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We present a method based on a combination of a genetic algorithm and Monte Carlo simulations to predict
close-packed crystal structures in hard-core systems. We employ this method to predict the binary crystal
structures in a mixture of large and small hard spheres with various stoichiometries and diameter ratios
between 0.4 and 0.84. In addition to known binary hard-sphere crystal structures similar to NaCl and AlB2, we
predict additional crystal structures with the symmetry of CrB, �CuTi, �IrV, HgBr2, AuTe2, Ag2Se, and
various structures for which an atomic analog was not found. In order to determine the crystal structures at
infinite pressures, we calculate the maximum packing density as a function of size ratio for the crystal
structures predicted by our GA using a simulated annealing approach.
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I. INTRODUCTION

Close-packed arrangements of hard spheres have been of
interest for centuries both as theoretical challenges and as
models for various physical systems. However, the question
of which structures pack best relies heavily on physical in-
tuition and experimental results. In the case of identical hard
spheres, Kepler’s 17th century conjecture that the densest
arrangement was achieved by stacking close-packed hexago-
nal planes remained one of the major mathematical chal-
lenges until 1998 when Hales presented what appears to be
almost a complete proof �1�. However, the prediction of
close-packed structures of mixtures of various sized hard
spheres is even more challenging due to the enormous size
and complexity of the phase space that must be searched to
locate the best-packed arrangements. In this paper we use a
combination of a genetic algorithm �GA� and Monte Carlo
�MC� simulations to search for such crystal structures, at-
tempting to remove much of the �ad-hoc� guess work asso-
ciated with predicting the crystal structures realized by such
systems. By finding the close-packed arrangements, our al-
gorithm predicts crystal structures that are stable at infinite
pressures and additionally produces candidate crystal struc-
tures for the phase behavior at lower pressures. While most
of the structures found for RS /RL�0.6 �where RS �RL� is the
radius of the small �large� hard spheres�, such as NaCl and
AlB2, have already been discussed in the literature, many of
the structures for larger size ratios are novel in the context of
the phase behavior of binary hard-sphere mixtures.

The close-packed structures of binary hard-sphere mix-
tures have been studied intensively as a model for atomic
and colloidal systems. In the 1960s Parthé �2� used the con-
cept of packing to explain binary atomic crystal structures
found in nature and in 1980 Murray and Sanders argued that
binary mixtures of hard spheres order into the structure with
the largest possible packing fraction under sedimentation and
compaction to explain the long-range crystal structures ob-
served in gem opals �3�. More recently, packing arguments
have also been used to explain the experimental observations
of intriguing and complicated superlattice structures in bi-
nary mixtures of nanoparticles �4,5�, of colloidal particles

�6–10�, and of block copolymer micelles �11�. The underly-
ing idea of these packing arguments is that structures that
have a higher close-packed density will have a larger free
volume per particle at lower densities, resulting in a higher
contribution to the entropy and hence a lower free energy. In
studies of self-assembled nanoparticles where non-close-
packed crystalline structures are observed it is often asserted
that other interactions must play a role �5�.

Genetic algorithms, developed first by Holland �12� in the
1970s, provide a framework for finding the optimal solution
of a specific problem by mimicking Darwin’s principle of
“survival of the fittest.” GAs enable us to sample efficiently
large search spaces in an unbiased and unrestricted way. A
basic quantity in a GA �12� is an individual that represents a
trial solution to the problem which can be ranked according
to a fitness function �e.g., the potential energy�. From a ran-
dom initial population of individuals, the system evolves
from generation to generation by using crossover and muta-
tion operators until the population converges to a solution.
Originally GAs were designed to search a finite phase space
and used a discrete genetic representation of the individuals
�12�. Since the 1980s “hybrid” GAs have been widely used
to search continuous phase spaces. Such algorithms exploit
the advantages of both GAs and local minimizers: a fast
local minimization technique is used to relax an individual to
its local minimum and mutations and crossovers are em-
ployed in the GA to hop between local minima. In this man-
ner continuous parameters, such as the primitive and basis
vectors to describe a crystal structure, can be varied to mini-
mize the respective fitness function.

