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Abstract
We study the sedimentation equilibrium of low salt suspensions of binary
mixtures of charged colloids, both by Monte Carlo simulations of an effective
colloids-only system and by Poisson–Boltzmann theory of a colloid–ion
mixture. We show that the theoretically predicted lifting and layering effect,
which involves the entropy of the screening ions and a spontaneous macroscopic
electric field (Zwanikken and van Roij 2005 Europhys. Lett. 71 480), can also
be understood on the basis of an effective colloid-only system with pairwise
screened-Coulomb interactions. We consider, by theory and by simulation,
both repelling like-charged colloids and attracting oppositely charged colloids,
and we find a re-entrant lifting and layering phenomenon when the charge ratio
of the colloids varies from large positive through zero to large negative values.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Suspensions of charged colloids are multicomponent mixtures of mesoscopic (colloidal)
particles and microscopic cations, anions, and solvent molecules. Due to the large size
asymmetry and charge asymmetry between the colloids on the one hand and the microscopic
species on the other, it is often difficult to treat all species on an equal footing in descriptions of
for example the thermodynamic equilibrium properties of these systems. Given the asymmetry
it is natural, and often practical, to view colloidal suspensions as ‘colloids-only’ systems
described by effective colloidal interactions in which the presence of the microscopic particles
appear only through medium properties such as the dielectric constant ε and the Debye
screening length κ−1. For bulk systems in equilibrium one can in fact prove (by formally
integrating out all the microscopic degrees of freedom in the partition function in a fixed
colloid configuration) that such a course-grained description yields the exact thermodynamics;
the problem is of course to actually perform the integration explicitly. Within linear screening
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theory it is possible to integrate out the ionic degrees of freedom explicitly, and the resulting
effective colloid pair interactions are of the screened-Coulomb form ∝ exp(−κr)/r , with r
the centre-to-centre distance between the colloidal pair [1]. Descriptions of suspensions of
charged colloids on the basis of this effective pair potential have often been used over the years;
see e.g. [2, 3] for a few examples related to crystallization of charged colloids, and [4] for a
sedimentation study.

However, in recent studies of sedimentation equilibrium of charged colloids at extremely
low salinity this effective ‘colloids-only’ view was not taken. Instead the experiments [5–8],
theory [9–14], and simulations [15] of sedimentation equilibrium were essentially all analysed
within the so-called primitive model, in which the colloids and ions are treated as charged
massive hard spheres and charged massless point particles, respectively, while the solvent is
treated as a continuum with dielectric constant ε. These studies have shown the existence of a
spontaneously formed macroscopic electric field that lifts the colloids to much higher altitudes
than to be expected on the basis of their mass. This electric field is the result of the competition
between entropy (favouring a homogeneous fluid), electrostatics (favouring local neutrality),
and gravitational energy (favouring the colloids at the bottom, but not the cations or anions
because they are essentially massless) [13]. At high salt concentrations local neutrality can
easily be fulfilled at low entropic cost because of the large number of ions, and hence the
competition is the usual one between colloid entropy and gravity, giving rise to a barometric
distribution at low packing fractions. At low salinity the situation is more complicated, since
fulfilling local neutrality would imply, when the colloids are all close to the bottom because of
gravity, that a large fraction of the counterions must also be close to the bottom. Such a state has
a low ion entropy, because the ion distribution is far from homogeneous. It turns out, according
to theories of for example [9, 13], that the state with the lowest grand potential spontaneously
sacrifices local neutrality at the bottom and at the meniscus, such that an electric field is
generated that lifts the colloids upwards at the expense of gravitational energy, such that the
colloids and the counterions can be rather homogeneously distributed over the available volume,
thereby increasing their entropy. For colloids with buoyant mass m and charge Ze the generated
electric field strength was shown to be E � mg/Ze at low enough salt concentrations, such
that the upward electric force ZeE and the downward gravitational force mg essentially cancel
each other, leading to almost homogeneously distributed colloids. Here g is the gravitational
acceleration, and e the proton charge. This lift mechanism involving a macroscopic electric
field was confirmed by primitive model simulations of colloids and explicit ions [15], and by
a direct measurement of the potential difference between the bottom and the meniscus [7].
Moreover, quantitative agreement was found between the measured density profiles and the
theoretically calculated ones in [8], while the measured profiles of [6, 7] agree with the theory
of [14] which involves the electric field mechanism combined with charge regularization.

