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Abstract. We present a study on buckling of colloidal particles, including experimental, theoretical and
numerical developments. Oil-filled thin shells prepared by emulsion templating show buckling in mixtures of
water and ethanol, due to dissolution of the core in the external medium. This leads to conformations with
a single depression, either axisymmetric or polygonal depending on the geometrical features of the shells.
These conformations could be theoretically and/or numerically reproduced in a model of homogeneous
spherical thin shells with bending and stretching elasticity, submitted to an isotropic external pressure.

PACS. 46.32.+x Static buckling and instability — 82.70.Dd Colloids — 89.75.Kd Patterns

1 Introduction

Anisotropic colloidal particles made using spheres have
been the subject of various studies in recent years. These
types of colloids can be obtained in very different ways, for
example either by deformation of spherical particles [1-3],
or by forming clusters of them [4-7]. Such objects are
good candidates to generate anisotropic colloidal crystals.
Photonic bandgap (PBG) calculations showed that such
crystals should improve the expected performances (larger
bandgap, more convenient wavelengths) [4,8,9]. Colloids
with a hollow interior (spherical shells) are particularly in-
teresting also for their mechanical properties, which make
them potentially important for a variety of applications,
such as drug delivery, catalysis and biotechnology, and
when filled with gas as contrast agents for ultrasound or
echographic imaging [10,11]. Due to the relevant engineer-
ing situations as well as the biomechanics, the problem of
the deformation of a spherical shell under external con-
straints has been recently investigated, both experimen-
tally and numerically [12-18].

In this study, we present anisotropic colloids obtained
by buckling of spherical shells. The buckling was induced
by dissolving or evaporating the solvent enclosed in the
slightly porous shells. This causes a stress comparable to
an isotropic pressure on a spherical airproof shell [19]. Af-
ter postbuckling, the colloidal shells show bowl-like con-
formations, either with axisymmetric or polygonal sym-
metry. We observed them using both transmission optical
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microscopy and transmission electron microscopy (TEM),
and compared them with configurations obtained from
Surface Evolver simulations, using a model of homoge-
neous elastic (bending and in-plane stretching) spherical
shells submitted to an isotropic external pressure.

2 Buckling under evaporation and in solution

2.1 Methods

Spherical colloidal shells were prepared following pre-
vious work by Zoldesi and co-authors [20,21]. They
vigorously mixed dimethyldiethoxysilane (DMDES) and
an aqueous solution of ammonia (NHgs), providing a
very monodisperse and stable oil-in-water emulsion with
droplets of micrometric size. The oil consists of low molec-
ular polydimethylsiloxane (PDMS) oligomers. By adding
tetraethoxysilane (TEOS), a solid shell forms at the sur-
face of the droplets, consisting mainly of PDMS with av-
erage oligomer length 4, crossed-linked with hydrolyzed
TEOS units. As shown in reference [21], the shells are
porous and then allow small molecules to pass through. As
the low molecular PDMS can be dissolved in ethanol [22],
adding ethanol (an equal volume in the present study)
to such an aqueous suspension of shells filled with oil,
leads to dissolution of the encapsulated oil into the ex-
ternal medium. For thick enough shells (“capsules” and
spheres in the nomenclature of ref. [21], i.e. shell thickness
over 100nm), this leads to a suspension of solvent-filled
spherical particles. These particles are then sedimented
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Fig. 1. Typical transmission optical microscopy images of par-
ticles from a suspension of colloidal spheres filled with oil, in
a mixture of water and ethanol. Three different objects are
displayed under three different views; they all show the same
coffee-bean buckled shape, with an elongated depression. Scale
bar 4 pm.

by centrifugation and redispersed in ethanol. They may
be dried afterwards and observed by electron microscopy,
exhibiting shape modifications (“buckling under evapora-
tion”) or not [20,21], depending on the ratio of their shell
thickness to radius [19].