Genetic algorithms were introduced to atomic and mo-
lecular systems in the 1990s in an attempt to determine the
lowest-energy structure of an atomic cluster �13–15�. Al-
though the first such algorithms involved traditional discrete
GAs �13,14�, the most commonly used ones are based on a
hybrid GA introduced by Deaven and Ho �15�. In their GA
the genetic code consists of the atomic positions, and cross-
overs are performed by cutting clusters with a plane in real
space; the complementary partial spaces are recombined
from parent clusters and the resulting structures relaxed to
their local minimum with a conjugate gradient algorithm.
Variations in this technique have since been used to study
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many clusters, however, the use of GAs to study periodic
systems such as colloidal and atomic systems is much more
recent and employ either a lattice and basis representation of
the crystal structure �16,17�, a discrete binary representation
of these vectors �18�, or a so-called “hydra” representation
based on displacement vectors �19�. A cartoon of the hydra
representation is depicted in Fig. 1. This last implementation
has been applied to a system with approximately hard inter-
actions. The inclusion of hard interactions in a GA compli-
cates the problem severely as most crossover and mutation
operations cause particle overlap. Many forbidden regions
are present in the search space that should be circumvented.
In this paper, we use a modification of the GA based on the
hydra representation to search for close-packed structures in
binary hard-sphere systems.

This paper is organized in the following manner. In Sec. II
we describe the method we used to determine the binary
crystal structures, including a description of the GA. In Sec.
III we present a table with the structures we have found
along with space filling curves for the best-packed structures
with AB and AB2 stoichiometry. Finally, in Sec. IV we dis-
cuss the results and our conclusions.

II. METHOD

In this paper we employ a combination of a GA and
Monte Carlo simulations to maximize the packing fraction of
a binary crystal structure for a given stoichiometry and par-
ticle radius ratio � �RS /RL�. The GA we use is based on the
algorithm introduced by Stucke and Crespi �19� to examine
ternary hard-sphere systems. As the packing fraction depends
only on the volume of the unit cell and not on the basis
vectors, the algorithm will encounter severe convergence
problems if the packing fraction is used as the fitness func-
tion. Hence, the packing fraction is not a suitable fitness
function for a hybrid GA. The method proposed by Stucke
and Crespi attempts to avoid this problem by minimizing a
fictitious potential. We follow a similar route here but extend
the approach as follows: we first use a GA to locate the

energy minima of a fictitious potential for a certain size ratio
and stoichiometry. Subsequently, we employ the lowest-
energy structures as candidate structures for the best-packed
crystal structures for binary hard-sphere mixtures. As the op-
timized structure for the fictitious potential does not have to
correspond with the best-packed structure for the hard-sphere
mixtures at the same size ratio, we replace the fictitious po-
tential with a true hard-sphere interaction, expand the unit
cell until any resulting overlaps are removed, and then use a
Monte Carlo pressure annealing simulation to crush the re-
sulting structure to the best packing. The structure is then
identified either by inspection, or with the FINDSYM program
�20�. We wish to make a few remarks here: �i� as the ficti-
tious potential that we employ consists of a very steeply
repulsive, nearly hard-sphere-like potential, and a very short-
range attractive tail, we did not encounter any numerical ac-
curacy problems in resolving the energy minima using the
GA. �ii� Our method is based on the conjecture that the
lowest-energy structures using the fictitious potential corre-
spond to the best-packed structures for the hard-sphere sys-
tems, which is not obvious and cannot be proven rigorously.
However, if we apply our method to two-dimensional �2D�

FIG. 2. �Color online� 2D crystal structures predicted using the
GA. The naming convention for the crystal structures is consistent
with Ref. �21�. �A� crystal structure S1: AB stoichiometry with
�=0.4, �B� H2: AB, �=0.63, �C� H1: AB2, �=0.54, �D� S2: AB4,
�=0.2, �E� T2: AB6, �=0.34, �F� H3: A2B7, �=0.38.
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FIG. 3. �Color online� Space filling curves for the AB structures
listed in Table I. Only a fraction of the data points were plotted to
simplify the image.

