniaxial charge distribution, while generalizations to azimuthal
dependencies and nonspherical shapes are feasible. In this
paper we illustrate our scheme for the prototype heterogeneous
charge distribution of Janus spheres characterized by surface
charge densities σN and σS on the northern (x > 0) and
southern (x < 0) hemisphere, respectively [12, 13]. The
non-vanishing modes are thus σ0 = (σN + σS)/2 and σ� =
gσ0(2� + 1)(−1)

�−1
2

(�−2)!!
(�+1)!! for � odd. Here we defined the

dimensionless heterogeneity parameter

g = σN − σS

σN + σS
, (9)

which together with the total charge Z0 = 4πa2σ0 fully
characterizes the distribution. Below we set κa = 1, R/a =
3, and L = 13 throughout unless stated otherwise, and
we identify Z0λB/a as the only other relevant dimensionless
combination. For Z0λB/a = 22.5 and g ∈ {0, 0.5, 0.8}
figure 1(a) shows the θ -dependence of σ (inset) and � for
several r , revealing isotropy (as expected) for a homogeneous
surface charge (g = 0, arrows) and strong anisotropy for the
heterogeneous cases g = 0.5 (σN = 3σS, dot–dashed) and g =
0.8 (σN = 9σS, solid lines); the (small) oscillations with θ at
r = a are numerical artefacts due to the truncation at L = 13.
The θ -dependence of the potential weakens, as expected, for
increasing distances r . Figure 1(b) shows ��(r) for � = 0, 1, 2
and g = 0.5. Interestingly, the modes with � = 1, 2 have
a non-vanishing electric field in the interior of the particle.
The overall magnitude and spatial variation of � in figure 1
show the need for nonlinear screening theory. Nevertheless,
in analogy to the spherically symmetric case [9] one can
describe the far-field potential (r � R) and hence the colloidal
interactions in terms of linear screening theory (dashed curves
in figure 1(b)) with a renormalized surface charge distribution
σ ∗(x) ≡ ∑

� σ ∗
� P�(x) that we will calculate below.

In the far-field r � R we treat the deviation of �(r, x)

from its angular average �0(R) ≡ χ0 at r = R as a small
expansion parameter, such that (1) for r > a can be linearized
as ∇2�(r, x) � κ̄2[tanh χ0 + (�(r, x) − χ0)] with κ̄2 =
κ2 cosh χ0. The uniaxial solutions to this linear PB (LPB)
equation read �(r, x) � χ0 − tanh χ0 + ∑∞

�=0[a�i�(κ̄r) +
b�k�(κ̄r)]P�(x) where i� and k� are modified spherical Bessel
functions. The coefficients a� and b� are integration constants
that we fix by matching the LPB solution at r = R, for each
�, to ��(R) ≡ χ� and �′

�(R) ≡ χ ′
� of the nonlinear problem.

This leads for every � to the linear two by two problem

χ� = (χ0 − tanh χo)δ�0 + a�i�(κ̄ R) + b�k�(κ̄ R);
χ ′

� = κ̄(a�i ′
�(κ̄ R) + b�k ′

�(κ̄ R)),
(10)

which results in explicit expressions for a� and b� given by

a� = ν�

(
k�+1(κ̄ R) − �

κ̄ R k�(κ̄ R)
) + χ ′

�k�(κ̄ R)

i�(κ̄ R)k�+1(κ̄ R) + i�+1(κ̄ R)k�(κ̄ R)
; (11)

b� = ν�

(
i�+1(κ̄ R) + �

κ̄ R i�(κ̄ R)
) − χ ′

�i�(κ̄ R)

i�(κ̄ R)k�+1(κ̄ R) + i�+1(κ̄ R)k�(κ̄ R)
, (12)