It is at first sight not at all obvious that these phenomena, which involve charge separation
and macroscopic electric fields, can be described within the framework of the effective colloids-
only picture. After all, in this picture the presence of anions and cations is only accounted for
in the screening length κ−1 that determines the range of the effective pairwise interactions.
However, the theoretical study of [13] showed that hydrostatic equilibrium between the external
gravity field and the internal (osmotic) pressure of the effective colloids-only system (described
by the simple and crude Donnan equation of state in [13]), actually predicts the existence of the
electric field and the lift effect at low salinity, despite the underlying local density (and hence
local neutrality) approximation. The predicted density profile is linear with height [13], not
unlike those predicted by a density functional treatment of an effective colloids-only system
with screened-Coulomb interactions [4]. Recently other accurate osmotic equations of state
were employed and revealed the lift effect [16, 17], and in fact [17] shows that the colloid
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density profile that was experimentally measured and quantitatively described in terms of
the primitive model in [8] can also be described quantitatively by a colloids-only theory
with screened-Coulomb interactions. The inconsistency of a theory based on local charge
neutrality that predicts an electric field without explaining its sources does not, apparently,
lead to erroneous predictions for the density profile, at least not for monodisperse suspensions
at the parameters considered.

The question we address in this paper is whether the ‘colloids-only’ picture can also
account for the very recently predicted layering and segregation phenomena in equilibrium
sediments of binary mixtures of charged colloids at low salinity [18–20]. These studies are
actually direct extensions of the primitive model discussed before, but now with two (or
more) colloidal components with different charges and masses. Not only was the lifting effect
recovered in [18–20], but in addition segregation into layers was found, such that the two
colloidal species order with height according to mass-per-charge: the colloids with the lowest
mass-per-charge are found at higher altitudes. This implies the possibility of an inversion
phenomenon, whereby sufficiently highly charged heavy colloids float on top of lighter colloids
with a lower charge [18–20]. In terms of the electric field this phenomenon can be understood,
at least qualitatively, by first considering a pure system of colloidal species with mass m1 and
charge Z1e, such that the electric field strength is E � m1g/Z1e according to [13]. Adding a
trace amount of colloids with mass m2 and charge Z2e does not change the field strength E ,
and hence the upward force Z2eE on the colloids of species 2 exceeds the downward force
m2g provided m2/Z2 < m1/Z1. In other words, if the mass-per-charge of the tracer species
2 is smaller than that of species 1, the former will float on top of the latter, even if m2 > m1.
In the case that both colloidal species are present in substantial amounts, the segregation into
layers was found with electric field strengths Ei ≈ mi g/Zi e in the layer with species i [19].
This implies a finite, nonzero charge density in the crossover regime from one layer to another,
as observed in [19]. The question we address in this paper is whether hydrostatic equilibrium
(based on a local density and neutrality assumption) in a colloids-only system with screened-
Coulomb interactions can catch this layering phenomenon.

There is, in addition, a second motivation for our present study. It stems from recent
experimental progress in preparing binary mixtures with oppositely charged colloids that do
not aggregate but form equilibrium crystals [3]. It is of fundamental interest to investigate
the consequence of opposite charges in the equilibrium sediment, in particular when there is a
substantial mass difference between the two colloidal species: to what extent does the lighter
species then lift the heavier one, and to what extent does segregation into layers take place? We
therefore present not only results for colloidal mixtures with the same charge sign (Z1 Z2 > 0),
but also with a different sign (Z1 Z2 < 0). Sedimentation in this latter parameter regime has,
to the best of our knowledge, not been studied at all yet. We compare the results of computer
simulations of the effective colloids-only system with theoretical calculations based on the
Poisson–Boltzmann theory of [19].

This paper is organized as follows. In section 2 we present the model of the suspension,and
discuss it viewed as either a mixture of colloids and ions as in [19] or as an effective colloids-
only system that we simulate. In section 3 we present the resulting equilibrium density profiles,
and section 4 is devoted to a discussion.

