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Abstract: We use digital holographic microscopy and Mie scattering
theory to simultaneously characterize and track individual colloidal parti-
cles. Each holographic snapshot provides enough information to measure
a colloidal sphere’s radius and refractive index to within 1%, and simulta-
neously to measure its three-dimensional position with nanometer in-plane
precision and 10 nanometer axial resolution.
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1. Introduction

In addition to their ubiquity in natural and industrial processes, colloidal particles have come to
be prized as building blocks for photonic and optoelectronic devices, as probes for biological
and macromolecular processes, and as model systems for fundamental studies of many-body
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physics. Many of these existing and emerging applications would benefit from more effective
methods for tracking colloidal particles’ motions in three dimensions. Others require better
ways to measure particles’ sizes and to characterize their optical properties, particularly if these
measurements can be performed on individual particles in situ.

This Article demonstrates that images obtained with in-line holographic microscopy [1, 2]
can be interpreted with Lorenz-Mie theory [3, 4] to obtain exceptionally precise measurements
of individual colloidal spheres’ dimensions and optical properties [5, 6] while simultaneously
tracking their three dimensional motions with nanometer-scale spatial resolution at video rates
[7]. This method works over the entire range of particle sizes and compositions for which Mie
scattering theory applies, and requires only a single calibration of the optical train’s magnifica-
tion. Unlike other light scattering techniques for measuring particle size [8] or refractive index,
holographic particle analysis can be applied directly to individual particles in heterogeneous
samples and also is compatible with scanned [9] and holographic [10] optical trapping.

2. Video holographic microscopy

Our holographic analysis instrument is based on a standard inverted optical microscope (Nikon
TE-2000U), with a collimated and attenuated HeNe laser (Uniphase 5 mW, λ = 0.632 μm)
replacing the conventional incandescent illuminator and condenser. As indicated schematically
in Fig. 1, light scattered by a particle propagates to the microscope’s focal plane, where it inter-
feres with the undiffracted portion of the beam. The resulting interference pattern is magnified
[1] by the microscope’s objective lens (Nikon 100× NA 1.4 oil immersion Plan-Apo) and video

beam

colloidal

beam
scattered

incident

hologram

sphere

E0(r)
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I(ρ)

z

λ

Fig. 1. Principle of holographic microscopy. A colloidal particle scatters a portion Es(r)
of an initially collimated laser beam E0(r). The scattered beam, here represented by 5
calculated iso-amplitude surfaces, interferes with the unscattered portion of the beam in
the focal plane of a microscope objective, thereby forming an in-line hologram, I(ρ).
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eyepiece (1.5×) onto the sensor of a grey-scale video camera (NEC TI-324AII). This system
provides a total magnification of 135± 1 nm/pixel over a 86× 65 μm 2 field of view. Images
are recorded as uncompressed digital video at 30 frames per second using a commercial digital
video recorder (Pioneer 520HS).

Analyzing these digitized holograms yields the particle’s three-dimensional position, r p,
its radius, a, and its index of refraction, n p. We assume that the incident field, E 0(r) =
u0(ρ) exp(ikz) ε̂ , is uniformly polarized in the ε̂ direction and varies slowly enough over the
size of the particle to be treated as a plane wave propagating along the ẑ direction. Its amplitude
u0(ρ) at position ρ = (x,y) in the plane z = zp of the particle is thus the same as its ampli-
tude in the focal plane, z = 0. The wave propagates along the ẑ direction with wave number
k = 2πnm/λ , where λ is the light’s wavelength in vacuum and nm is the refractive index of the
medium. For pure water at 25◦C, nm = 1.3326 at λ = 0.632 μm.