Thinner shells, however, will already buckle in solution
when ethanol is added. Thin shells consist of much larger
PDMS oil droplets coated with a very thin solid organosil-
ica layer. They were prepared using the same procedure
as described in reference [20] for “microballoon” particles.
In order to obtain bigger particles, we increased the con-
centration of DMDES and ammonia up to 5% v/v, and
the droplets were allowed to grow for three days before
the encapsulation step. This resulted in somewhat more
polydisperse particles with diameters between 3 and 6 um.
Since this small polydispersity prevented from determin-
ing the shell thickness through static light scattering, we
had to use alternative techniques to estimate it. A range
of 5-20nm was proposed [20] by considering that all the
TEOS forms a dense silica shell, but careful observations
of transmission electronic microscopy (TEM) pictures sug-
gest 10-40nm, which is likely since PDMS oligomers are
known to co-polymerize with TEOS, hence contributing
to the shell thickness.

2.2 Experimental results

In order to resolve the post-buckling structure by trans-
mission optical microscopy, we used batches of larger par-
ticles with radii R between 2 and 3 um. Once buckled in so-
lution through addition of ethanol as described in the pre-
vious section, these particles hold a single depression with
significant volume compared to that of the initial sphere.
Furthermore, in some cases the depression is not axisym-
metric anymore. In one batch (Fig. 1), we did observe
apparently identical objects, all with an elongated depres-
sion that gives the whole object a coffee-bean shape. This
type of conformations was reported in the literature for red
blood cells [23] and for polystyrene shells previously filled
with organic compounds and evaporated in air [24,25],
and was reproduced by numerical simulations [26].

Fig. 2. Spherical shells buckled in solution, showing 4 to 8
wrinkles (a-e). Each sub-figure shows different transmission
optical microscopy views of the same object. Scale bar 5 pum,
except sub-figure (¢): 2 pm.

In other cases, the depression presented a polygonal
aspect due to regularly spaced radial wrinkles, in a number
varying from 4 to at least 8 (Fig. 2), 7-8 being the upper
limit that we could still distinguish and count for these
shell sizes with optical microscopy.

The obtainment of such structures in solution from
synthetic colloids is a total novelty. Besides, shapes with
a depression presenting a 3-fold symmetry were previously
observed in red blood cells [23,26,24] or in dried polymer
particles [24,25] but we could not find in the literature ob-
servations concerning a higher number of wrinkles, on any
system. To our knowledge, theoretical predictions leading
to such wrinkles do not exist either, except when gener-
ated by a point [27,28] or a flat [29] load, which is not the
case here.

It is interesting to find out whether some shell hetero-
geneity has to be invoked to explain such a non-symmetry,
or if a model of elastic homogeneous spherical shells is
sufficient to recover these non-trivial shapes. For this pur-
pose, we are interested in a model of thin spherical shells
with bending and 2D stretch elasticity, that we derived
both analytically and numerically. Such an approach was
likely to give hints on features hardly accessible by ex-
periments, such as, here, shell thickness, or the successive
steps that lead to the final (and observable) shape adopted
by the shells.

3 Theoretical part: thin plate elasticity

The elastic energy stored in the deformation of a thin
sheet of an isotropic and homogeneous material may be
split into a bending and a stretching part [30], and both
can be written in terms of surface elasticity:

1 1
F = / —K (c — 60)2 + —einijklekl ds, (1)
shell surface 2 2

where k is the bending constant, ¢y the spontaneous curva-
ture of the shell (which is zero for an unstress flat sheet,
but 1/R for a spherical shell without constraints) [31],
and €;; and K, respectively, the two-dimensional strain
and elasticity tensors. The non-zero terms of the two-
dimensional elasticity tensor are Kyppe = Kyyyy = ﬁ,

_ _ VA
Kioyy = Kyyaz = 157

A
and Koyoy = Kyoya = Tro
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(with A the equivalent two-dimensional Young modu-
lus and v the equivalent two-dimensional Poisson ra-
tio) [33]. The stretch elasticity term can thus be rewrit-

2
ten as ﬁ[Tr(g) + %] We ignored the Gaussian
curvature term [32] since, according to the Gauss-Bonnet
theorem, its integral depends only on the topology for a

closed surface.

