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Using grand canonical Monte Carlo simulations, we study the crystallization of colloidal hard spheres under
gravity. More specifically, we investigate the nature of the freezing transition as a function of gravity and
chemical potential of the hard spheres. We find a discontinuous freezing transition where several fluid layers
close to the bottom of the sample freeze simultaneously, i.e., at the same chemical potential. We also find that
the number of layers that freezes at the same chemical potential decreases for higher gravitational field
strength. Upon increasing the chemical potential further, the crystalline film thickness increases continuously.
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I. INTRODUCTION

The bulk phase behavior of hard spheres has been studied
in great detail and is well understood by now. In particular, it
was shown by computer simulations that such a system
shows a purely entropy-driven phase transition from a disor-
dered fluid phase to a face-centered-cubic �fcc� crystal phase
at sufficiently high densities �1�. Although the fcc phase is
the most stable phase, the free energy difference with respect
to the metastable hexagonal-close-packed �hcp� structure is
only very small and is on the order of 10−4kBT per particle at
the melting transition �2�. Here we define kB as Boltzmann’s
constant and T the temperature. The crystallization of hard
spheres at flat walls has also been the subject of many stud-
ies. It has been shown that a smooth hard wall causes pro-
nounced layering of the fluid phase at the wall, which can
lead eventually to prefreezing and complete wetting by the
hard-sphere crystal upon increasing the density towards bulk
coexistence �3–5�. Confining the hard-sphere system be-
tween two parallel hard walls leads to an intriguing sequence
of capillary freezing and capillary melting transitions upon
increasing the distance between the two walls and the forma-
tion of many different crystal structures such as square, tri-
angular, rhombic, buckling, and prism phases �6,7�. Prefreez-
ing or epitaxial crystal growth was also observed for walls
with a surface pattern that is similar in symmetry to one of
the crystal planes �8�. Using templates that are characteristic
for the hcp crystal structure, i.e., templates that induce the
ABAB stacking of the hexagonal layers perpendicular to the
wall, the hcp crystal, which is metastable in bulk, has been
grown experimentally in suspensions of colloidal particles
�9,10�. These suspensions can serve as excellent experimen-
tal realizations of the hard-sphere system as the effective
interactions of the colloids can be tuned in such a way that
the particles interact approximately as hard spheres. How-
ever, gravity is often non-negligible in colloidal suspensions,
as the gravitational energy becomes comparable to the ther-
mal energy for colloid sizes of about a micrometer. Hence, a
spatial inhomogeneous suspension is obtained due to the
gravitational field, which is characterized by a density profile
��z� that varies with altitude z. The parameter that is associ-
ated with a gravitational field is the so-called gravitational
length and reads � /�= ��mg��−1, where m is the effective or

buoyancy mass of the colloidal particles, �= �kBT�−1, � the
diameter of the colloids, and g the gravitational acceleration.
Typically, � /� is of the order of 10−1–103 for colloidal par-
ticles. The density profile ��z� follows from a competition
between minimal energy �all colloids at the bottom� and
maximum entropy �a homogeneous distribution in the avail-
able volume�. In the case of a very dilute colloid concentra-
tion or at high altitude, where the suspension becomes suffi-
ciently dilute, the system behaves similar to an ideal gas and
the system obeys the Boltzmann distribution, yielding an ex-
ponential density profile with a decay length given by �. In
1910, Perrin measured such a density profile under the mi-
croscope which enabled him to determine Boltzmann’s con-
stant and hence, Avogadro’s number �11�. However, when
the interactions become important, the density profile be-
comes highly nonexponential. Density profiles for hard
spheres have been calculated using density functional theory
and simulations �12–19�, and are measured by light scatter-
ing techniques �20,21� and confocal microscopy in suspen-
sions of colloidal hard spheres �22�. The measured concen-
tration profiles obtained from a single experiment or
simulation can be inverted to obtain the osmotic equation of
state over a whole range of densities �12,20,21,23�. Crystal-
lization in sedimentation profiles of hard spheres was studied
using Monte Carlo simulations and density functional theory
�13–17,19�. The simulations in Ref. �13� show a discontinu-
ous transition where two layers crystallize at the same gravi-
tational field strength. Upon increasing the gravitational field
further, the crystalline film grows continuously. However,
density functional theory predicts a discontinuous crystal
growth via layering transitions upon increasing gravity, in
contrast with the simulation results �13�.