FIG. 1. �Color online� A typical 2D “hydra” for a binary system
with seven particles in the unit cell: three of type A �darker spheres�
and four of type B �lighter spheres�.
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and three-dimensional �3D� hard-core systems, which have
been previously examined �21,22�, we find perfect agreement
in all cases, thereby providing confidence in our method. A
more detailed description about these results will be given in
Sec. III. In conclusion, the GA with a fictitious potential is
used to find the lowest-energy crystal structures, which serve
as candidate crystal structures for the best-packed structures
of binary hard-sphere mixtures. We perform Monte Carlo
pressure annealing simulations to find the best packing of the
candidate structures as a function of size ratio.

A. Genetic algorithm

An individual in our GA is a system representation for a
crystal structure. As mentioned in Sec. I, we have chosen to
represent crystal structures using a displacement vector rep-
resentation, called the “hydra” representation �19�. A cartoon
illustrating the “hydra” representation is shown in Fig. 1. In
our version of the “hydra” representation the genetic code
consists of two sequences, one for the basis particles and one
for the periodic lattice. In d dimensions with N distinguish-
able particles per unit cell, the first sequence consists of the
displacement vectors between particles and is given by the
hydra B=B1 ,B2 , . . . ,BN−1. The vector Bi connects particle i
to i+1 in this representation. In the hydra representation the
particles connected by the displacement vectors are generally
not in the same unit cell, however, there is exactly one image
of each particle in the hydra. The second sequence contains
the lattice vectors of the hydra L=L1 , . . . ,Ld, which denote
the projections to periodic images of the hydra. We note that
Li can interconnect a particle with its image, but it can also
interconnect distinct particles in the hydra. The particles that
are interconnected by the lattice vectors Li are selected at the
beginning of the GA. To initialize a hydra, the displacement
vectors Bi are chosen according to a Gaussian distribution
peaked at 1.2�Ri+Ri+1�, where Ri denotes the radius of par-
ticle i. The angular orientation is then chosen at random. The
lattice vectors Li are chosen in the same manner. We start our
GA with a random initial population of hydras.

In theory we would like to use the packing fraction as a
fitness function, but in that case the GA experiences conver-
gence problems as the packing fraction is independent of the
particle positions in the cell. Instead, we replace the hard-
sphere interaction by the following pair potential:

V�rij� = �ij���ij

rij
�m

− ��ij

rij
�n� , �1�

where rij is the interparticle distance between particles i and
j. The parameter �ij was chosen such that the corresponding
hard particles with respective radii Ri�j� are in contact but not
overlapping at the minimum of the potential, thus,

�ij = �Ri + Rj��m

n
�1/�n−m�

. �2�

The fitness function is then the sum of these pairwise inter-
actions. As this is now a continuous function of all lattice
parameters, the local minima can easily be determined using
a conjugant gradient method. In our implementation of the

algorithm, we have typically chosen m=42 and n=24 in the
pairwise potential, however, we have checked for various
stoichiometries and size ratios that other values of n result in
the same crystal structures implying that our results are ro-
bust with respect to the fictitious attractive tail. Additionally,
we have also tested the robustness of this method by apply-
ing our method to 2D and 3D systems, which have been
previously examined �21,22�, and we find agreement for all
cases and conclude that the softness of the potential did not
change the results.

The genetic algorithm starts with a population of M mem-
bers. To search space more efficiently, each hydra is relaxed
to its local minimum using the Broyden-Fletcher-Goldfarb-
Shanno �BFGS� algorithm �23�. In the hydra representation,
the potential-energy calculation can be computationally ex-
pensive as it is possible that several images must be summed
over before all the interactions within the cutoff radius of a
single hydra are included. For instance, it is possible that
some of the nearest neighbors of a particle in a given hydra
are several lattice vectors away. In a Bravais representation,
however, it is possible to determine in advance the number of
cells along each lattice vector that are needed to calculate the
potential energy of a crystal structure. It is thus advantageous
to map the hydra to a Bravais representation before relaxing
the structure. For this purpose the Bravais lattice vectors are
constructed from the L vectors and a lattice reduction algo-
rithm is used to produce a more cubic unit cell. In 2D we use
the well-known Gaussian reduction algorithm while in 3D
we use the lattice reduction method described in Ref. �18�.
The 3D method attempts to minimize the surface area of the
unit cell. Denoting the lattice vectors r1 ,r2 ,r3 and the sur-
face area of the box spanned by the vectors A, the 12 linear
combinations,

