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Dynamics of colloidal crystals in shear flow†
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We investigate particle dynamics in nearly hard sphere colloidal crystals submitted to a steady shear

flow. Both the fluctuations of single colloids and the collective motion of crystalline layers as a whole

are studied by using a home-built counter rotating shear cell in combination with confocal microscopy.

Firstly, our real space observations confirm the global structure and orientation as well as the collective

zigzag motion as found by early scattering experiments. Secondly, dynamic processes accompanying

the shear melting transition are followed on the particle level. Local rearrangements in the crystal are

seen to occur more frequently with increasing shear rate. This shear-enhanced particle mobility is

quantified by measuring the random particle displacements from time-tracked particle coordinates. We

find that shear induced melting takes place when these random displacements reach 12% of the particle

separation, reminiscent of the Lindemann criterion for melting in equilibrium systems. In addition,

a dynamic criterion for melting, based on the relative importance of the long time self diffusion

compared to the short time self diffusion, is discussed.
1 Introduction

When does a crystal melt into a fluid? And how does shear flow

affect this condition? In 1910 Lindemann addressed the first

question: he proposed that as soon as the molecular fluctuations

exceed �10% of the intermolecular spacing, the order will be

destroyed.1 This Lindemann criterion was shown to also hold in

colloidal crystals as has been demonstrated using computer

simulation2,3 and experiments.3–5 In soft matter systems we have

the possibility to easily modify the melting transition by applying

external fields. In this work, we show that these fluctuations do

not necessarily have to arise from an increase of thermal agita-

tion, but are also increased by subjecting the crystal to shear flow.

This eventually leads to complete shear induced melting of the

3D-crystal. The Lindemann melting criterion was already used in

the context of shear flow by Lindsay and Chaikin,6 who observed

the shear melting transition through a sudden viscosity increase,

and Ackerson and Clark who observed a reduction of long

ranged order with light scattering.7 However, the increased

fluctuations were hypothesized rather than observed. More

recently, Lindemann-like arguments were used to describe the

phase behaviour of 2D-systems of magnetic particles.8 In those

experiments, the interparticle interaction could be directly tuned

by the applied magnetic field strength, whereas the effect of shear

flow is indirect and occurs via the interplay with the suspending

fluid.
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In the 1980s, the effect of shear flow on colloidal crystals was

investigated extensively by means of light scattering techniques. In

this way, the global structure and orientation of the sheared

systems was obtained.7,9–11 In the last decade the use of microscopy

techniques became more established,12–16 but real space investi-

gations to study the effect of shear flow on the particle level in

dense colloidal suspensions are not very numerous yet. Cohen and

co-workers showed that strongly confined systems in shear flow

gave rise to unexpected new crystal structures.17 Also, shear

banding was observed in dense colloidal crystals undergoing an

oscillatory shear18 and there were reports on the effect of a very

low strain on the dislocation dynamics in colloidal crystals19 and

colloidal glasses.20 Besseling et al. were the first to present

a microscopy study on colloidal glasses undergoing steady shear.21

A problem arising when studying a 3D system in a steady shear

flow is that particles simply flow out of the field of view of the

microscope, drastically limiting the time a particle can be followed

(or be recognized to be the same particle). We circumvent this

problem here by using a counter rotating shear cell in which

a stationary layer can be positioned away from the glass wall.13

Shear melting has been found to occur in two stages: first there

is the transition from a crystal in which the particle positions are

bound to the 3D lattice sites to a situation in which (hexagonally

ordered) layers slide more or less freely over each other.9,13 The in-

plane order is preserved until considerably higher shear rates, but

will eventually vanish at higher shear rates as well. In this paper,

we will first investigate this sliding layer motion and look at the

collective displacement of particles in a layer. Second, we focus on

how shear affects the random particle displacements and inves-

tigate how those increased fluctuations lead to the loss of crys-

talline order upon approaching the shear melting transition.
2 Experimental

We used rhodamine labeled poly(methylmethacrylate) (PMMA)-

spheres with a diameter of 1.67 mm made by dispersion
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Fig. 1 Visualization of the collective motion of hexagonally packed