In this paper we investigate in more detail the nature of
the freezing transition in suspensions of hard spheres as a
function of chemical potential while keeping the gravita-
tional field strength fixed. In Ref. �13�, crystallization was
studied as a function of gravity. However, in order to study
the phase behavior of colloids in an external field, it is more
convenient to treat the system grand canonically and to study
the freezing transition as a function of chemical potential for
a fixed value of the gravitational field strength �24�. More-
over, keeping the gravitational length of the particles fixed is
closer to the experimental situation as the experimental � is
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determined by system parameters that are often constant in
an experiment. To be more specific, � depends on the gravi-
tational acceleration, which is often equal to the value on
earth, and on the buoyancy mass m, which is related by
Archimedes’ principle to m=m0− �̃v with �̃ the mass density
of the solvent, m0 the bare mass of the colloidal particles,
and v the particle volume. Our results show a discontinuous
freezing transition where a number of layers freezes at the
same chemical potential. Upon increasing the chemical po-
tential further, the crystalline film thickness increases con-
tinuously. It is important to stress that Monte Carlo simula-
tions give only information about the equilibrium structure
and not on the crystallization kinetics. The paper is organized
as follows. In Sec. II we describe the model. In Sec. III, we
present our Monte Carlo simulation results and we end with
some concluding remarks in Sec. IV.

II. MODEL

We consider a system of hard spheres with diameter � in
a gravitational field oriented along the z direction. In addi-
tion, the spheres are confined between two smooth hard par-
allel walls at z=0 and z=H. The spheres are subjected to the
external potential:

��z� = �mgz , �/2 � z � H − �/2,

� , otherwise,
� �1�

where z is the vertical coordinate, g is the gravitational ac-
celeration, and m the buoyant mass of the hard spheres. The
height H is chosen such that the density at z=H−� /2 is
sufficiently small, i.e., ��3�10−6, and thus the system can
be considered to be infinite in the z direction. The lateral
dimensions of the box are Lx=9a0n and Ly =10a0n�3/2 with
n an integer. Note that the lateral dimensions of the simula-
tion box are nearly equal, which minimizes the finite-size
effects for the fluid phase and accommodates a hexagonal
crystalline layer �the �111� plane of a fcc crystal� with lattice
constant a0. We employ periodic boundary conditions in the
lateral dimensions and we use n=2 in our simulations.

III. RESULTS AND DISCUSSION

First, we perform Monte Carlo �MC� simulations in the
canonical ensemble, i.e., we fix the number of particles N
=2004, the area A�Lx�Ly =18a0�10�3a0 in the x and y
direction, and the height H of the box. Moreover, we fix the
strength of the gravitational field or the inverse gravitational
length g*�mg� /kBT= �� /��−1. The thermodynamic param-
eter that was defined in Ref. �13� is the mean area �A

*

�N�2 /A, which equals the number of particles per unit area
of the bottom of the sample. The pressure at the bottom of
the sample, i.e., at z=0, is directly related to �A

* , as the pres-
sure is determined by the gravitational force of all the
spheres per unit area, i.e., �P�z=0��3=g*�A

* . In our simula-
tions, we measure the dimensionless density profile

��z� =
1

A
	 	 dxdy��x,y,z� =

1

A
�
i=1

N

	�z − zi�� , �2�

where ��x ,y ,z� is the local density and the brackets denote
an ensemble average. It is well known that for any one-
component fluid near a hard wall, the contact density
���+ /2� satisfies the sum rule ���+ /2�=�P�z=0�. The start-
ing configurations that we use in our simulations consist of a
face-centered-cubic �fcc� crystal structure with the �111� axis
normal to the bottom of the sample and with varying lattice
constant a0. In Ref. �13�, the contact theorem was employed
to obtain the “correct” a0. These authors found that the sum
rule was only satisfied for a lattice constant a0=1.088�. In
Fig. 1, we plot the contact density ���+ /2��3 as a function of
a0 for g*=2 ,3, and 4. For comparison, we also plot �P�z
=0��3 denoted by the solid lines. Figure 1 shows that the
sum rule is satisfied for all values of the lattice constants we
considered, i.e., 1.04�a0 /��1.11. Hence, we are not able
to obtain the “correct” lattice constant by requiring consis-
tency of the bottom pressure with the contact density.