Figure 1. (a) Angular dependence of the potential (at several
distances r ) and the surface charge (inset) of a Janus sphere of radius
a, for κa = 1, Z0λB/a = 22.5, R/a = 3, and L = 13, for charge
heterogeneities (see text) g = 0 (arrows), g = 0.5 (dot–dashed), and
g = 0.8 (solid curves). The dotted curves for r/a = 1.5 and
g ∈ {0.5, 0.8} stem from a Yukawa-segment model (see text).
(b) Radial dependence of the monopole (� = 0), dipole (� = 1), and
quadrupole (� = 2) potentials ��(r) (solid lines), and their far-field
linear screening approximations (dashed curves), for the parameters
of (a) and g = 0.5. The angles defined at r = a relate to the bare and
renormalized modes of the surface charge (see text).

where ν� = χ� − (χ0 − tanh χo)δ�0. The dashed curves in
figure 1(b) are the result of such a far-field fit. With a� and
b� explicitly known, one can extrapolate the LPB solution to
r = a to yield, with (4) and standard Bessel function relations,
the renormalized multipoles

σ ∗
� = − κ̄

4πλB
(a�i�+1(κ̄a) − b�k�+1(κ̄a)). (13)

This expression is the multipole generalization of the well-
known charge renormalization [9].

A first illustration of multipole renormalization is
shown by the angles in figure 1(b), which represent slope
discontinuities at r = a which are proportional to σ� (nonlinear
theory) and σ ∗

� (far-field fit). For � = 0, 1 we see σ ∗
� <

σ�, which means that the effective charge and dipole are

3
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Figure 2. Renormalized (scaled) monopole Z∗
0 for several g, L (see

text) of a Janus sphere as a function of the total charge Z0λB/a. The
graph includes data for cell radii R/a = 1.5 and R/a = 3.0. The
dot–dashed curve denotes Z∗

0 = Z0.

renormalized downward. Interestingly, however, for � = 2 the
inset in the lowest panel reveals upward renormalization since
σ ∗

2 
= 0 while σ2 = 0, that is, the Janus particle has a mode
coupling induced far-field quadrupole signature. Multipole
renormalization is quantified further in figures 2–4, where
(scaled) renormalized multipoles Z∗

� = 4πa2σ ∗
� are shown for

the monopole � = 0 in figure 2, the dipole � = 1 in figure 3
(scaled with g), and the higher-order multipoles � = 1, . . . , 6
in figure 4. All multipoles are shown as a function of Z0λB/a.
Furthermore, in figures 2 and 3 we chose several truncation
levels L and heterogeneities g, and also picked two cell radii
R. The dot–dashed curves denote the linear limit Z∗

� = Z�.
Figure 2 and 3 show that all curves for L = 13 superimpose
on those of L = 9, 11 for all Z0 and g � 0.8, indicative of
excellent convergence in this parameter regime; for g = 1 the
convergence deteriorates for Z0λB/a � 15. The R dependence
in figure 2 and 3 shows the strongest renormalization in the
largest cell, not unlike the homogeneous charge case [9].
Interestingly, in the nonlinear regime Z0λB/a � 10 figure 2
shows a mode coupling induced reduction of Z∗

0 by 10’s of
per cents when g increases from 0 to 1. In other words, in
contrast to the more usual ‘linear’ electrostatics we now have
a far-field monopole potential that is not only determined by
the net charge but in fact also by its heterogeneity. This
is a key finding, relevant for understanding patchy-particle
interactions. The mode coupling has an even stronger effect on
renormalization of Z∗

1 , for which figures 3(a) and (b) show a
pronounced maximum in between the low-Z0 linear screening
regime and the high-Z0 regime in which Z∗

1 becomes even
vanishingly small for all g’s considered. Figure 4 shows, for
g = 0.4, that in fact all Z∗

� with � 
= 0 vanish in the limit
of large Z0, while they all show an intermediate regime with
finite values even for � = 2, 4, 6 for which σ� = 0. The
underlying physics for non-oppositely charged hemispheres
with σN > σS > 0 (that is, with 0 < g < 1) is that both
σN and σS renormalize, if both are high enough, to the same
saturated value, giving rise to a pure far-field monopole without
multipoles.