3. Fitting to Lorenz-Mie theory

The particle at rp scatters a portion of the incident field into a highly structured outgoing wave,
Es(r) = α exp(−ikzp)uo(rp) f s(r − rp), where α ≈ 1 accounts for variations in the illumina-
tion, and where f s(r) is the Lorenz-Mie scattering function [3, 4, 11], which depends on a, n p,
nm and λ . The scattered field generally covers a large enough area at the focal plane that the
interference pattern,

I(ρ) = |Es(r)+ E0(r)|2
∣
∣
∣
z=0

, (1)

is dominated by long-wavelength variations in |u 0(ρ)|2. The resulting distortions have been
characterized [12], but were not corrected in previous analyses of I(ρ) [5, 6, 7, 12, 13]. For-
tunately, |u0(ρ)|2 can be measured in an empty field of view, and the in-line hologram can be
normalized to obtain the undistorted image

B(ρ) ≡ I(ρ)
|u0(ρ)|2 = 1+

2ℜ{Es(r) ·E∗
0(r)}

|u0(ρ)|2 +
|Es(r)|2
|u0(ρ)|2 , (2)

on the plane z = 0. If we further assume that the phase of the collimated incident beam varies
slowly over the field of view, the normalized image is related to the calculated Mie scattering
pattern, f s(r), in the plane z = 0 by

B(ρ) ≈ 1+ 2α ℜ
{

f s(r− rp) · ε̂ e−ikzp
}

+ α2
∣
∣ f s(r− rp)

∣
∣2

. (3)

Equation (3) can be fit to measured holograms by treating the particle’s three-dimensional po-
sition, its radius and its refractive index as free parameters. Previous studies fit non-normalized
holograms to phenomenological models [6, 13, 14, 15, 16, 17] or Mie scattering theory [18]
for some of these quantities, but never all five. Because errors in the adjustable parameters are
strongly correlated, failing to optimize them all simultaneously yields inaccurate results. Fit-
ting instead to the full Lorenz-Mie theory [3, 4, 11, 12, 19, 20] provides more information with
greater precision.

Numerical fits to digitized and normalized holographic images were performed with the
Levenberg-Marquardt nonlinear least-squares minimization algorithm [21, 22, 23] using the
camera’s measured signal-to-noise ratio to estimate single-pixel errors. The χ 2 deviates for all
of the fits we report are of order unity, so that the calculated uncertainties in the fit parameters
accurately reflect their precision [21, 23, 24].

Because the laser’s wavelength and the medium’s refractive index are both known, the
only instrumental calibration is the overall magnification. This contrasts with other three-
dimensional particle tracking techniques [1, 2, 13, 25, 26, 27], which require independent cali-
brations for each type of particle, particularly to track particles in depth.
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Fig. 2. Fitting to normalized holograms. (a) Normalized hologram B(ρ), numerical fit to
Eq. (3), and azimuthally averaged radial profile B(ρ) for a 1.43 μm diameter polystyrene
sphere in water at zp = 22.7 μm. All scale bars indicate 10 μm. Curves in the radial profile
are obtained from experimental data, discrete points were obtained from the fit. (b) Data for
a 1.45 μm diameter TiO2 sphere dispersed in immersion oil (nm = 1.515) at zp = 7.0 μm
(c) Data for a 4.5 μm diameter SiO2 sphere in water at zp = 38.8 μm.

4. Tracking and characterizing colloidal spheres

The image in Fig. 2(a) shows the normalized hologram, B(ρ), for a polystyrene sulfate sphere
dispersed in water at height zp = 22.7 μm above the focal plane. This sphere was obtained
from a commercial sample with a nominal diameter of 2a = 1.48± 0.03 μm (Bangs Labs,
Lot PS04N/6064). The camera’s electronic shutter was set for an exposure time of 0.25 msec
to minimize blurring due to Brownian motion [28]. After normalizing the raw 8-bit digitized
images, each pixel contains roughly 5 significant bits of information. The numerical fit to B(ρ)
faithfully reproduces not just the position of the interference fringes, but also their magnitudes.
The quality of the fit may be judged from the azimuthal average; the solid curve is an angular
average about the center of B(ρ), the dashed curves indicate the standard deviations of the
average, and the discrete points are obtained from the fit.