2. One model and two theories

In this section we introduce the details and the notation of our model of a binary mixture of
charged colloids that we use in this paper, and discuss two alternative ways of describing the
equilibrium density profiles in sedimentation equilibrium.
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We denote the (fixed) colloidal charges, radii, and buoyant masses by Zi e, ai , and mi

for the two species i = 1, 2, and assume that the charge is homogeneously distributed on the
colloidal surface. The solvent is a continuum with dielectric constant ε at temperature T , and
the solvent volume is V = AH with A the (thermodynamically large) area in the horizontal
plane and H the vertical height between the bottom of the sample (at height x = 0) and the
meniscus (at height x = H ). The gravitational force points in the negative vertical direction,
such that the potential energy of a colloid of species i at height x is given by mi gx , with g
the gravitational acceleration. It is convenient to introduce the so-called gravitational length
Li = kBT/mi g, which is the characteristic length scale of the barometric density distribution
that holds in the dilute limit.

The density profiles and the number of colloidal particles in the sample are denoted by
ρi (x) and Ni , respectively, for species i = 1, 2. We will also use the packing fraction profile
ηi (x) = (4π/3)a3

i ρi (x), and we characterize the density of the suspension by the overall

packing fractions η̄i = (4π/3)a3
i Ni/V = (1/H )

∫ H
0 dx ηi (x). The average height of species

i , or its centre-of-mass, is defined as

hi =
∫ H

0 dx ρi (x)x
∫ H

0 dx ρi(x)
, (1)

which can be seen as a rough indication of the nature of the colloidal profile.
The suspension is imagined to be in osmotic contact with a reservoir of massless,

monovalent cations and anions of charge ±e, with a total ion density 2ρs , such that the Debye
screening length (in the reservoir) is κ−1 = (8πλBρs)

−1/2, whereλB = e2/εkBT is the Bjerrum
length of the medium. Here kB denotes the Boltzmann constant.

In the present calculations we restrict attention to spheres of equal radius, and we denote
the (common) diameter of the spheres by 2a1 = 2a2 ≡ σ .

2.1. Poisson–Boltzmann theory for the colloid–ion mixture

It was shown in [19] that this system can be described by five coupled nonlinear equations
for the following five unknown profiles: the colloid densities ρ1(x) and ρ2(x), the two ion
densities ρ±(x) for the cations (+) and anions (−), and the electrostatic potential ψ(x) or
its dimensionless form φ(x) = eψ(x)/kBT . Two relations are given by the Boltzmann
distributions ρ±(x) = ρs exp[∓φ(x)] for the ions, while the other three relations are a
Boltzmann distribution for the colloidal densities and the Poisson equation for the potential,
namely

ρi (x) = ci exp

(

− x

Li
− Ziφ(x)

)

(i = 1, 2);
φ′′(x) = κ2 sinh φ(x)− 4πλB

(
Z1ρ1(x) + Z2ρ2(x)

)
,

(2)

where a prime denotes a derivative with respect to x , and where ci represent normalization
constants such that A

∫ H
0 dx ρi (x) = Ni . We impose boundary conditionsφ′(0) = φ′(H ) = 0,

which corresponds to a globally charge neutral system without any external electric field.
This set of five equations follows directly from the minimum condition on a grand potential
functional that only involves ideal-gas contributions for all four species, a potential energy of
the colloids due to their mass, and a Coulomb energy treated at a mean-field level [19]. It
is straightforward to solve this set numerically on an x-grid; for details see [19]. From the
solution for φ(x) the magnitude of the electric field follows as (kBT/e)φ′(x).

We note that these five equations are independent of the hard-core radii ai of the colloids,
i.e. the short-range part of the (direct) correlations are not taken into account. As a consequence
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this level of approximation is not capable of describing packing effects properly. The radii ai

are therefore only used to convert ρi (x) to ηi (x). Despite this shortcoming the present theory
agrees quantitatively with the primitive model simulations of [18, 21].

2.2. The colloids-only theory

The Poisson–Boltzmann theory for the colloid–ion mixture differs, at least at first sight,
substantially from a description of charged colloids based on the idea that colloids interact
with each other through effective interactions that depend on the solvent properties such as the
dielectric constant ε, the Debye screening length κ−1, and the temperature T . Standard linear
screening theory [1] predicts that two colloids with charges Zi e and Z j e and radii ai and a j ,
separated by a distance r , interact with the pair potential Vi j(r) given by

Vi j(r)

kBT
= Zi Z jλB

(
exp(κai)

1 + κai

) (
exp(κa j)