layers in shear flow. Images on the left show a snapshot at time t¼ 0 with

the corresponding coordinates superimposed. On the right, we plot

histograms in greyscale of the y-positions of particle rows along x. At

each time a high grey value corresponds to a high probability of finding

particles at that y-position. Top panels correspond to a shear rate of 0.13

s�1, bottom panels correspond to 0.37 s�1.
polymerization and sterically stabilized by a layer of poly(12-

hydroxystearic acid) (PHS).22,23 The particles were dispersed in

a 3 : 1 w/w mixture of cyclohexylbromide and cis-decalin, satu-

rated with tetrabutylammoniumbromide (TBAB) yielding

a nearly density and refractive index matched system in which the

colloids behave nearly hard-sphere like (fcrystallisation ¼ 0.47).24 A

home-built counter rotating cone-plate shear cell was mounted

on top of an inverted confocal microscope (Leica TCS SP2),

where a 100 � 1.4 NA oil immersion objective was controlled by

a piezo-focusing drive (Physik Instrumente P-721). The shear cell

consists of a (replaceable) metal cone that makes an angle of

either 1 or 4 degrees with a glass plate that has a diameter of 6.5

cm. The counter rotating principle allows us to locate the

stationary layer (zero velocity plane) away from the lower glass

wall. More details of the set up can be found in ref. 13. A pre-

shear of 0.5 s�1 was applied for 30 min to a dense suspension at

a volume fraction of 0.57, well within the crystalline region of the

phase diagram. The crystal was left to equilibrate for an addi-

tional hour, before starting the shear experiments described here.

Time series were taken in the flow-vorticity (xy-) plane. The

minimum capturing time of one frame was 0.26 s. Particle

coordinates were determined using routines similar to those of

Crocker and Grier.25 Local shear rates were determined from

flow profiles by measuring the velocity of about 10 consecutive

layers around the zero velocity plane as explained in ref. 13.

These profiles were always linear.

The importance of shear flow, which tends to distort the

structure, in comparison to thermal motion, which tends to

restore equilibrium structure, is usually expressed as the P�eclet

number Pe ¼ h _gs3/kBT.26 Here h is the viscosity of the solvent

and s the particle diameter. For these experiments Pez (2.3 s) _g.
3 Sliding layers

Filling the shear cell with the dense suspension results in a poly-

crystalline arrangement of random stacked hexagonally close

packed (rhcp) crystals with the hexagonal layers parallel to the

(horizontal) glass wall. The pre-shear treatment then aligns all

the crystals such that in each xy-plane a close packed line points

(within �3�) in the direction of flow.13 A typical resulting

structure can be seen in the two confocal images in Fig. 1 for two

different shear rates. These are snapshots from movies taken at

approximately the eighth layer counted from the glass plate.

Examples of time series obtained are provided as movies in the

electronic supplementary information.† Time series of the

hexagonal plane show that particles in the layers oscillate

collectively in the vorticity direction. This is visualized in the

graphs in the right part of Fig. 1. On the vertical axis we plotted

in greyscale a histogram of the y-positions of all particles in the

image. The peaks in the histogram are given a dark color and

correspond to a high probability of finding a particle at that

vertical position. The maxima correspond to the y-positions of

rows of particles. This was done for each frame in the time series,

resulting in wiggly lines. These oscillations imply that rows of

particles oscillate in phase. The frequency of the oscillations

increases with increasing shear rate.

To clarify the origin of this collective movement, additional

data were taken by capturing a time series of an xyz-stack con-

sisting of three xy-frames through the centers of particles in three
This journal is ª The Royal Society of Chemistry 2009
adjacent layers. In Fig. 2 (left), the particle coordinates of these

three layers are plotted in one figure. From these figures it can be

seen that the observed zigzag motion clearly is an effect that

arises via interaction with particles in the neighboring layers. At

this high volume fraction there is simply no space for layers to

slide over each other in a straight line. As a result, particles follow

zigzag paths through the saddles in the landscape formed by the

adjacent layers. In each period of the oscillation the particles

move collectively over a distance equal to one interparticle

spacing of the adjacent layer. The oscillation frequency should

then be proportional to the shear rate. This is confirmed in Fig. 3.