To establish the link between these two-dimensional
elastic parameters and the three-dimensional features
(sheet thickness d, Young modulus E and Poisson ratio
o of the bulk material), we follow Landau’s approach [33].
As concerns bending, the distribution of stress in a thin
plate under flexion at equilibrium leads to

Ed?
12(1 —02) @)

R =

The 2D Young’s modulus A was not taken equal to Ed
because this would correspond to a “planar” deforma-
tion in Landau’s terminology, i.e. a deformation of plates
at constant thickness, which seems not adequate here.
The homogeneous “longitudinal” deformation, i.e. with-
out constraints in the perpendicular direction, is indeed
more adapted to what happens in the shells. This leads to

142
A:gEd,
(1+0)2
o
vV =
1+0

It is worthwhile to notice that, as the three-dimensional
Poisson ratio ¢ has a maximum value of 0.5 (incompress-
ible materials), the two-dimensional Poisson ratio v of
such free plates cannot exceed 1/3. This point was ne-
glected in previous work [34], and can become of some
importance if one wants to make a link between the pa-
rameters chosen for simulation and the geometrical prop-
erties of the shells.

As the surface integral scales like R?, the dimensionless
AR?

Foppl-von Karman number v = is likely to drive
the succession of configurations resulting from the balance
between bending and stretching. In this model of thin shell
of elastic isotropic material, we then expect

202 22

v=2(1- 22 (B 2 (1 22) ({3)2('3)

It is interesting to note that this model predicts conforma-
tions to be independent of F, and to finally depend only
on the relative thickness d/R and the Poisson ratio.

In such a model, we can calculate the elastic energy
of an initially unstrained spherical surface whose inner
volume decreases by AV its initial value V', in two confor-
mations: when the sphere remains spherical, and following
reference [35] when an axisymmetric depression is created

by inverting a spherical cap:

()

< s sna (4)") 4 (8) "] 0

where % can be expressed as a function of v and v through

equation (3). The parameter « is the half-angle of the rev-
olution cone apexed at the sphere center, and in which the
axisymmetric depression inscribes. This half-angle relates
to the relative volume variation through

AV 1

T 5(1 —cos)?(2+ cos ). (6)

2
Usphere = 4w R* x

Uaxisym

In the limit of very thin shells and small volume variations,
one can show that

™ o _3
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Or, as a function of the relative volume variation
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In this limit, Usphere = Uaxisym would then happen for
relative volume variations

AV

7“77 ) (7)
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which provides a scaling law for the “sphere towards cap-
sule” buckling.

These theoretical calculations will be compared to sim-
ulation results in Section 4.4.

4 Simulations
4.1 Modus operandi

The simulated configurations presented hereafter were ob-
tained using the free software Surface Evolver [36], in
which the elastic energy given by equation (1) is mini-
mized in the space of conformations. The stretch energy
term is in fact calculated using the Cauchy-Green strain
tensor, which is accurate for describing deformations of
larger amplitude. The minimization was performed by al-
ternating gradient, conjugate gradient and Hessian meth-
ods. Stochasticity was introduced by jiggling the posi-
tion of the vertices at the beginning of each minimization
(i.e. at each volume step when the volume is decreased
by steps). We tested that the number of vertices is high
enough to avoid an influence of the mesh on the confor-
mations. Furthermore, we checked that the symmetry of
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Fig. 3. Conformations numerically obtained with Surface
Evolver for v = 743, v = 0.333 (which corresponds to a shell of
relative thickness d/R = 0.116 of an incompressible material
with o = 0.5), AV—V =0.171, ¢o = 1/R, 3594 vertices. Left: sim-
ulation performed by directly minimizing at ¢co = 1/R for each
decreasing volume step: N = 17 depressions. Right: simulation
performed first with ¢ = 0, then ¢o = 1/R. The elastic energy
is 3.10 times larger for the “potato” (left) than for the capsule
(right).

the mesh has no influence on the position of the wrinkles,
by using an isotropic randomized mesh. Such an approach
was initiated by Tsapis et al. [34].

We explored a discrete range of v, and restricted our
simulations to the case of an incompressible material, i.e.
v=1/3 (c =1/2).

Given these elastic parameters, a first set of minimiza-
tion was performed through stepwise decrease of the in-
ner volume of an initially spherical surface, and stress free
(i.e., co = 1/R), with a minimization at each volume step.
This leads to roughly isotropic structures with depressions
regularly spaced on the surface, such as in reference [34]
or in Figure 3, left. The number of depressions is found to
increase with ~.