ri
new = ri � rl, �3�

with i� l� 	1,2 ,3
, are determined and the surface areas
Ai,l

new of the new boxes spanned by ri
new, r j, rk are compared

to A. If any of the Ai,l
new is smaller than A than the correspond-

ing ri is set to ri
new, otherwise the algorithm terminates. A

single hydra is then mapped to the resulting unit cell and
relaxed to its local minima. The hydra representation is then
reconstructed in the following manner: the Bi’s are found by
taking the shortest vector between any image of particle i
and i+1 and the Li’s are constructed similarly. The mapping
between the hydra and Bravais representations is one of the
main differences between our algorithm and the one in �19�
where the potential energy is calculated by summing all the
interactions between Wd hydras with d the dimensionality.
Our mapping between the hydra and Bravais representations
serves two purposes. First, for the energy calculation the
number of cells which need to be summed over is less than
or equal to the Wd boxes summed in Ref. �19�, and hence
significantly faster. Second, neighbors in the hydra represen-
tation remain close in real space. This increases the speed of
the local minimization and prevents displacement vectors
from becoming exceedingly long. Additionally, according to
the building block hypothesis for GAs, having the most re-
lated parameters close in the system representation improves
the GA convergence �24�.
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A new generation consists of S offspring produced by
mutations and crossovers. To produce an offspring, two par-
ents are selected at random �denoted p1 and p2� from the
current generation. Each displacement vector in the corre-
sponding B’s undergoes a random mutation in its length with
a probability of 10%. The first step in the crossover is to
randomly choose a k1 between 0 and d. The first k1 vectors of
the sequence L are then taken from p1 and the remaining
from p2. The new lattice vectors are tested to make sure that
they are not colinear. If they are then a new k1 is chosen.
Next a random crossover point k2 is chosen between 1 and
N−2. The first k2 elements of the sequence B are then taken
from p1 and the rest from p2. The two partial hydra are then
rotated in real space around the connection point until a
minimum in the potential energy is found. The structure is
then relaxed to its local minimum as previously described.
For the candidate structure to become a member of the off-
spring it must still meet three additional requirements: that
�i� the bond lengths are less than some maximum value rmax,
that �ii� its fitness is better that the worst of the previous
generation and that �iii� its normalized dot product with the
members of the current generation and any other current off-
spring is less than 0.8. The latter requirement is needed to
prevent the offspring from being located in the same local
minima as the other members, and allows us to work with a
rather small population. However, if the normalized dot
product between the potential offspring and a single member
is greater than 0.80 and if the fitness is better it replaces the
other. The bond-length restriction is used to select out a spe-
cific set of solutions. For instance, for large RS /RL ratios, the
best-packed solution is always phase separated hexagonal-
close-packed structures of small and large hard spheres.
However, by restricting the bond lengths, we are able to
exclude this possibility and force the simulation to find the
next best solution. Since we are interested in binary hard-
sphere crystal structures, this is an essential component of
the algorithm. It should be noted, however, that this restric-
tion is only important for larger unit cells �with �8 or more
colloids per unit cell�. When S children are produced in this
way, the next generation is produced by a form of elitism
where the best M members of the parents and offspring are

taken. The algorithm terminates when all the members of the
population have the same energy �within �E� for 10–20 gen-
erations. In the majority of our simulations we used M =20
and S=10. If either M or S are much larger, than the normal-
ized dot product restriction is rarely met and many candidate
structures are thrown out. In summary, our modifications to
the GA, which improved significantly the speed and conver-
gence of the algorithm, allowed us to systematically predict
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FIG. 4. �Color online� Space filling curves for the AB2 struc-
tures listed in Table I.