In order to solve this problem, we perform Monte Carlo
simulations in the grand-canonical ensemble, i.e., we fix the
chemical potential 
*��
−ln��3 /�3� and the volume of
the box. Due to particle removals and insertions in a grand-
canonical Monte Carlo simulation, the system equilibrates
more easily to the equilibrium crystal structure by relaxing
the stress and strain in the crystal and adapting the lattice
constant. Hence one does not have to estimate the equilib-
rium value for the lattice constant beforehand as in the case
of Monte Carlo simulations in the canonical ensemble.
Moreover, it proves more convenient to study phase behavior
in inhomogeneous systems in the grand-canonical ensemble
in order to ensure equal chemical potential in coexisting
phases �24�.

We perform grand-canonical Monte Carlo simulations for
varying values of gravity g*=1, 2, 3, and 4. The box shape is
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FIG. 1. The contact density ���+ /2��3 as a function of the lat-
tice constant a0 of the crystal at the bottom of the sample for vary-
ing gravity g*=mg� /kBT=2, 3, and 4. The error in the data is
smaller than the size of the symbols. The solid lines denote the
pressure at the bottom of the sample given by �P�z=0��3=g*�A

* ,
where �A

* �N�2 /A.
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set by a0=1.11 and n=2. We checked that simulation runs
with larger box sizes and different box shapes show the same
results within the statistical error. The crystal can adapt itself
to the “correct” lattice constant by changing slightly the crys-
tal orientation, as can be seen in Fig. 4. In each Monte Carlo
cycle we perform with a probability Pexch an attempt to
exchange a particle with an ideal reservoir and otherwise an
attempt to displace a particle. We use Pexch=0.5 or 0.9. The
maximum displacement in each direction was 0.1 if Pexch
=0.5 and 0.2 if Pexch=0.1. A simulation run consists of 1.6
�1010 �Pexch=0.1� or 8�109 �Pexch=0.5� MC cycles to ther-
malize the system and twice as many cycles for the produc-
tion runs to sample the statistical averages of interest. The
number of trial moves to displace a particle was always
larger than 8�105 per particle.

We study both crystallization and melting. In the first
case, the initial condition is a dilute cubic crystal which
melted within 106 MC cycles. We also start with an fcc crys-
tal phase to study melting. We checked that our simulation
results did not depend on the starting configuration. How-
ever, the equilibration of the system is about 10 times longer
near the freezing transition.

In Fig. 2, we show density profiles for hard spheres in a
gravitational field with strength g*=1, 2, 3, and 4. The pro-
files were averaged in bins of width 	z=0.01�. For each g*,
we show density profiles at 
*=14, at a value of 
* just
above the freezing transition of the first layer, and at 
*

=25. At 
*=14, we find density profiles of a liquid phase
with pronounced layering of the fluid phase at the lower
wall. Upon increasing 
* just above the value at the freezing
transition of the first fluid layer, we observe the formation of
crystalline layers at the bottom: ��z� drops to zero between
the density peaks close to the wall. At 
*=25, we find for all
g* the formation of several crystalline layers at the wall.
From Fig. 2 we observe that the number of crystalline layers
decreases upon increasing g* at fixed 
*. This trend is to be
expected since an infinite number of crystalline layers are
expected to be formed for zero gravity and a chemical po-
tential 
* fixed at its bulk value, i.e., 
coex

* =16.071.
We now take a closer look at the crystallization of the

fluid layers at the bottom wall. To this end, we measure the
hexagonal bond order parameter profile,