Different shapes of much lower energy (for the same
elastic parameters) could be obtained through more so-
phisticated minimizations. This was done by reversibly
acting on the spontaneous curvature cg of the shells. Since
the shells are formed by templating on the oil droplets,
one can assume that they are unstrained in their initial
state and ¢ is expected to be ¢g = 1/R. But when ¢
is changed to zero, conformations qualitatively different
could be reached: one obtains “capsules” with a single ax-
isymmetric depression. Minimizing again with ¢y back to
1/R preserves this capsule conformation, with an energy
lower than the potato shape, as exemplified in Figure 3,
right. Temporarily imposing a zero spontaneous curvature
is likely to lower the energy barrier for the merging of two
different depressions at the surface of the sphere, since
merging happens through flattening of the high positive
curvature ridge that separates the two depressions. This
trick apparently helps to get out of some local minima in
which the simulated conformations are easily quenched,
as is quite usual in buckling problems.

In the following, such a zero-curvature cycle was sys-
tematically performed at each volume step, in order to
facilitate conformation changes.
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Fig. 4. Typical evolution of the number W of wrinkles held
by the single depression after secondary buckling (simulations
performed for v = 2333 (black, upward pointing triangles),
7465 (dark grey, downward pointing triangles), 15163 (medium
grey, diamonds) and 29160 (light grey, squares); v = 0.333).

4.2 Results

We performed simulations of an elastic closed surface, ini-
tially spherical and unstrained, whose inner volume is de-
creased by volume steps dV = 0.0190 x Vj, Vj being the
volume of the initial sphere. In all the experiments, Vj
and k were kept unchanged and ~ was varied from 271 to
29160 by changing A.

Simulations are stopped when the surface interpen-
etrates, which happens for inner volumes of the order
7-11% the initial volume V5.

Up to v = 583, the volume decrease causes a buckling
toward the “capsule” conformation, i.e. with a single ax-
isymmetric depression, until the surface interpenetrates.

From v = 933, axisymmetric capsules undergo a sec-
ond transition when the volume goes on decreasing, to-
ward a non-axisymmetric conformation. The onset of this
second transition is harder to detect since the depression,
except for the highest values of ~, only slowly evolves to-
ward a polygonal shape, and then the corners of the poly-
gon turn into wrinkles (limits of the depression concave
between the apices). Quantitative data concerning buck-
ling thresholds will nevertheless be given in Section 4.4.
We could this way obtain such wrinkled bowls with 5 wrin-
kles or more. Some trials with re-increasing volume from
a wrinkled state also provided conformations with 3 and
4 wrinkles.

More quantitatively, Figure 4 provides the number W
of wrinkles observed throughout a stepwise volume de-
crease for simulations with different v values. One can no-
tice that there is some fluctuation on W, of one, or even
two, units. In fact, performing decreasing-volume simula-
tions with the same parameters does not always lead to the
same number of wrinkles. We could get in these situations
an order of magnitude for the energy difference between
two close conformation (i.e. W = £1): it can be as small
as a few tenths of percent. The energy of a conformation
is not strictly determining its occurence: the path followed
in the space of conformations has some importance. This
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Fig. 5. Number W of wrinkles held by the single depression

after secondary buckling, averaged between AV—V = 0.53 and
A—VV = 0.76 (error bar is the standard deviation), as a function
of the dimensionless Foppl-von Karman number v = Afz.

is why we restricted most of our study to a sequence of
minimization that is likely to reproduce the experimental
situation, i.e. decreasing the volume step by step.

Figure 4 shows a weak tendency for the number of
wrinkles W to increase with the relative volume variation
A—VV once the buckling has occured, in the same way that
was observed in macroscopic indentation experiments [28].

More obvious is the variation of W with ~y. In order to
precise a variation of a few units on a discrete quantity,
we averaged W on a range of % where the conformation

holds wrinkles for all the values of 7, i.e. % between 0.53
and 0.76 (Fig. 5). This puts into evidence an increase of
W with increasing . Wrinkles being more numerous with
decreasing % goes in the sense of intuition: a thinner plate
folds more easily, and hence makes more folding patterns.