FIG. 5. �Color online� Cartoons of the AB crystal structures
which have the best overall packing for a given size ratio. �A� NaCl,
�=0.4, �B� CsCl, �=0.73, ��C� and �D�� �CuTi, �=0.8, xy, and xz
planes, respectively, ��E� and �F�� �IrV, �=0.82, xy, and xz planes
��G� and �H�� CrB, �=0.6 xy and xz.
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candidate crystal structures for a large range of size ratios
and stoichiometries and to locate binary crystal structures
even when monodisperse �rHCP� crystal structures pack
better.

B. Monte Carlo pressure annealing

The GA in Sec. II A minimizes a fictitious potential. Re-
placing the fictitious pair potential from the previous algo-
rithm with a hard-sphere potential often results in either
slight overlaps of the particles or holes in the structure. Thus,
in order to find the true, hard-sphere packing fraction of the
resulting structure, an additional method is needed. To solve
this problem we employ a form of MC pressure annealing.
The “hydra” representation is first mapped to its correspond-
ing Bravais lattice. The resulting lattice vectors are used as
the simulation box. In this MC simulation, a typical Me-
tropolis algorithm is used to move particles in a unit cell,
while volume moves allow both the size and the shape of the
simulation box to vary. An initial pressure is chosen such that
the crystal structure cannot melt and the pressure is slowly
increased until the particles can no longer move �to single
precision accuracy�. This pressure is higher for particles with
small RS /RL values as they melt at lower pressures. The re-
sulting structure is then identified either by inspection, or
with the FINDSYM program �20�.

III. METHOD VERIFICATION AND RESULTS

To test the algorithm we have examined various systems
of hard disks and hard spheres with up to 20 particles per
unit cell. In 2D monodisperse systems we found hexagonal
lattices and in 3D the GA converged to crystal structures
consisting of stacked hexagonal planes in face-centered-
cubic �FCC�, hexagonal-close-packed �HCP� and rHCP ar-
rangements as conjectured by Kepler. In all cases the GA
converged to several different hydra representations of the
same crystal structures suggesting that the potential mini-
mum was indeed found. We also examined 2D binary sys-
tems with AB, AB2, AB4, AB6, and A2B7 stoichiometries for
various size ratios, a system examined previously by Likos
and Henley �21�. Our results are shown in Fig. 2 and agree
with their predictions. It should be noted that we did not do
an extensive search of the phase space, but rather used this as
a check of the algorithm. The stoichiometries we checked
were chosen to be representative of their results. However, it
is still possible that a more thorough study of the binary hard
disk system would yield new structures. Additionally, unlike
the algorithm we used, the method of Likos and Henley in-
volved systematically filling holes in the lattice of typical
monodisperse 2D lattices with smaller particles and allowing
the crystalline structures to distort in a manner that resulted
in best packings for the given size ratio and stoichiometry.
However, unlike our search, the method used by Likos and
Henley �21� relied on preselected structures for their searches
while the GA implementation used here searches all possible
binary crystals with the only restriction being the number of
particles per unit cell.

Additionally, we studied binary mixtures in 3D with AB
�25�, AB2 AB3, AB4, AB5, and AB6 stoichiometries for vari-
ous size ratios. The structure with the densest packing frac-
tion had either AB or AB2 stoichiometry for any given size
ratio. Our results for all stoichiometries are summarized in
Table I.

TABLE I. Binary crystal structures with the largest packing
fraction predicted for various � ratios for AB �4�, AB2 �6�, AB3 �4�,
AB4 �5�, AB5 �6� and AB6 �7� stoichiometries where the number in
� � refers to the number of colloids per unit cell studied. � was
calculated with 12 colloids per unit cell and in addition to Ag2Se
another structure was found, which is a distortion of the MgZn2

Laves phase, but with extremely low symmetry and a packing of
0.716.