1 + κa j

)
exp(−κr)

r
, (3)

with the Boltzmann constant kB and the Bjerrum length λB = e2/εkBT as already introduced
above. Here we ignore the attractive dispersion forces. Within this effective ‘colloids-only’
description the presence of salt ions (with a concentration 2ρs in the reservoir) is entirely
included through the screening length κ−1. We assume throughout that the screening length in
the colloidal interactions is independent of the colloid concentration. Ignoring the counterion
contribution to κ will turn out to be entirely justified for all cases we study in this paper:
the ratio y(x) ≡ ∑2

i=1 Ziρi(x)/2ρs is always such that |y(x)| � 1, i.e. the background
electrolyte dominates the screening. Typically we find |y(x)| � 0.01–0.2, and since the
effective screening parameter can be written as κ−1(1 + y2)−1/4 according to the Donnan-like
theory of for example [22, 23], provided the packing fraction is not too high, we find with
(1 + y2)−1/4 � 1 − y2/4 that the effective screening length differs from the reservoir value
κ−1 by at most one per cent.

The effective ‘colloids-only’ description based on equation (3) has proved to be very
successful in describing many facets of colloid science; for example, in the case of
monodisperse suspensions it explains freezing into fcc and bcc crystals at sufficiently high
densities [2], and it was recently used to describe crystal structures of oppositely charged
colloids successfully [3].

In this paper we use equation (3) in Monte Carlo simulations in a box of dimensions
K × K × H , with K 2 = A the horizontal area. In all cases the vertical box height was taken
to be H = 109σ , and the lateral width K = 10σ . We checked that K was large enough
to exclude finite size effects. We employed periodic boundary conditions in the horizontal
directions; in the vertical direction the system is bounded by hard walls that exclude the centre
of colloids at heights x < 0 and x > H .

3. Results

3.1. Heavy colloids

We first consider binary mixtures of equal-sized colloids with a diameter σ = 1950 nm, a
Bjerrum length λB = 10.4 nm, and screening constant such that κσ = 1.2. This corresponds
to a salt concentration ρs = 2.4 nM in the reservoir. In addition, we fix the colloidal charge of
species 1 to Z1 = 76, and the gravitational length of species 1 to L1 = 2.5σ . These numerical
values, which correspond to the experimental system of [8], give rise to an effective contact
potential between the colloids of species 1 given by V11(σ ) = 12 kBT . The mass of species 2
is taken to be larger than that of species 1, by a factor of 2, such that L2 = 1.25σ .
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In figure 1 we plot the colloidal density profiles for three equimolar suspensions, with
average packing fractions η̄1 = η̄2 = 0.005, for three values of the charge of species 2 given
by (a) Z2 = 300, (b) Z2 = 0, and (c) Z2 = −300. The box height is in all cases H = 109σ .
Case (a), for which Z2 L2 > Z1L1, shows a layer of the heavier species 2 floating on top of a
layer of primarily species 1, both from the theory based on equations (2) [18, 19], and from
the colloids-only simulations using equation (3). The agreement between the theory and the
simulations is quantitatively reasonable though not perfect. In particular the packing effects
shown by the simulations at length scales of the order of a few σ close to the hard walls of the
container are not reproduced by the theory, and the lifting effect for species 2 as predicted by
the theory is quite a bit stronger than that found in the simulations. Nevertheless it is a striking
observation that the colloids-only picture is capable of describing the layering phenomenon
without invoking explicitly a selfconsistent electric field. Case (b), where Z2 = 0 such that
it represents a mixture of charged and uncharged colloids, shows a clear lifting effect for
species 1, both from the theory and the simulations. The theoretical prediction for species
2 is a barometric distribution, which is bound to fail quantitatively in comparison with the
simulations given the high packing fraction up to 0.5 at the bottom, which causes hard-sphere-
like density oscillations of species 1 close to the bottom in the simulations. Case (c) is for
oppositely charged colloids, and shows again a lifting and layering effect, whereby a layer of
the heavier species 2 floats onto a rather dense layer at x � 15σ , both in the simulations and in
the theory. Ignoring the density oscillations on a length scale of a few σ in this bottom layer,
the densities take the almost constant values η1(x) � 0.035 and η2(x) � 0.018, i.e. there is
no large systematic decay and the ratio of the two densities does not correspond to |Z1/Z2|.
In fact, the agreement between theory and simulations in (c) is much less satisfactory than
in the cases (a) and (b): not only are the packing effects in the bottom layer not captured
by the theory (as before), but also the ‘smoothed’ simulated profiles differ substantially from
the theoretically predicted ones. We expect this to be caused by the strong correlations that
build up between attracting pairs of oppositely charged colloids, with a contact potential of
V12(σ ) = −47.5 kBT , and between the repelling pairs of species 2 with a contact potential
V22(σ ) = 187 kBT . These correlations are not at all included in the theory. We checked
explicitly that the bottom phase in the simulations is fluid and not crystalline.