First, the trajectory of the center of mass rCM(t) of the particles is

determined by accumulating the average displacement of parti-

cles appearing in two consecutive frames, up to time t:

~rCMðtÞ ¼
Xt

t0¼Dt

1

Nt0

XNt0

i¼1

�
~ri
�
t0
�
�~ri

�
t0 � Dt

��
(1)

Here, i runs over all Nt0 particles showing up in two subsequent

frames, and Dt is the time interval between those two

frames. From this we then calculate the autocorrelation function

of its component in the vorticity direction (yCM):

gyðtÞ ¼
1

T

ðT
0

yCMðt 0Þ yCMðt 0 þ tÞ dt 0 where T is the duration of

the time series. Plotting this function against time normalized

with the shear rate results in a nice overlap of the experiments at

different shear rates. The shear rates used in this figure were

measured independently by determining the velocity in xy-time

series of �10 layers around the studied layer.13 The zigzag

motion is still observed at a shear rate of 2.3 s�1. At a shear rate of

3 s�1 (Pe ¼ 7) order was lost and the system was considered to

have shear melted.
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Fig. 2 Collective motion in stacks of hexagonally packed layers in shear flow. (Left) Particle positions in three adjacent layers in shear flow ( _g ¼ 0.16

s�1) at six different times. A Voronoi construction of the middle layer (diamonds) is shown. Particles in the lower layer (stars) and upper layer (squares)

are seen to neatly follow paths formed by the edges of the Voronoi cells. One particle in the middle layer and its neighbors at t¼ t0 in the adjacent layers

are highlighted for easier viewing. (Right) ‘Stick-slip’ motion at very low shear rate. Grey lines correspond to _g¼ 0.01 s�1, black lines to _g¼ 0.03 s�1. The

position of the center of mass in the flow direction relative to the middle layer is plotted. Particles in adjacent layers reside at an ‘a’ or ‘c’ position (see

sketch) for prolonged periods of time, and spend less time at intermediate positions. Each step, the layer moves over a distance of half the interparticle

spacing l (0.9 mm).

Fig. 3 Zigzag motion in sheared colloidal crystals. Autocorrelation

function of the y-coordinate of the center of mass, showing the oscilla-

tions of particles in the vorticity direction. Time is normalized with the

independently measured (local) shear rate.
It is interesting that zigzag motion is still observed at the

highest shear rate below melting. This is contrary to what has

been observed in highly deionized suspensions under shear,

where a gradual de-registering of layers with shear rate takes

place.27 This is probably due to the fact that in a hard sphere

crystal there is simply not enough space for particles to forgo

zigzagging. Similarly, elastic layer distortions28 are of minor

importance at these high packing fractions.

At very low shear rates (Pe � 0.2) the zigzag motion becomes

difficult to detect. Particles spend most time at lattice sites

formed by the adjacent layers. They avoid interstitial positions as
1062 | Soft Matter, 2009, 5, 1060–1065
much as possible, and hop to the next site only rarely. Still, when

measuring over long enough times the hexagonal layers are seen

to move relative to each other, and the velocity profile is on

average linear. In the upper right corner of Fig. 2 we have

visualized this ‘stick-slip’ motion by plotting the x-position of the

center of mass relative to the middle layer as a function of time

for three adjacent layers. It is seen that a particle moves over half

an interparticle spacing at each jump. This corresponds to

a move from an ‘a’ to a ‘c’ position. The jumps of the first and

third layer are not necessarily in step. At higher shear rates the

steps progressively smooth out.13
4 Fluctuations

Compared to the non-sheared case, in the sheared system particle

rearrangements are more pronounced, vacancies travel more

easily, and the individual particles are much less bound to their

lattice positions. From the movies we observe that at a modest

shear rate (Pe ¼ 0.3), local order is occasionally lost, to be

recovered later on (see ESI).† At increasing shear rate this occurs

more frequently and also involves larger regions. Hints for such

local (and temporal) loss of order can be seen in Fig. 1, for

example in the lower snapshot on the righthand part of the image

and in Fig. 2 at t ¼ t0 just above the highlighted particles.