The fit value for the radius, a = 0.73±0.01 μm, falls in the sample’s specified range, which
reflected a lower bound of 0.69±0.07 μm obtained with a Beckman Z2 Coulter Counter and an
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Fig. 3. Holographic tracking of a sedimenting colloidal silica sphere. (a) and (c) DHM
images of the sphere at the beginning and end of its trajectory, respectively. The scale bar
indicates 5 μm. (b) and (d) Fits to Eq. (3). (e) Three-dimensional trajectory with starting
point (circle) and end point (square) labeled. (f) z(t), showing thermal fluctuations about
uniform sedimentation. Inset: The fit refractive index is independent of position. (g) Mean-
square positional fluctuations display Einstein-Smoluchowsky scaling in x, y and z.

upper bound of 0.76±0.08 μm obtained by analytical centrifugation. Agreement between the
quoted and measured particle size suggests that the present measurement’s accuracy is com-
parable to its precision. In that case, both precision and accuracy surpass results previously
obtained [6] through analysis of I(ρ). The trajectory-averaged value for the refractive index,
np = 1.55± 0.03, also is consistent with the properties of polystyrene colloid inferred from
light scattering measurements on bulk dispersions [29].

Comparable precision in measuring a single particle’s refractive index has been achieved by
analyzing a colloidal particle’s dynamics in an optical trap [30]. This method only can be ap-
plied to particles with comparatively small refractive indexes, however, because particles with
relative refractive indexes greater than n p ≈ 1.3nm are difficult to trap. Holographic character-
ization, by contrast, requires only a single holographic snapshot rather than an extensive time
series, does not require optical trapping, and so does not require separate calibration of the trap,
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and is effective over a wider range of particle sizes and refractive indexes.
The corresponding data in Fig. 2(b) were obtained for a 1.45 μm diameter TiO 2 sphere at

zp = 7 μm above the focal plane. This sample was synthesized from titanium tetraethoxide
and was heat-treated to increase its density [31]. Strong forward scattering by such high-index
particles gives rise to imaging artifacts unless the medium is index matched to the cover slip.
Dispersing the particle in immersion oil (nm = 1.515) eliminates these artifacts, but introduces
spherical aberration for the lens we used, which must be corrected [32] to obtain reliable re-
sults. The fit diameter of 1.45± 0.03 μm and refractive index of 2.01± 0.05 are consistent
with results obtained by electron microscopy and bulk light scattering, respectively. This result
is noteworthy because no other single-particle characterization method works for such high
refractive indexes.

The data in Fig. 2(c) show results for a nominally 5 μm silica sphere (Bangs Labs, Lot
SS05N/4364) dispersed in water at z p = 38.8 μm above the focal plane. The fit refractive index,
np = 1.434±0.001, is appropriate for porous silica and the diameter, a = 4.51±0.01 μm agrees
with the 4.82±0.59 μm value obtained for this sample with a Beckman Z2 Coulter Counter.

The same fits resolve the particle’s position with a precision of 1 nm in-plane and 10 nm
along the optical axis. This substantially improves upon the typical 10 nm in-plane accuracy
obtained with standard particle tracking techniques with the same microscope and camera [25].
The difference can be ascribed to the larger number of pixels in a holographic image, and
to the images’ strong intensity gradients, which constrain the fits. The estimated 10 nm axial
resolution surpasses results obtained with morphometric axial particle tracking [1, 2, 25] by a
factor of ten.

Nanometer-scale tracking resolution can be obtained under conventional illumination, but
requires detailed calibrations for each particle [33]. Still better in-plane spatial resolution can
be obtained at much higher bandwidths through back-focal-plane interferometric methods [34],
but also require accurate calibrations with piezo translators. Total internal reflection microscopy
(TIRM) similarly offers sub-nanometer axial resolution [35, 36], but performs no better than
conventional imaging methods for in-plane tracking.

An additional benefit of holographic imaging over other particle-tracking techniques is its
very large depth of focus. Our system provides useful data over a range of more than 100 μm,
which contrasts with the ±3 μm useful depth of focus using conventional illumination [33] and
the 100 nm range of TIRM [35, 36].

Holographic video microscopy lends itself to three-dimensional particle tracking, as the data
in Fig. 3 demonstrate for a colloidal silica sphere (Bangs Labs, Lot SS04N/5252) dispersed in
water. This particle was lifted 30 μm above the focal plane with an optical tweezer, and then
released and allowed to sediment. The images in Fig. 3(a) and (c) show the particle near the
beginning of its trajectory and near the end. Fits to Eq. (3) are shown in Figs. 3(b) and (d).