�6�z� =


�
i=1

N

�6,i	�z − zi��

�

i=1

N

	�z − zi�� . �3�

Here the hexagonal bond order parameter of particle i is
defined as

�6,i =
1

Ni
�
j=1

Ni

exp 6ıij , �4�

where the sum over j is over the Ni nearest neighbors of
particle i, ij is the angle between rij �ri−r j and some arbi-
trary axis in the horizontal plane, and ı �without dot� is the
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FIG. 2. Density profiles ��z� for hard spheres in a gravitational
field with strength g*=1 �top�, 2, 3, and 4 �bottom�. For each g*,
density profiles are shown for a fluid phase �
*=14, thick solid
line�, just above the freezing transition of the first layer �14�
*

�25, thin solid line�, and a fluid with crystalline layers at the bot-
tom �
*=25, dashed line�. The results are shifted vertically for
clarity of display.
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imaginary number. Particles i and j were considered nearest
neighbors when they satisfied xij

2 +yij
2 +4zij

2 � �1.3a0�2. Due to
the factor 4, this condition preferably selects nearest neigh-
bors, which lie within one layer.

Examples are plotted in Fig. 3 for the same state points as
in Fig. 2. For 
*=14, we find a flat hexagonal bond order
parameter profile, i.e., �6�z�=0 for all values of z. For a
value of 
* slightly above the freezing transition of the first
layer, we observe clearly that the first and second layers crys-
tallize at the same chemical potential for all values of g*

considered here. We also find a discontinuous jump in the
hexagonal bond order of the third layer at this chemical po-
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FIG. 3. Hexagonal bond order parameter profiles �6�z� for hard
spheres in a gravitational field. Profiles are shown for the same state
points as in Fig. 2. The results are shifted vertically for clarity of
display. For 
*=14, we find �6�z�=0.
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FIG. 4. Typical configurations of the third fluid layer in a system
of hard spheres in a gravitational field with strength g*=4. The
white rectangle denotes the horizontal box area. Some periodic im-
ages of the particles are shown as well.
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tential, although the jump is much smaller than that of the
first two layers. The jump in �6 of the third layer increases
upon decreasing g*. Upon increasing 
* further, the hexago-
nal bond order �6 of the nth layer with n�3 increases con-
tinuously within each layer. First, the layer is fluidlike, i.e.,
�6 is low. As 
* increases, we observe the presence of crys-
tallites, which merge and form a crystal with many defects
upon further increase of 
*. At very high chemical potential,
the defects will be annealed out, resulting in a high value of
�6. In Fig. 4, we show typical configurations of the third
layer of a fluid of hard spheres in a gravitational field with
strength g*=4 and increasing values of 
*.

The nth maximum of �6 is a measure for the crystalline
order in the nth layer. These maxima are plotted for the first
six layers in Fig. 5. Again our results suggest a discontinuous
freezing transition of the first two layers at the same chemi-
cal potential, and, upon increasing 
*, additional layers crys-
tallize continuously. We also observe a discontinuous jump
in �6 of the third layer at the same 
*. If we adopt the
criterion that a layer is crystalline if �6�zn��0.5 with zn the
nth local maximum of �6�z�, we can conclude that the num-
ber of layers that freeze at the same chemical potential equals
3 for g*=1 and 2 for g*=2, 3, and 4. Our results show that
the number of layers that crystallizes simultaneously, i.e., at
the same 
*, increases for decreasing g*. As already men-
tioned before, this finding can be explained by the fact that
an infinite number of crystalline layers will be formed at zero
gravity and at a chemical potential equal to its bulk value

coex

* . It is tempting to argue that for low g* three or more
layers will crystallize at the same 
*. A natural question to
ask is whether the first and second layers always crystallize
at the same 
*. To this end, we perform simulations at g*

=10. The resulting density profiles are plotted in Fig. 6. In
Fig. 7, we plot the maximum hexagonal bond order param-
eter for the first four layers as a function of 
*. Our results
indicate a first-order freezing transition of the first layer, and
a continuous freezing transition of the second and third lay-
ers at higher 
*. To summarize, we expect that the number of
layers that crystallizes simultaneously at the same chemical
potential with a first-order phase transition increases from 1
to � upon lowering the gravitational field strength.

