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Using confocal microscopy, we investigate the structure of binary mixtures of colloidal hard spheres
with size ratio q � 0:61. As a function of the packing fraction of the two particle species, we observe a
marked change of the dominant wavelength in the pair-correlation function. This behavior is in excellent
agreement with a recently predicted structural crossover in such mixtures. In addition, the repercussions of
structural crossover on the real-space structure of a binary fluid are analyzed. We suggest a relation
between crossover and the lateral extension of networks containing only equally-sized particles that are
connected by nearest-neighbor bonds. This is supported by Monte Carlo simulations which are performed
at different packing fractions and size ratios.
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Most systems in nature and technology are mixtures of
differently sized particles. Each distinct particle size in-
troduces another length scale, and its competition gives
rise to an exceedingly rich phenomenology in comparison
with single-component systems. Already, the simplest con-
ceivable multicomponent system, i.e., a binary mixture of
hard spheres, exhibits interesting and complex behavior.
Just a few examples include entropy driven formation of
binary crystals [1–3], frustrated crystal growth [4], the
Brazil nut effect [5], glass-formation [6,7], and entropic
selectivity in external fields [8]. Although interaction po-
tentials in atomic systems are more complex than those of
hard spheres, the principle of volume exclusion is ubiqui-
tous and thus always dominates the short-range order in
liquids [9]. Accordingly, hard spheres form one of the most
important and successful model systems in describing
fundamental properties of fluids and solids. It has been
demonstrated that many of their features can be directly
transferred to atomic systems where fundamental mecha-
nisms are often obstructed by additional material specific
effects [10]. Binary hard-sphere systems are fully charac-
terized by their size ratio q � �S=�B with�i the diameters
of the small (S) and big (B) spheres and the small and big
sphere packing fractions �S, �B, respectively.

The pair-correlation functions, gij�r�, are the central
measure of structure in fluids; they describe the probability
of finding a particle of size i at distance r from another
particle of size j. It is well known that all pair-correlation
functions in any (isotropic) fluid mixture with short-ranged
interactions (not just hard spheres) exhibit the same type of
asymptotic decay, which can be either purely (monotonic)
exponential or exponentially damped oscillatory [11] (and
references therein). This prediction, which is valid in all
dimensions [12] as well as for anisotropic pair interactions
[13], suggests that all pair-correlation functions decay with
a common wavelength and decay length in the asymptotic

regime r! 1. For binary hard-sphere mixtures where
�B � �S or �S � �B, this is rather obvious since the
system is dominated by either big or small particles. The
pair-correlation functions will asymptotically oscillate
with a wavelength determined either by �B (�B � �S)
or �S (�S � �B). Rather surprising is that the above
statement is also valid for all other relative packing frac-
tions where the system is not dominated by particles of a
single size [11,12]. Accordingly, the (�S, �B) phase dia-
gram is divided by a sharp crossover line where the decay
lengths of the contributions to gij�r� with the two wave-
lengths become identical. Below and above this line, how-
ever, the asymptotic oscillation of the pair-correlation
function is either determined by the diameter of the small
spheres or that of the big spheres [14]. For long-ranged
interparticle interactions, one would expect similar behav-
ior at intermediate separations [15], but no true structural
crossover in the asymptotic regime.

Despite the generic character of structural crossover and
the close relationship between structural and mechanical
properties, this effect has not been observed in experiments
as the asymptotic behavior is difficult to observe in scat-
tering experiments on atomic and molecular liquids.
However, recent calculations suggest that structural cross-
over is already detectable at relatively small distances [12].
Because colloidal particles are directly accessible in real
space, such systems provide an opportunity to explore the
structure of binary fluids and to investigate structural cross-
over experimentally.

As colloidal suspension, we used an aqueous binary
mixture of small melamin particles (�S � 2:9 �m) and
big polystyrene spheres (�B � 4:8 �m). Addition of salt
screens residual electrostatic interactions thus leading to an
effective hard-sphere system. Since melamin has a higher
mass density (1:51 g=cm3) than polystyrene (1:05 g=cm3),
the sedimentation velocities are similar and, hence, we
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obtain a homogeneous system after mixing. The suspen-
sion was contained in a cylindrical sample cell with a silica
bottom plate to allow optical imaging with an inverted
confocal microscope in reflection mode (Leica TCS
SP2). From the images, particle positions were obtained
as described in Ref. [16]. Strong layering at the bottom
wall allowed us to image only the first two-dimensional
bottom layer of the three-dimensional system. We define
the packing fraction as �i � ��2

i �i=4, with �i the number
density of component i. Variation of the relative packing
fractions of the particles was achieved by addition of small
particles to a suspension of big spheres (Fig. 1). Thus, the
total packing fraction in the two-dimensional bottom layer
remains constant for all samples: � � 0:72. In the follow-
ing, we will refer to the different samples by the sample
numbers (No.) as given in Fig. 1.