The particle’s measured trajectory in 1/30 s intervals during 15 s of its descent is plotted in
Fig. 3(e). Its vertical position z(t), Fig. 3(f), displays fluctuations about a uniform sedimentation
speed, v = 1.021± 0.005 μm/s. This provides an estimate for the particle’s density through
ρp = ρm + 9ηv/(2a2g), where ρm = 0.997 g/cm3 is the density of water and η = 0.0105 P is
its viscosity at T = 21◦C, and where g = 9.8 m/s2 is the acceleration due to gravity. The fit value
for the particle’s radius, at a = 0.729±0.012 μm, remained constant as the particle settled. This
value is consistent with the manufacturer’s specified radius of 0.76±0.04 μm, measured with
a Beckman Z2 Coulter Counter. Accordingly, we obtain ρ p = 1.92± 0.02 g/cm3, which is a
few percent smaller than the manufacturer’s rating for the sample. However, the fit value for
the refractive index, n p = 1.430±0.007, also is 1.5% below the rated value, suggesting that the
particle is indeed less dense than specified.

The mean-square displacements, Δr2
j (τ) =

〈

(r j(t + τ)− r j(t))2
〉

, of the components of the
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particle’s position provide additional consistency checks. As the data in Fig. 3(g) show, fluc-
tuations in the trajectory’s individual Cartesian components agree with each other, and all
three display linear Einstein-Smoluchowsky scaling, Δr 2

j (τ) = 2Dτ , with a diffusion coeffi-
cient D = 0.33± 0.03 μm2/s. This is consistent with the anticipated Stokes-Einstein value,
D0 = kBT/(6πηa) = 0.30± 0.02 μm2/s, where kB is Boltzmann’s constant. Using the meth-
ods of Ref. [28], we then interpret the offsets obtained from linear fits to Δr 2

j (t) to be consistent
with no worse than 1 nm accuracy for in-plane positions and 10 nm for axial positions through-
out the trajectory. The optical characterization of the particle’s properties thus is consistent with
the particle’s measured dynamics.

5. Conclusions

We have successfully applied holographic characterization to colloidal spheres as small as
100 nm in diameter and as large as 10 μm. Unlike model-based analytical methods, fitting to
the exact Lorenz-Mie scattering theory is robust and reliable over a far wider range of particle
sizes, provided that care is taken to maintain numerical stability in calculating f s(r) [3, 19, 20].
Such numerical implementations have been reported for particles as small as a few nanometers
and as large as a few millimeters, with relative refractive index ratios from less than m = 0.1 to
over 10, and with large imaginary refractive indexes. In all cases, the instrumental magnification
and field of view must be selected to fit the sample.

The principal limitations of the six-parameter model in Eq. (3) are the assumptions that the
scatterer is homogeneous and isotropic, and that its interface is sharp. These assumptions can
be relaxed at the cost of increased complexity and reduced numerical robustness. For example,
analytical results are available for core-shell particles [3], and for particles with more complex
shapes [3, 11], such as ellipsoids, spherical clusters and cylindrical nanowires. All such elabo-
rations introduce adjustable parameters and thus are likely to pose computational challenges.

We have demonstrated that a single snapshot from an in-line holographic microscope can be
used to measure a colloidal sphere’s position and size with nanometer-scale resolution, and its
refractive index with precision typically surpassing 1 percent. A video stream of such images
therefore constitutes a powerful six-dimensional microscopy for soft-matter and biological sys-
tems. Holographic particle tracking is ideal for three-dimensional microrheology, for measuring
colloidal interactions and as force probes for biophysics. The methods we have described can
be applied to tracking large numbers of particles in the field of view simultaneously for highly
parallel measurements. Real-time implementations will be invaluable in such applications as
holographic assembly of photonic devices [37, 38]. Applied to more highly structured sam-
ples such as biological cells and colloidal heterostructures, they could be used as a basis for
cytometric analysis or combinatorial synthesis [39].
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