Interestingly, alternating cycles of order and disorder were also

observed in simulations of Das et al., in which (only) two

superimposed layers were sheared.29 To gain insight in the

phenomenon of shear melting, and the conditions at which it

occurs, we now focus on the random particle displacements that
This journal is ª The Royal Society of Chemistry 2009



Fig. 4 Histograms of the relative displacements in the x- and y-direction

after different time intervals for an experiment at zero shear (a) and an

experiment at a shear rate 0.37 s�1 (b). Lines are Gaussian fits to the

fluctuation distribution at the smallest time interval.

Fig. 6 Mean square relative displacements in the flow-vorticity plane at

different shear rates. The initial slope, given by dotted lines, is predom-

inantly attributed to diffusion of particles around their lattice site, while

at longer times particle rearrangements become the main contribution to

diffusion. Stars mark the crossover between those two regions, thus

defining a triangular region (shaded).
are present on top of the collective sliding layer motion discussed

above. To remove the collective motion, we calculate the relative

changes in the distance between pairs of neighboring particles

instead of the absolute particle displacements,8 because this

focuses on the displacements relative to the lattice.

The vector between the positions of two neighboring particles

is given by ~rij ¼~ri �~rj , where i > j are the indices of the neigh-

boring particles. Each unique pair is given an identification

number, so that the pair can be tracked in time. In this way a pair

is followed for as long as the particles remain nearest neighbors

(as calculated by a Delaunay triangulation). The displacements

in time t are then calculated for each pair according to

D~rijðtÞ ¼~rijðt0 þ tÞ �~rijðt0Þ. Histograms of these relative

displacements in both flow (x-) and vorticity (y-) direction are

shown in Fig. 4 for different time intervals. The non-sheared

system shows a narrow Gaussian distribution, which only
Fig. 5 Particle tracks in the flow-vorticity plane over 13 s (50 frames) time interv

and temporal heterogeneities in the fluctuations. The size of a panel is 22 � 22
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slightly widens with time. In shear flow the distribution becomes

broader. Also the shape of the distribution is changed: larger

displacements occur more frequently than in a pure Gaussian

distribution. This is in agreement with the observation that the

increased fluctuations appear to be concentrated on a selection of

the particles, while the others—which remain part of a crystalline

patch—are much less affected. This phenomenon is illustrated in

Fig. 5 and can also be seen from the Movies in the ESI.† In the

first 13 s interval a large melted region is seen that has fully

recrystallized by the time the second interval starts. In panels 4

and 5 different patches of the crystal are seen slipping with

respect to each other.

In Fig. 6 the mean square relative displacement

hDr2iðtÞ ¼ h
�
~rijðtþ t0Þ �~rijðt0Þ

�2

i (2)

is plotted as a function of time. Only the displacements in the

flow-vorticity plane are taken into account; the displacement in

the z-direction cannot be extracted from these xy-data. We

normalized hDr2i by 2s2, where the factor 2 arises because we are

interested in the mean square displacement per particle (and not

per pair of particles).
als after subtraction of the average (zigzag) motion. The tracks show spatial

mm2 and the shear rate is 1.0 s�1. Data correspond to Movie 2 in the ESI.†
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It is seen that at zero shear the particles are strongly confined

to their lattice site, so that their mean square displacement levels

off to a finite value. Within the first few seconds, diffusion of the

particles in a neighbor cage is observed, while at longer times

the cage formed by the neighbors confines the particles. In the

absence of shear the cage is static and particles cannot escape, at

least on the time scale of our experiment. The sheared particles

also feel their neighbors after the first (few) second(s), but

apparently experience a more dynamic cage from which they still

have a chance to escape. Interestingly, at long times the mean

square displacement again increases approximately linearly with

time.

The shaded part of Fig. 6 marks the region where particles still

diffuse around their lattice site, before breaking out of their

cages. At a shear rate of 2.3 s�1 this takes less than half a second.

On further increasing the shear crystalline order was lost at _gz 3

s�1. The shaded region intercepts the y-axis at a (relative) mean

square displacement of 0.016. It is therefore clear from Fig. 6 that

at the point of shear melting the mean square displacement of

particles in their nearest-neighbor cages is approximatelyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hDr2imelt=2s2

p
z0:12 � 0:01. In other words, shear increases the

random displacements of particles around their lattice positions

until they exceed a value of about 0.12 times the lattice spacing,

at which point the crystal shear melts. This is strongly reminis-

cent of a Lindemann criterion which in this case applies to

a nonequilibrium system.1,30 Hoffman and L€owen have found

evidence for a Lindemann criterion in nonequilibrium simula-

tions in which particles were driven in opposite directions.31 To

our knowledge, the present data provide the first experimental

evidence.