Figure 3. Renormalized (scaled) dipole Z∗
1 for several g, L (see text)

of a Janus sphere as a function of the total charge Z0λB/a. The upper
and the lower graph represent cell sizes R/a = 3.0 and R/a = 1.5
respectively. The thick dotted lines denote the (scaled) difference of
the renormalized northern and southern charge presumed distributed
homogeneously (see text) for g = 0.8. The dot–dashed curves in
both graphs denote Z∗

1 = Z1.

Figure 4. Renormalized (scaled) multipoles Z∗
� of a Janus sphere as

a function of the total charge Z0λB/a. The parameters here are
g = 0.4 and L = 13.

The idea might emerge that both hemispheres renormalize
their charge independent of each other, that is, some of the
results could suggest that the renormalized charge density
on the colloidal surface is a function which depends only
locally on the bare charge density. If that were the case,
it would suffice to calculate the renormalized surface charge
density for σN and σS, as if both were the charge density of a
monopole. The cell radius is to be kept unchanged. The thick
dotted lines in figures 3(a) and (b) denote the resulting dipole
charge for g = 0.8, which is calculated with the obtained

4



J. Phys.: Condens. Matter 22 (2010) 104104 N Boon et al

Figure 5. Renormalized monopole charge Z∗
0 for several g of a Janus

sphere as a function of the cell size R, both for Z0λB/a = 22.5, in
(a) for κa = 1 and in (b) for κa = 3. The thick solid line
corresponds to a pure bare monopole, yielding g = 0. The diamonds
(g = 0.4) and circles (g = 0.8) show the data from the full theory,
using L = 13. The thinner solid lines denote the average of the
renormalized northern and southern charge presumed distributed
homogeneously (see text) for g = 0.4 and 0.8.

(renormalized) σ ∗
N and σ ∗

S by 3
4 (σ

∗
N −σ ∗

S ). The correspondence
with the solid line is at best reasonable but not perfect. Also
the effective monopole is not accurately predicted. This can
be seen from figure 5, where we investigate the cell size
dependence of the effective monopole for g = 0.4, 0.8 and for
κa = 1, 3. We included data from the full theory (depicted
by symbols) and the predicted values by 2πa2(σ ∗

N + σ ∗
S )

as a solid line. One can see that the monopole charge is
underestimated for a wide range of cell radii, especially for
larger cells. Nevertheless, there is qualitative agreement on
the increase of the renormalized charge with higher values
for κa. The difference with the full theory is expected
to be the largest for very heterogeneously charged particles.
Indeed, we see the largest discrepancy in figures 5(a) and
(b) for g = 0.8, with deviations up to 20–25% between the
results of the present theory for σ ∗

0 and those of the simple
approximation (σ ∗

N + σ ∗
S )/2 discussed above. Apparently, the

interactions between the hemispheres do play a role, which in
fact can also be concluded from the induced even multipoles
in figure 4. Further research might give more insight into the
characteristics of these interactions.

4. Discussion and conclusion

The newly emerging general picture is that nonlinear ionic
screening of heterogeneously distributed surface charges
strongly affects the far-field symmetry of the potential, and
hence also the symmetry of the effective interactions and the
self-assembling structures. The systematics of the present

screening theory could be a firm basis to further study these
intricate features of heterogeneously charged particles. The
category of particles which are described by g > 1, carrying
positive and negative charges on the two hemispheres, are
particularly interesting. Because the present method is not very
efficient at high values of g, we have developed an alternative
method to treat these mainly dipolar particles within a mode
expansion as well. This will be presented in further work.

It is tempting to model Janus spheres by a Yukawa-
segment model [13] in which every surface element dS con-
tributes σ ∗(x)λBs−1 exp(−κs)dS to the (dimensionless) po-
tential at a distance s. Here the renormalized charge densi-
ties on both hemispheres is obtained from the renormalized
monopole and dipole charge density via

σ ∗(x) =
{

σ ∗
0 + 2

3σ ∗
1 x < 0;

σ ∗
0 − 2

3σ ∗
1 x � 0.