� 0.4 0.5 0.6 0.7

AB NaCl/NiAs CrB CrB CrB

0.788 0.749 0.745 0.722

AB2 AuTe2 AlB2 S 74h/e

0.756 0.757 0.718

AB3 S 5b/ac S 19b/1f S 12 c/ib S 8a/aaa

0.722 0.744 0.721 0.672

AB4 S 1a/aaaa S 160a/ab S 123d/fg S 38b/de

0.738 0.725 0.737 0.666

AB5 S 8a/abb S 8a/bba S 183a/bc

0.690 0.713 0.690

AB6 S 10d/gj S 83c/gk S 38a/dee S 69b/ij

0.756 0.710 0.729 0.680

� 0.72 0.74 0.76 0.78

AB CsCl CsCl CrB CrB

0.719 0.726 0.719 0.718

AB2 SG 74h/e SG 74h/e SG 74h/e AuTe2 /HgBr2

0.719 0.715 0.704 0.714

AB3 S 12d/ai S 12d/ai S 12c/ib S 6b/aab

0.672 0.670 0.669 0.684

AB4 S 65b/ij S 65d/ij S 65d/gh S 65c/gh

0.664 0.655 0.647 0.640

AB5 S 183a/bc S 183a/bc S 160a/aab S 189a/cg

0.688 0.686 0.674 0.684

� 0.8 0.82 0.84

AB �CuTi �IrV �IrV

0.721 0.722 0.729

AB2 AuTe2 Ag2Se� AuTe2

0.714 0.7204 0.707

AB3 S 123b/ah S 12d/ai S 47b/al

0.694 0.672 0.700

AB4 S 87b/h S 87b/h

0.698 0.705 0.704

AB5 S 189a/cg S 183 b/df S 8 a/abb

0.688 0.686 0.667

AB6 S 139b/ge S 2 S 12a/iii

0.658 0.674 0.695
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The crystal structures are identified by an atomic analog
of the binary structure which has the same space group and
Wyckoff positions. For instance, AuTe2 refers to a structure
which has the symmetry associated with space group 12
when the 2a Wyckoff positions are occupied by the larger
particles and the 4i positions are occupied by the smaller

particles, this leaves 6 degrees of freedom for the structure
�a ,b ,c ,	 ,x ,z�. Hence, structures which have been identified
as AuTe2 may have different lattice parameters. When no
atomic analog was found the structures were listed by their
space group and occupied Wyckoff positions.

In order to determine the best-packed crystal structures
for a given size ratio, we calculate the space filling curves for
all the AB and AB2 structures predicted by our GA. To this
end, we maximize, for a given structure and size ratio, the
packing fraction as a function of the lattice parameters using
a simulated annealing algorithm. For a given structure and
size ratio, the packing fraction was maximized as a function
of the lattice parameters using a simulated annealing algo-
rithm. Since the number of free parameters describing a
given structure is typically small, it is often possible to maxi-
mize the packing fraction for the hard-sphere potential �26�.
The space filling curves of the AB and AB2 structures listed
in Table I are shown in Figs. 3 and 4, and specific data points
which can be used to reproduce the plots is given in Table II.
Cartoons depicting the associated crystal structures are
shown in Figs. 5 and 6. For comparison with our results, we
have also included the space filling curves of the Laves

000

(a)

(b)

(c)

FIG. 6. �Color online� Cartoons of the AB2 crystal structures
which have the best overall packing for a given size ratio. �A� AlB2,
�=0.6, �B� HgBr2, �=0.69, �C� AuTe2, �=0.78 �D� S74e/h, �
=0.72 �E� AgSe2, �=0.82.
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FIG. 7. �Color online� Space filling curves for the AB2 struc-
tures listed in Table I compared with the Laves phases.
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FIG. 8. �Color online� Space filling curves for the cuboctahedral
and icosahedral AB13 crystal structures.
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TABLE II. Maximum packing fraction for the AB and AB2 crystal structures as a function of the size ratio �.