In Fig. 8, we plot the freezing transitions for the first six
layers as a function of g* and 
* using our crystallinity cri-
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FIG. 5. The maximum hexagonal bond order parameter in the
nth layer as a function of chemical potential 
* for a system of
hard spheres in a gravitational field with strength g*=1, 2, 3, and 4.
The horizontal dashed line denotes our crystallinity criterion
�6�zn��0.5.
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FIG. 6. Density profiles ��z� for hard spheres in a gravitational
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terion �6�zn���0.5. The total chemical potential at height z
for a system of hard spheres in a gravitational field reads

*=
int

* �z�+g*z /�, where 
int
* �z� is the internal chemical po-

tential, i.e., the chemical potential the system would have, if
there is no external potential. One expects that the fluid at
height z crystallizes if 
int

* �z��
coex
* . In Fig. 8 we compare

our results for freezing of the first six layers with the esti-
mate that the nth layer crystallizes when


int
* �zn�� = 
* − g*zn�/� � 
coex

* , �5�

where we use that zn� is the z position of the �n−1�th local
minimum of ��z�, which corresponds to the minimum just
below the nth layer. For the freezing transition of the first
and second layers we use, however, that zn� is given by the
first local minimum, which lies in between the first and sec-
ond layers,

zn�/� = �1.0, n = 1,2,

0.9 � �n − 1� , n � 2.
� �6�

Note that the predictions are denoted by dashed lines for n
�2, corresponding to a continuous freezing transition, while
for n=1,2 the first-order freezing transition is denoted by a
solid line. As the simulation results for the freezing transition
of the different fluid layers agree well with these predictions,
we can conclude that the nth layer for n�2 is crystalline not
because the chemical potential at this height is higher than

coex

* , but because the chemical potential of the �n−1�th
layer is sufficiently high that this layer is fully crystalline.
This layer then acts as a template for the nth layer, resulting
in crystallization of this layer �28�.

For g*=10, Eq. �5� with z1� /�=1 as obtained from Eq. �6�
for n=1 predicts that the first layer freezes at a chemical
potential 
*=26.07. Figure 7 shows, however, that the crys-
tallization of the first layer occurs at 
*�24, which corre-
sponds to a height z1� /�=0.8. This is closer to the position of
the first layer itself, rather than the minimum between the
first and the second layers. Reassuringly, the crystallization
of the second layer does occur at 
*�26. Apparently, our
prediction �6� only holds for a phase transition from a fluid

phase to a stable ordered phase consisting of two crystalline
layers, while it fails for g*=10, where we observe a transi-
tion from a fluid phase to a phase with only one frozen layer.
Hence, one would also expect that if the freezing transition
involves a phase with three or more crystalline layers �at
g*�1�, the freezing transition occurs at a different 
* than
predicted by Eq. �6�. The value of 
* at the discontinuous
freezing transition will probably correspond to a �weighted�
average of all the layers that crystallize. However, the error
bars in Fig. 8 are too large to confirm this conjecture.

In order to compare our results to earlier work we calcu-
late the pressure at the bottom P0

*=�P�z=0��3 of the sample
and the pressure on the first layer P1

*=�P�z=z1���
3,

P0
* =

�N��2g*

A
�7�

and

P1
* =

��N − N1���2g*

A
, �8�

where N1 is the number of particles in the first layer. Table I
displays P0

* and P1
* at the freezing transition of the first �and

second� layer of our simulations. In Ref. �26�, it was argued

TABLE I. The pressure at the bottom P0
*=�P�z=0��3 and the

pressure on the first layer P1
*=�P�z=z1���

3 at the freezing transition
of the first layer for gravity g*=1, 2, 3, and 4. For comparison, we
also show results from experiments �22� and simulations �13�.