4.3 Comparison between simulations and experiments

The inner volume of the conformations shown in Figure 2
is not easy to determine precisely. Nevertheless, an impor-
tant experimental observation is that buckling deforma-
tions never relaxed back toward the initial spherical shape
after complete evaporation or complete dissolution of the
inner oil, yet it means that the last water/air or oil/water
interfaces, that were pulling the shell inwards, have disap-
peared. It is then likely that the shrinking brings opposite
surfaces close enough to one another to be sensitive to
van der Waals attraction, which would stabilize the buck-
led conformation against elastic shape recovery after van-
ishing of the capillary forces. This hypothesis, of initially
opposite parts of the shells that contact in the conforma-
tions experimentally obtained, seems to be confirmed by
confocal pictures of buckled shells (Fig. 6).

In order to compare the shapes obtained through sim-
ulations (with decreasing volume) with the experimental

Fig. 6. Three different views of a buckled spherical shell la-
belled with RITC, in confocal fluorescence microscopy (left)
and in transmission microscopy (right). The shell is clearly
self-contacting at its convexe part.

(a) (® () (d)

Fig. 7. (a) Capsule obtained from evaporation in air of a spher-
ical shell of mean radius 870 nm, shell thickness 150 nm (TEM
image). (b) Simulation obtained for v = 271 and v = 0.333

(hence equivalent to % = 0.172), AV—V = 0.854, 3594 ver-
tices. (c¢) Simulation: v = 2333 and v = 0.333 (equivalent to
% = 0.0586), A—VV = 0.854, 3594 vertices. This conformation
is to be compared with Figure 2c. (d) Simulation: v = 20995
and v = 0.333 (equivalent to % = 0.0195), % = 0.854, 3594

vertices. This conformation is to be compared with Figure 2a.

ones, we thus focused on the shapes obtained just before
self-contact.

Figures 7a and b show that we could accurately repro-
duce the shape of axisymmetric capsules. In the simula-
tion displayed here, we took v = 271 and v = 0.333, which
corresponds to d/R = 0.172.

For wrinkled bowls (examples displayed in Figs. Tc
and d), the conformations obtained just before interpene-
tration are also very similar to shapes observed experimen-
tally (Figs. 2c and e). Like in the experiments, wrinkles
do appear for thinner shells. Furthermore, the parameters
for which simulations provide wrinkles are consistent with

2(1—22) = 0.02 to 0.08,

to be compared to the experimental value % = 0.003 to
0.04.

Other experimental structures could also be repro-
duced by simulations, such as the one displayed in Fig-
ure 8a. This latter was obtained through evaporation in
air of a shell still containing some of its inner oil (note
that in this case the ethanol was added in the aqueous
solution later than usual, which possibly allowed poly-
merization of longer chains [21] that cannot be dissolved

2v
1

4

the shells’ characteristics:
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(a) (b)

Fig. 8. (a) Shell enclosing oil, evaporated in air (d/R ~ 0.012).
Transmission optical microscopy, size 17 ym x pm. (b) Simu-
lation obtained for v = 2916 and v = 0.333 (equivalent to
d — 0.064), by increasing the volume from % = 0.474 to
V. —0.209, 3659 vertices.

by ethanol [37]). Here the inner volume obviously does
not correspond to shell self-contact. In such a process,
a shrinkage of the shell itself when the water has fully
evaporated can be invoked to explain a behaviour compa-
rable to a volume increase, such as in the simulation of
Figure 8. The conformation, in this case, is stabilized by
oil-air interfaces.

All these results show that there is no need to invoke
shell heterogeneity to explain the shapes experimentally
observed: bending and in-plane stretching elasticity suf-
fices. The next section provides more quantitative insights
on the simulation of elastic buckling.