An interesting observation that can be made on the basis of figure 1 is that species 2 floats
onto a relatively dense layer (with an almost constant composition) if Z2 = ±300, while
species 1 floats onto a denser layer if Z2 = 0. We can quantify this re-entrant layering effect
by studying the average height hi as defined in equation (1) as a function of Z2, keeping
Z1 and all the other parameters fixed. The result is shown in figure 2, and confirms the
re-entrant phenomenon. It shows overall agreement between theory and simulation for all
Z2/Z1, although the agreement is substantially better for like-charged colloids (Z2 > 0) than
for opposite colloids (Z2 < 0). For Z2/Z1 � 2 the theory overestimates the lifting effect
for the heavier particles and underestimates it for the lighter particles, in comparison with
the simulations. For Z2/Z1 � −1 the theory predicts an essentially barometric distribution
for the lighter species (with a lower absolute charge), whereas the simulations still show a
considerable lift effect for species 1 in this regime, probably because they are correlated due
to the attractions of the highly charged heavier colloids that float on top of them; this effect is
poorly caught within the present theory. Note that for the equimolar case considered here the
theory predicts h1 = h2 for Z1 L1 = Z2 L2 (i.e. for Z2/Z1 = 2 here) and for Z1 � −Z2 (since
then φ(x) � 0). On the basis of the numerical results of figure 2 these seem to be reasonable
estimates for the crossover regimes.

We also studied the effect of the screening length on the mean height of the colloids. The
result is shown, for the parameters of figure 1(a), in figure 3. Here the theory is found to be not
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Figure 1. Simulated (full curves) and theoretically calculated (dashed curves) equilibrium
sedimentation profiles for a binary mixture of lighter (species 1) and heavier (species 2) colloidal
particles with charges Z1 = 76 and various charges Z2 given by (a) Z2 = 300, (b) Z2 = 0,
and (c) Z2 = −300, as a function of altitude x in a sample of height H = 109σ . The common
diameter of the colloids is σ = 1950 nm, the mass ratio is m2/m1 = 2, the gravitational lengths
are L1 = kBT/m1g = 2.5σ and L2 = 1.25σ , the total packing fractions are η̄1 = η̄2 = 0.005,
the Bjerrum length is λB = 10.4 nm, and the screening parameter is κσ = 1.2.
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Figure 2. Simulated (full curves) and theoretically predicted (dashed curves) mean heights hi of
light (open circles, species 1) and heavy (solid squares, species 2) colloids as a function of the
charge ratio Z2/Z1 for fixed Z1 = 76. All other parameters are identical to those of figure 1.
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Figure 3. Simulated (full curves) and theoretically predicted (dashed curves) mean heights hi of
light (open circles, species 1) and heavy (solid squares, species 2) colloids as a function of the
screening parameter κσ for fixed Z1 = 76 and Z2 = 300. All other parameters are identical to
those of figure 1.

at all in agreement with the simulations, except perhaps for the decreasing mean height of the
heavier species 2 with increasing κσ . The crossover where h1 = h2 is found to be at κσ � 2.4
in the simulations, whereas the theory cannot locate a crossover at all for any reasonable κσ .
Moreover, the theory cannot catch the phenomenon of increasing h1 with increasing κσ for
κσ � 3. One could argue that the theory breaks down, not only quantitatively but even
qualitatively, when κσ � 2.
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3.2. Lighter colloids

For the sake of comparison we repeated the study reported above to the case where both
colloidal species are ten times lighter, such that L1 = 25σ and L2 = 12.5σ . We left all the
other parameters identical to those of figures 1–3.