� Ag2Se S 74e/h HrBr2 AlB2 AuTe2 CsCl �CuTi NaCl CrB �IrV

0.000 0.605 0.741 0.605 0.741 0.524 0.741 0.741 0.741

0.050 0.605 0.741 0.605 0.741 0.524 0.741 0.741 0.741

0.100 0.606 0.742 0.606 0.742 0.524 0.741 0.741 0.741

0.150 0.609 0.746 0.609 0.746 0.525 0.743 0.743 0.743

0.200 0.614 0.752 0.614 0.752 0.528 0.746 0.746 0.746

0.250 0.624 0.764 0.624 0.764 0.532 0.752 0.752 0.752

0.275 0.771 0.771

0.300 0.637 0.754 0.637 0.754 0.538 0.761 0.761 0.761

0.333 0.754

0.330 0.754

0.350 0.656 0.738 0.656 0.738 0.546 0.772 0.772 0.772

0.362 0.729

0.390 0.713

0.400 0.682 0.751 0.682 0.713 0.557 0.788 0.788 0.788

0.414 0.793 0.793 0.793

0.418 0.762

0.450 0.715 0.759 0.715 0.728 0.571 0.751 0.750 0.751

0.461 0.759

0.480 0.744

0.466 0.734

0.500 0.756 0.758 0.756 0.758 0.589 0.707 0.698 0.749

0.527 0.763

0.528 0.781 0.781 0.782 0.782

0.550 0.779 0.779 0.779 0.779 0.611 0.679 0.656 0.757

0.575 0.752

0.577 0.779

0.578 0.778 0.778 0.778

0.600 0.758 0.758 0.758 0.758 0.637 0.677 0.622 0.745

0.650 0.727 0.727 0.727 0.727 0.667 0.682 0.594 0.739 0.667

0.665 0.723 0.722 0.722 0.740

0.675 0.716

0.680 0.716

0.690 0.723

0.700 0.719 0.717 0.693 0.697 0.703 0.693 0.573 0.721 0.703

0.710 0.721

0.720 0.620

0.726 0.684

0.733 0.729

0.735 0.728

0.750 0.639 0.712 0.696 0.661 0.696 0.722 0.710 0.556 0.718 0.723

0.775 0.720

0.788 0.718 0.726

0.790 0.718

0.800 0.698 0.677 0.714 0.637 0.715 0.705 0.721 0.543 0.710 0.719

0.820 0.720

0.825 0.723

0.830 0.675

0.850 0.701 0.668 0.701 0.622 0.707 0.694 0.713 0.534 0.697 0.719
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phases in Fig. 7 as well as the cuboctahedral �cub� and icosa-
hedral �ico� AB13 in Fig. 8. In the case of the AB13 struc-
tures, the only parameter varied was the overall lattice scal-
ing.

IV. DISCUSSION AND CONCLUSIONS

From the packing fraction curves it is possible to predict
the infinite pressure phase diagrams since, for a given size
ratio �, the structure with the largest packing fraction is
stable at infinite pressures. Hence we predict NaCl/NiAs �0
��
0.44�, HgBr2 �0.44–0.48�, AuTe2 �0.48–0.53�, and
AlB2 �0.53–0.62�. For size ratios larger than 0.62 monodis-
perse FCC/HCP/rHCP have the largest packing.

In contrast, at finite pressures, it is necessary to compare
the Gibbs free energies to determine the stability of a phase.
To date, such analyses on binary hard-sphere systems have
included NaCl �stable for 0.2���0.42�, AlB2 �0.42–0.59�,
icoAB13 �0.48–0.62�, CsCl �no known stable region�, and the
Laves phases �0.74–0.84� �27–32�. Many of these calcula-
tions were motivated by experimental evidence for these
structures in approximately hard-sphere systems, as well as
the fact that they all pack well at some size ratio. The pack-
ing fractions of these structures are shown in Figs. 3, 4, 7,
and 8. Experimentally, AlB2 and icoAB13 have been seen in
a large variety of systems, including gem opals �3�, approxi-
mately hard colloidal systems �8,9�, and more recently in
nanoparticles �5,33�. NaCl, NiAs, the Laves phases, and
CsCl have also been seen experimentally in colloidal sys-
tems �8,34–36� and nanoparticle systems �5�. While the
question remains whether these experimentally realized par-
ticles interact with truly a hard-core interaction, these struc-
tures nonetheless present a reasonable starting place for finite
pressure calculations.