4.4 Quantitative comparison between simulations and
elastic theoretical calculations

The software Surface Evolver used to perform simulations
provides the elastic energy of each conformation. For the
two conformations “sphere” and “axisymmetric depres-
sion”, we compared this elastic energy with the theoret-
ical expressions Usphere (Eq. (4)) and Uaxisym (Egs. (5)
and (6)). The numerical data are very well fitted by the
theory, as shown in Figure 9. One sees that this first buck-
ling from a spherical shape to a conformation with a single
axisymmetric depression occurs with some hysteresis, i.e.
for volume variations higher than the one corresponding
to Usphere = Uaxisym-

Figure 10 presents the buckling occurences as a func-
tion of v. The first buckling is determined without ambi-
guity, as it is obvious from Figure 9. The occurrence of
the second buckling, from an axisymmetric capsule to a
“wrinkled bowl” conformation, is less easy to detect since
it corresponds neither to a discontinuity nor a singularity
in energy. We detected in fact two caracteristic values for
%, by visual observation of the conformations: the first
one corresponds to the loss of the axisymmetry, when the
rim of the depression becomes polygonal. Then the apices
of the polygon becomes sharper (they tend to form the
extremity of a d-cone [28,38]), and the inner part of the
rim becomes convex between two successive apices: at this

8
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Fig. 9. Elastic energy, adimensioned by &, of a shrinking shell
initially unstrained (co = 1/R). Black squares: result of Surface
Evolver simulations, with v = 2916 and v = 0.333. Continuous
line: normalized elastic energy Usphere/k = YUsphere/(AR?) of
a shrinking spherical shell, calculated with same v and v ac-
cording to equation (4). Dot-dashed line: adimensioned elastic
energy Uaxisym /K of a capsule (deformation with a single ax-
isymmetric depression), calculated with same v and v accord-
ing to equations (5) and (6).

point we consider that the conformation holds wrinkles,
and this second “threshold” is recorded. Figure 10 shows
that both values are quite close and present the same
power law in v~ '. Extrapolation intercepts with % =1
at a value 7. = 850, which is consistent with our sim-
ulations showing that secondary buckling appears for ~
between 583 and 933 (% ~ 0.1). This can be compared
with calculations of reference [27] that forecast a thresh-
old ~ of 1345 for the apparition of wrinkles on a clamped
cap submitted to concentrated load.

The first buckling (sphere toward axisymmetric cap-
sule) happens for thresholds values of the relative volume
variation that vary in a power law with the F&ppl-von
Karman parameter: % o y~955 Despite the slight hys-
teresis in the primary buckling, this exponent is very close
to the —0.6 theoretically proposed in equation (7).

5 Discussion

Experimental and numerical results showed that wrinkled
bowls are preferentially observed when a very thin spher-
ical shell lowers its volume. This conformation is quite
different from the structures (typically discocytes or stom-
atocytes) usually obtained for vesicles, where the in-plane
elasticity is liquid-like (related parameter: 2D compress-
ibility) [39]. Wrinkles evidences the 2D solid nature of the
shells, since it is needed to accommodate the surface of
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Fig. 10. Primary buckling (black squares) from sphere to cap-
sule: relative volume at which the axisymmetric depression ap-
pears in the simulations, for different ~. Interpolating straight
line: % = 2.8 %% Secondary buckling: polygonization of
the circular rim (black upward pointing triangles) and appari-
tion of wrinkles (gray downward pointing triangles). Interpo-
lating straight line: % =850~ L.

one hemisphere within the other hemisphere, without an
excessive cost in stretch energy.

It is interesting to note that a structure presenting 3
wrinkles had been obtained by Lim et al. [26] in simu-
lations of red blood cells where the elastic properties of
respectively the cytoskeleton and a homogeneous asym-
metrical phospholipid bilayer were included in a similar
numerical model with elastic bending, spontaneous curva-
ture and stretching [40]. But the bending/stretching ratio
in these biological objects, where bending and stretching
have different origin, was higher than the range of similar
values for a thin shell of isotropic material. This probably
prevented these authors from obtaining shapes with more
wrinkles.