(14)

The dotted curves in figure 1(a) show that agreement with
our full calculations is reasonable though not quantitative; the
Yukawa model ignores the ionic hard-core exclusion in the
interior of the particle. Therefore, effectively it describes
the (dimensionless) potential of a charge configuration in
which oppositely charged ions were able to approach the
heterogeneously charged surface from two sides, such that this
potential is more suppressed compared to the full theory.

Being a point of discussion, we return to the choice of
the boundary conditions on the cell’s surface (3), which we
called ‘isotropic’ BCs. This denomination follows from the
fact that, considering two randomly oriented neighbouring
cells, the cell-surface potentials of two cells should match
on the spot where they touch, giving rise to a constant cell-
surface potential. Nevertheless the choice of BCs is not unique.
We can also supply the system with ‘nematic’ boundary
conditions, corresponding to the situation that all cells are
perfectly aligned such that cells only touch on opposite spots.
On these spots the electrostatic potential should match, and we
can also demand continuity of the electric field. The BCs then
become

�(R, θ, ϕ) = �(R, π − θ, π + ϕ),

�
′
(R, θ, ϕ) = −�

′
(R, π − θ, π + ϕ).

(15)

In fact one can even interpolate between ‘isotropic’ and
‘nematic’ BCs by introducing an orientation distribution
function [14]. In this article, we assume a system in which
the cell boundary is best described by isotropic BCs, given
by (3). However, for the parameters used in this article, it turns
out that this particular choice for the BCs did not noticeably
affect the values of the renormalized charges. We do not see
a significant change by turning to nematic BCs (15). This
insensitivity to the choice of BCs is due to the fact that the
nonlinear behaviour is an effect which takes place close to the
colloidal surface, where these BCs have the least influence on
the electrostatic potential. Furthermore, the only multipoles
which are directly affected by the particular choice of BCs are
the nonzero (� > 0) even multipoles, which are small for Janus
particles. We therefore think that the obtained values for the

5
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renormalized multipoles can be applied in a model to describe
the behaviour of a many-body system within linear theory, no
matter what the orientations of the surrounding colloids are.
Since the monopole and multipole potentials decay for large
r equally fast as exp(−κ̄r)/r [15], where κ̄−1 is the decay
length, the renormalized multipole charges are expected to
contribute in dense as well as dilute systems.

In summary, we have developed a systematic framework
for nonlinear ionic screening of heterogeneously charged
spheres. The scheme allows for an explicit far-field analysis
that generalizes charge renormalization from the well-studied
homogeneous case (pure monopole) [9] to the heterogeneous
case (dipoles, quadrupoles, etc and their nonlinear couplings).
Application to charged Janus spheres shows (i) a 40%
reduction of the effective monopole for g = 1 (charged and
uncharged hemisphere) compared to g = 0 (homogeneously
charged sphere), (ii) a mode coupling induced far-field
effective quadrupole component without an actual surface
quadrupole, (iii) a pure far-field monopole with vanishing
higher-order multipoles in the saturated high charge limit, and
(iv) no quantitative agreement with a simple Yukawa-segment
model based on renormalized multipoles. Our study opens
the way to systematic microscopic calculations of effective
electrostatic interactions between Janus (and other patchy)
particles. In addition, our analyses also reveal non-vanishing
electric fields inside heterogeneously charged particles, which
could couple to interior dipoles and affect (anisotropic) mutual
Van der Waals forces. Given that the presently introduced
expansion technique can be generalized to other geometries
(for example, patterned planar surfaces or ellipsoidal patchy
colloids), our technique and findings are directly relevant for
gaining microscopic understanding of effective interactions
and ultimately phase behaviour of a large class of dispersions
of patchy or patterned nanoparticles, colloids, or proteins [1].
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