Typical snapshots of the system for different packing
fractions of big and small particles are shown in Figs. 2(a)–
2(c). The images demonstrate how the structure of the
bottom layer changes from being rich in big particles
(No. 1, Fig. 2(a)) to being rich in small particles (No. 10,
Fig. 2(c)). Figure 2(b) (No. 5) corresponds to about the
same number density of small and big spheres. In order to
analyze the samples for a possible structural crossover, we
calculated the pair-correlation function from the deter-
mined particle positions. To minimize statistical noise,
we did not distinguish between big and small spheres.
This is justified because the crossover has been predicted
to be visible in all pair-correlation functions and thus also
in any linear combination [11,12]. The dominating wave-
length in the oscillations is identified by computing the
total correlation function htot�r� �

P
i;jxixjhij�r� �P

ijxixj�gij�r� � 1�, with the mole fraction xi � �i=
P
i�i

of component i [12]. Figure 2(d) exemplarily shows

lnjhtot�r�j for samples No. 1, 5, and 9. Note that in this
representation, the oscillation wavelength is halved. The
correlation functions of samples No. 1 and 9 clearly oscil-
late with a single wavelength, respectively, given by
� �B=2 and � �S=2. In contrast, sample 5 does not
show a dominating wavelength but an interference of
different length scales which is typical near the structural
crossover. It is important to mention that this intermediate
behavior is only observed for samples Nos. 5 and 6, i.e.,
only for about 10% of the entire range over which �B and
�S was varied. The experimentally identified crossover
region is in excellent agreement with the theoretically
calculated value of �S � 0:3 at those size ratios, which
were determined from the decay of the pair-correlation

 

FIG. 1. Different paths with constant total packing fraction
� � �S 	 �B in the (�S, �B)-plane. Experimental data (open
symbols: � � 0:72, q � 0:61) are sorted into ten bins. The bin
size is indicated by the ‘‘error bars.’’ Closed symbols correspond
to the MC-simulations (solid triangle: � � 0:62, q � 0:4) and
(solid circle: � � 0:57, q � 0:5). For convenience, all samples
are labeled with numbers increasing in the direction indicated by
the arrows.

 

FIG. 2 (color online). (a–c) Typical snapshots of the bottom
layer of a binary mixture observed with a confocal microscope
used in reflection mode. The mixtures correspond to sample 1
(a), 5 (b), and 10 (c). The field of view is 40
 40 �m2.
(d) Logarithmic plot of the total correlation functions htot�r�
for the experimental binary mixtures with � � 0:72� 0:04.
Correlation functions are plotted for sample numbers 1, 5 and
9 (compare Fig. 1) and are shifted in vertical direction for clarity.
The horizontal bars correspond to �B=2 and �S=2, respectively.
(e) Fourier-transforms of htot�r� for the experimental data points
(compare Fig. 1). Vertical lines indicate the wave vectors k
corresponding to the diameters of the small (S) and big particles
(B), respectively.
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functions calculated within density functional theory in the
test particle limit [17]. Figure 2(e) shows the Fourier trans-
forms of htot�r� for all samples where the rather sudden
change of the dominating wavelength is seen more clearly
[18]. At small and high packing fractions, the correlations
are clearly dominated by frequencies corresponding to
either small or large particles (vertical lines) while around
sample No. 5, hardly any dominating frequency is ob-
served. This experimentally confirms structural crossover
as well as its occurrence at intermediate particle distances.

So far, structural crossover has been discussed in terms
of pair-correlation functions, i.e., spatially averaged quan-
tities. Since our experiments naturally provide detailed
structural information, we investigate what the repercus-
sions are of the structural crossover on the instantaneous
real-space structure. We first subjected a Delaunay trian-
gulation, which can easily be generalized to three dimen-
sions, to the set of particle centers and identified nearest-
neighbor bonds between big-big (black), big-small (yel-
low), and small-small (red) particles, respectively (see
Fig. 3). As observed in Fig. 3, sample 1 predominantly
consists of big-big bonds which form a large network
spreading across the entire field of view. With increasing
sample No., i.e., increasing �S, the number of small-small
bonds increases, which leads to fragmentation of the big-
big network into smaller, randomly distributed patches. At
large sample numbers, the role of big and small particles is
inverted and small-small bonds form a network spanning
the entire area (No. 10). Having distinguished between
different bond-types, a natural and well-known measure
of the spatial extend of a network formed by ni particles of
size i at positions ~xik (k � 1; . . . ; ni) is given by the radius