Besides, the simulations presented here do not nec-
essarily provide the energies of lowest configuration. As
an example, we could, by following another path in the
phase diagram of elastic and geometric parameters, ob-
tain a totally new conformation of much lower energy
than the wrinkled bowls (Fig. 11). But this conformation
very likely corresponds to an energy trough too narrow
to have been encountered in our experimental situation.
Anyway, we are not looking for equilibrium configurations:
we are trying to understand what really happens when a
colloidal shell shrinks. It is well known that many buck-
ling conformations can be quenched in non-absolute en-
ergy minima. Our study, putting into evidence qualitative
as well as quantitative convergences between experiments,
theory and simulations, strongly suggests that our simu-
lations with a progressive decrease of the inner volume
can reproduce the path followed by the buckling of real
shells. The shapes observed are compatible both with self-
contact, which would explain their stabilization, and with
shell homogeneity. Besides, the conformation (and further-

Fig. 11. Simulation with v = 15163, v = 0.333 and ATV =
0.645. Such unusual conformation can be obtained from a cap-
sule at lower +; its energy is 1.42 times lower than the config-
uration with wrinkles (W = 7) obtained through progressive
volume decrease for similar parameters.

more the number of wrinkles) gives an indication on the
shell relative thickness range.

Structures comparable to wrinkled bowls have already
been observed experimentally on millimetric half-spheres
submitted to a localized [28,29] or a planar [41] load, the-
oretically forecasted [27,29], or numerically obtained by
simulation of a sphere adhering on a flat surface [42], but
here we did put in evidence that such structures can also
be obtained with an isotropic force distribution.

6 Conclusion

Non-trivial buckled shapes were obtained by evaporating
or dissolving the solvent enclosed in porous colloidal shells.

We have shown that the deformations of such objects
are consistent with a model of homogeneous thin spheri-
cal shells with bending and in-plane stretching elasticity
submitted to an isotropic external pressure. The numeri-
cal simulations showed that a primary buckling leading to
capsules (holding a single axisymmetric depression) can
be followed by a secondary buckling where the depression
wrinkles. This happens for decreasing volume variations
when the relative thickness of the shell is reduced, and the
number of wrinkles concomitantly increases. Simulations
and experiments qualitatively and quantitatively confirm
each other.

These new results suggest that evaporation or dissolu-
tion of inner solvent is a promising way to obtain, from
a monodisperse enough population of colloids, a monodis-
perse suspension of anisotropic objects with geometric pa-
rameters tunable through the characteristics of the initial
spherical shell.
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The initial article presents experimental results on thin colloidal shells under constraint, numerical simulations of
deformed spherical surfaces and calculations that are to be done in order to make the link between the 2D parameters
of the numerical simulations and the 3D experimental parameters. The erratum concerns this latter aspect.

First group of corrections. Some calculations were erroneous, due to a misinterpretation of ref. [33].
The two equations between (2) and (3) of our original article,

1+ 20

A= ———-Fd
(140)2
and o
v= ,
140
are to be replaced with the following two equations:
A= Fd
and
v=o.

This can be simply shown by writing Hooke’s law with negligible out-of-plane constraints (see, e.g., appendix A of
Marmottant et al., submitted to J. Acoust. Soc. Am.). It leads, for eq. (3)

2
v =12(1-1?%) (5) :
202

Another consequence is that [ — ﬁ} is to be replaced with [1 — ug] in the equations between eq. (6) and eq. (7).

Second group of corrections. Mean curvature and related bending constant have diverging definitions between mathe-
maticians/mechanicians on the one side, and the soft matter community (physics of vesicles) on the other side, which
imposes to be very clear about which convention is used. Equation (1) was written in the soft matter convention, where
mean curvature ¢ = R% + R% is the sum of the curvatures in the principal planes (and not the half-sum as considered
by mathematicians). With this convention, the spontaneous curvature value effectively taken for the simulations was
¢o = 2/R and not 1/R as written, which indeed corresponds to an initial constraint-free state.

# e-mail: Catherine.Quilliet@ujf-grenoble.fr
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A similar confusion between the conventions of the two communities led to miscalculate the values of v = A—RQ

effectively used in (still valid) simulations. All numerical values of v displayed in our paper have thus to be multlphed
by a factor 4.

As a consequence, the values of the corresponding tridimensional parameter % displayed in text and captions
have to be recalculated, using both the corrected equation (3) given in the previous paragraph of this erratum, and
the corrected value of . All simulations having been performed at v = 0.333, corrections may be done by simply

multiplying published values of % by a factor % = 0.577.
With these corrections, the two interpolating straight lines of fig. 10 have as equations: % = 67

A—VV = 3400~~1, respectively, for the first-order and for the secondary buckling.

—0-55 and
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