While the Laves phases were predicted to be stable for a
finite pressure region when �=0.82 �32�, in Fig. 7 we see
that the Laves phases are not the best-packed candidates.
Instead, at �=0.82 we find a number of structures which
pack better than the Laves phases, including �IrV, �CuTi,
AuTe2, and Ag2Se. Full free-energy calculations show that
the only stable structures at this size ratio are the Laves
phases �37�. Additionally, constant pressure NPT MC simu-
lations show that Ag2Se melts into MgCu2 at pressures
where the more symmetric MgCu2 is predicted to be stable.
Thus, Ag2Se can be looked at as a high-pressure distortion of

MgCu2. Hence, at a size ratio of 0.82 the binary hard-sphere
system seems to favor the more symmetric crystal structure
over the best-packed structure. As a result, the space filling
arguments currently being used to explain the crystal struc-
tures of nanoparticles, specifically, studies such as �5�, which
make the direct association of the entropic contribution to the
free energy with the space filling curves, are not always
valid.

In contrast, while icoAB13 packs better then cubAB13, as
shown in Fig. 8, NPT MC simulations show that the more
symmetric cubAB13 melts into icoAB13 for the size ratio
range where icoAB13 is predicted to be stable. In this case it
appears that the system chooses the lower symmetry, higher
packed crystal structure in agreement with the space filling
arguments. However, in this case, the result violates the sym-
metry principle proposed by Laves in 1956 �38�, which states
that the structure with the highest symmetry is adopted.

Taken together, these results imply that when examining
the phase behavior of systems at finite pressures it is impor-
tant to examine both the close-packed structures and the re-
lated higher symmetry crystal structures. While it is possible
that this behavior is simply due to the particle free volume
not scaling with the unit cell volume, the fact that the system
�as in the case of the Laves phases� sometimes chooses the
lower packed, higher symmetry structures indicates that lat-
tice vibrations may be important in the phase behavior of
binary hard-sphere crystal structures. Our results also show
that there are a number of additional structures, particularly
for ��0.6, not previously studied in the context of binary
hard-sphere mixtures which may be stable for binary hard-
sphere systems. Moreover, as the structures stable for hard
spheres are also seen in systems with soft interactions, for
instance NaCl, AlB2, and icoAB13, and the Laves phases
have been seen in nanoparticle systems �4,5� and icoAB13
was seen in block copolymer micellar systems �11�, the pre-
dicted structures can also be used as a starting point for
phase behavior studies of many such systems.

In conclusion, we have used a combination of a GA, MC
NPT simulations, and simulated annealing techniques to pre-
dict close-packed binary hard-sphere crystalline structures
for a wide range of stoichiometries and sphere diameter ra-
tios. The results are in agreement with the known structures
and show that there are a number of as yet unexamined bi-
nary crystal structures with competing packing fractions for
� between 0.6 and 0.84. Additionally, our results demon-
strate the importance of full Gibbs free-energy calculations
in determining the stability of binary crystal structures indi-
cating that the association of the entropic free-energy contri-
bution to the packing fraction is not always valid. Finally, we

TABLE II. �Continued.�

� Ag2Se S 74e/h HrBr2 AlB2 AuTe2 CsCl �CuTi NaCl CrB �IrV

0.870 0.662

0.900 0.645 0.705 0.612 0.710 0.686 0.715 0.528 0.689 0.718

0.950 0.661 0.719 0.606 0.719 0.682 0.725 0.525 0.686 0.725

1.000 0.689 0.741 0.605 0.741 0.680 0.741 0.524 0.701 0.741
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stress that our GA and NPT MC simulations can easily be
extended to find crystal structures for multicomponent mix-
tures, particles with soft interactions, and nonspherical par-
ticles.
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