Based on the arguments above, we can assign two self diffusion

coefficients to the sheared systems: one that applies at short time
Fig. 7 Short and long time diffusion coefficients in shear flow as

obtained from Fig. 6. Complete shear melting occurs around a shear rate

of 3 s�1. This is indicated by the dotted line. The lines in (a) are linear fits

to Dshort and Dlong, respectively. The curve in (b) is the ratio of those fits.
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scales, and another which applies at longer times. The best esti-

mate we have for the short time self diffusion coefficient, is the

value obtained from the displacements in the shortest experi-

mentally measured time interval: hDr2i/2 ¼ 4DshortDt, with Dt ¼
0.26 s. At this time scale the colloids display essentially Brownian

motion due to the many impacts of solvent molecules. In addi-

tion, at these high concentrations, particles influence each other

by disturbing the flow field through which they move. Both the

Brownian character of motion and the effect of hydrodynamic

interactions are reflected in the short time self diffusion coeffi-

cient. The data obtained are shown in Fig. 7a. It is interesting to

note that this short time diffusion coefficient already increases

with the shear rate, and that it does so approximately linearly.

Such behavior is exactly that seen in shear induced self diffusion

of non-Brownian spheres, which is a purely hydrodynamic effect

resulting from the hydrodynamic interactions between the ever-

changing configurations of particles under shear.32–34

At long time scales particles are slowed down further by direct

particle–particle interactions. The long time self diffusion coef-

ficient Dlong is obtained from the linear slope of the long time

mean square displacements. In Fig. 7a we plot these diffusion

coefficients as a function of shear rate. Also, Dlong increases

linearly with shear rate. In part this will again be due to hydro-

dynamic effects. However, here direct interactions between

particles also become more frequent with increasing shear rate

and will add to the random displacements with an isotropic

contribution that is proportional to the shear rate. This effect

was observed in sheared suspensions of dilute but strongly

interacting particles.35 Another effect of shear flow, Taylor

dispersion, gives a term quadratic in shear rate. However, it is not

observed here because it is caused by particles leaving the layer in

the gradient direction. These particles are not tracked.

In Fig. 7b it is seen that, relatively, Dlong increases faster than

Dshort. Near shear melting the long time diffusion coefficient is

only a factor 10 times smaller than the short time diffusion

coefficient. Interestingly, this ratio Dlong/Dshort ¼ 0.1 was put

forward by L€owen et al.3 as a dynamic criterion for melting

(again in equilibrium systems). This statement was based on the

results of Brownian dynamics simulations, and was confirmed by

experiments on low density colloidal systems of highly charged

soft particles3,36 and for slightly soft systems.37 Though in these

cases the hydrodynamic interactions are less important, the

dynamic melting criterion was claimed to apply for concentrated

systems where particles do interact through such interactions as

well. By taking into account the short time diffusion coefficient

which includes hydrodynamic interactions instead of the bare

Stokes-Einstein diffusion coefficient, the experimental results for

hard sphere crystallization described in ref. 38 could be

explained. Our shear experiments indicate that this dynamic

criterion for melting may well be applicable to non-equilibrium

systems as well.
5 Conclusions

We have quantitatively studied colloidal crystals in shear flow in

real space. We analyzed the collective zigzag motion that the

particles perform when hexagonal layers are forced to slide over

each other. On top of this collective motion the particles undergo

random displacements. Random fluctuations are enhanced by
This journal is ª The Royal Society of Chemistry 2009



shear flow above those caused by Brownian motion. It was found

that those fluctuations cause melting when they become suffi-

ciently large. Similar to equilibrium systems, a Lindemann

criterion accurately predicts the melting transition in these non-

equilibrium systems. In addition, the data are consistent with

a dynamic criterion based on the relative importance of the long

time diffusion compared to the short time diffusion. Further-

more, we qualitatively observed that the path to shear melting is

accompanied by local and temporary melting of the crystal.

These fluctuations in the degree of crystalline order will be

subject of future quantitative experimental investigations.
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