of gyration Rig �
��������������������������������������
1
ni
Pni
k�1� ~x

i
k �

~Ri0�
2

q
, with ~Ri0 the cen-

troid position of the network. Computing this quantity

for all, say Ni
C, networks formed by connected particles

of size finally yields a weighted averaged radius of gyra-

tion hRigi �
1
Ni

PNi
C

m�1 ni�m�R
i
g�m� where Ni denotes the

total number of particles i. We calculated hRigi for networks
consisting of connected big or small particles and plotted
these values for our experimental data in Fig. 4(a) as a
function of the sample number. At small and high sample
numbers, the quantities saturate while a relatively sharp
transition with an intersection point occurs around sample
6. This location is indeed in very good agreement with the
crossover transition as determined from the correlation
functions in Fig. 2 and density functional theory (also
indicated in Fig. 4(a)). This suggests that the structural
crossover corresponds to a competition between the sizes
of networks consisting of connected big or small particles,
respectively.

As structural crossover is also predicted for other size
ratios and packing fractions, we use Monte Carlo (MC)
simulations to test our findings for more dilute systems
with size ratios q � 0:5 (� � 0:57) and q � 0:4 (� �
0:62). The corresponding paths through the phase diagram
(see closed symbols in Fig. 1) were obtained from 2-
dimensional simulations with a fixed number of particles
of about 0<N < 3000 for both species and box areas of
about 1500�2

B employing periodic boundary conditions.
From the configurational snapshots, we first determined
the region of crossover by analyzing htot�r� (the correlation
functions are sampled using 104 MC cycles per particle).
Then, we performed the above described Delaunay trian-
gulation to calculate hRigi for networks of connected big or
small particles, respectively. The corresponding radii of
gyration are plotted in Figs. 4(b) and 4(c) and show a
similar behavior as in the experiment. Again, the intersec-
tion points are consistent with the crossover region as

 

FIG. 3 (color). Visualization of the different bond-types as determined by a Delaunay triangulation: big-big (black), big-small
(yellow), and small-small (red). Different plots correspond to the sample numbers as indicated in Fig. 1. The field of view is 180

180 �m2.
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inferred from the correlation functions and DFT calcula-
tions. Note that the crossover region sensitively depends on
the size ratio and packing fractions. Both the experiment
and Monte Carlo simulations show that structural cross-
over is accompanied by a pronounced change in the typical
size of networks consisting of connected big and small
particles. By introducing small particles into a system of
big spheres, connections between big particles are broken
and, at the same time, connections between small particles
are made. Additional calculations suggest that the system
segregates into networks consisting either of big or small
particles due to the competition between the free volume
and configurational entropy. For our system parameters,
this effect is too weak to drive a phase separation but has a
profound influence on the real-space structure of the sys-
tem. This sensitively affects the typical size of networks
containing connected, equally-sized particles and thereby
the chance of finding another particle with the same size at
a relatively large distance. Consequently, the change from
hRBg i> hR

S
gi to hRSgi> hRBg i (and vice versa) provides a

simple real-space argument why the oscillation wavelength
of the asymptotic behavior of gij�r� is either set by �B or
�S.

We have experimentally demonstrated the structural
crossover in a binary colloidal hard-sphere system.
Furthermore, we show that structural crossover is strongly
coupled to the size of networks containing connected
equally-sized particles only. Going across the structural
crossover, the size ratio of such networks comprised by
either connected big or small particles is reversed. We
believe this real-space configurational picture of structural
crossover is not just applicable to binary hard spheres, as

structural crossover is a generic feature of mixtures with
competing length scales. Moreover, it shows interesting
similarities with force chains in granular matter [19] and
glassy systems [6,7,20] of dissimilar sized particles.
Therefore, our finding may help to gain more insight into
structure-related properties in binary systems at an univer-
sal level.
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FIG. 4. Averaged radii of gyration hRigi (normalized to L=2
with L2 the field of view) of networks formed by large (solid
symbols) and small particles (open symbols) as a function of the
sample number for (a) the experimental data, (b) the MC-
simulations at � � 0:57 and q � 0:5 and, (c) the MC-
simulations at � � 0:62 and q � 0:4. The corresponding pack-
ing fraction of small particles �S is indicated as well. The gray
area and the dashed line, respectively, indicate the crossover as
inferred from the correlation functions and from density func-
tional theory.
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