Expt. �22� Sim. �13� Our work

g* 1.2 2.625 1.0 2.0 3.0 4.0

P0
* 14.0 14.25 12.6 13.4 14.3 15.3

P1 — — 11.8�3� 11.6�2� 11.6�3� 11.5�1�
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FIG. 8. Phase diagram of the freezing transitions of the first six
layers as a function of 
* and g* as obtained from simulations
�symbols�. The lines denote our prediction for the freezing transi-
tions 
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* �zn���
coex
* =16.071 with zn� given by Eq. �6�. The solid

line denotes a first-order freezing transition, while the dashed lines
denote continuous transitions.
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that the first bottom layer will crystallize when �P�z
=� /2��3 reaches the bulk pressure at coexistence �Pcoex�

3

=11.56 �27�. However, we observe that P0
* depends on g*

and is always ��Pcoex�
3, while P1

* is independent of g* and
equals �Pcoex�

3 within the error bars. A similar result was
obtained using density functional theory and kinetic theory
�14,15�, where a linear behavior between �N��2 /A and g*

was found for the freezing transition. For comparison, we
also show P0

* for previous simulations �13� and experiments
�22�, which are in reasonable agreement with our simula-
tions.

Finally, we investigate the lattice constant of the bottom
layer as a function of 
* and g*. In our simulations, we
determine the lattice constant of the nth layer by

an =� 2A
�3�Nn�

, �9�

where we assumed a triangular symmetry for the crystal
layer and where �Nn� is the number of particles in layer n,
which is calculated by

�Nn� = A	
zn

zn−1

��z�dz . �10�

We plot in Fig. 9 the lattice constant of the first layer a1 as a
function of the chemical potential 
* for gravitational field
strengths g*=1, 2, 3, and 4. For comparison, we also plot the
lattice constant of a bulk crystal at 
* using Speedy’s equa-
tion of state �25�. We clearly observe in Fig. 9 that the simu-
lation results for a1 are much higher than those of the corre-
sponding bulk crystal. Upon closer inspection, we find that
the lattice constants an for n�1 are all equal to a1 within the
statistical error for all values of 
* and g* we considered.
This finding is remarkable as the pressure varies enormously
with height. As the lattice constants in all the layers are the
same, all layers must adjust to each other. Consequently, one
might expect that the lattice constant is determined by an
average over all layers which have a chemical potential

coex

* �
�
*,

ābulk�
*� =

	

coex

*


*

abulk�
�d



* − 
coex
* . �11�

Figure 9 shows that the agreement between the simulations
and this expression has been improved. However, this ex-
pression still underestimates the observed lattice constant
systematically. This effect is caused by “crystalline” layers
with a high �6, for which 
int�z��
coex

* . Ignoring these lay-
ers with a relatively low 
int�z� and hence a large lattice
constant of the corresponding bulk crystal underestimates
ābulk given by Eq. �11�.

IV. CONCLUSIONS

We have investigated the nature of the freezing transition
in sedimenting colloidal hard spheres. Our results provide
evidence for a first-order freezing transition where several
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FIG. 9. Lattice constant of the first layer a1 as function of the
chemical potential for varying gravities: g*=1,2 ,3 ,4 as obtained
from simulations ���. The dashed lines denote the lattice constant
of a bulk crystal at 
*, while the short-dashed lines show an aver-
aged lattice constant given by Eq. �11�.
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fluid layers close to the bottom of the sample freeze at the
same chemical potential. If the chemical potential is in-
creased further, additional fluid layers will solidify continu-
ously. We have determined a phase diagram of the freezing
transitions of the first six fluid layers as a function of chemi-
cal potential and gravity using computer simulations, and we
show that our simulation results agree well with a simple
prediction given by Eq. �5� with Eq. �6�. A better understand-
ing of the mechanisms of crystallization is important both for
a better insight in colloidal crystallization, as well as for

advanced applications. For instance, sedimentation is often
used as a method to grow large colloidal crystals for �photo-
nic� applications �29–34�. We also note that the solidification
of hard spheres under gravity has implications for granular
matter systems �14,15,26�.
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