In figure 4 we consider the three density profiles for the three charges (a) Z2 = 300,
(b) Z2 = 0, and (c) Z2 = −300, and find reasonably good agreement between theory and
simulation for cases (a) and (b), and now in fact also for case (c). As in the case of the
heavier colloids the theory still fails to describe the oscillating character of the profiles close
to the bottom and the meniscus, but in all cases it can account for a ‘smoothed’ version of the
simulated profiles. We note that case (a) does not show a significant layering effect, in the
sense that the density profiles of both species span the whole sample from bottom to meniscus.
This can be understood from the theory of [19] if one realizes that both Z1 L1, Z2 L2 � H ,
i.e. both species would prefer to be lifted to much higher altitudes than the present system size
H = 109σ allows. Unlike the layering effect, the lift effect remains clearly visible for this
relatively small H . In figures 4(b) and (c) the layering effect does exist, although it is perhaps a
bit weaker than in the case of the heavier colloids discussed above. We can again conclude that
the lifting (and layering) effect can be accounted for within a colloids-only picture, and that
there is a re-entrant phenomenon with varying Z2 from 300 through 0 to −300 such that the
heavier species is lifted provided that |Z2| is large enough. This effect is quantified in figure 5,
which is the analogue of figure 2 and shows the mean height hi as a function of Z2/Z1 at
fixed Z1. The agreement between theory and simulation is more quantitative for these lighter
colloids, at least for like-charged colloids. This is in line with our earlier notions that the
differences between theory and simulation are probably due to correlations, which are weaker
for lighter colloids since the system is then more homogeneous and hence more dilute at the
bottom. The analogue of figure 3 is shown in figure 6, and shows the same poor agreement
between theory and simulation as figure 3: the theory breaks down completely for κσ � 1.5,
where it cannot even predict the correct ordering of the species with height.

4. Conclusions

We have studied the equilibrium sediment of binary mixtures of charged colloids in suspension,
viewed both as a colloid–ion mixture within a Poisson–Boltzmann theory and as an effective
colloids-only system with pairwise screened-Coulomb interactions in Monte Carlo simulations.
The main conclusion is that the layering effect, whereby colloids order with height according to
charge-per-mass as predicted by the Poisson–Boltzmann theory [18, 19], can also be obtained
within the effective colloids-only system. This result is not obvious, since the theoretical
ion–colloid description invokes the ion-entropy and a selfconsistent electric field that pushes
the colloids upwards against gravity, while the ions only occur very indirectly in the screening
constant of the effective system. Nevertheless, these results suggest that both pictures are,
at least qualitatively, different sides of the same coin. The inconsistency of the colloids-only
system, where local electric neutrality is assumed whereas the (Donnan) potential varies with
height and thus requires a non-vanishing local charge density at least somewhere in the system,
is apparently no serious problem for describing the phenomenology quantitatively.

It is of interest to try to understand the layering mechanism within the colloids-only picture
qualitatively. For like-charged colloids one may argue that the colloids with the highest charge
repel each other most strongly, such that they expand to relatively high altitudes, leaving the
lower charged (and possibly lighter) colloids behind at lower altitudes. For oppositely charged
colloids the situation is more subtle: the attraction between the most expanded highest charged
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Figure 4. Same as figure 1, but for ten times lighter colloids with gravitational lengths L1 = 25σ
and L2 = 12.5σ .

colloids and the less expanded lower charged colloids is such that the tendency to layering is
reduced. This effect depends, probably, sensitively on composition and charge, and has not
been investigated here in any detail.
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Figure 5. Same as figure 2, but for ten times lighter colloids with gravitational lengths L1 = 25σ
and L2 = 12.5σ .
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Figure 6. Same as figure 3, but for ten times lighter colloids with gravitational lengths L1 = 25σ
and L2 = 12.5σ .

At a quantitative level we can conclude that the theory does not catch the oscillatory
character of the density profiles that were found close to the bottom and meniscus in the
simulations. This effect requires a better account of the short-range correlations, and will be
addressed in future work. The theory is, all in all, in better agreement with the simulations
for repelling like-charged colloids than for attracting oppositely charged colloids. This can
probably also be traced back to the poor level of our theoretical treatment of the short-
ranged correlations, which are more pronounced in the presence of attractions. Given the
recent exciting new experimental developments in the study of oppositely charged colloids
exhibiting equilibrium behaviour (as opposed to irreversible aggregation phenomena) [3],
there is good reason to attempt to improve the theory. Moreover, the theory is also shown to
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break down completely for κσ � 1.5–2 (for the present choice of parameters), where short-
ranged correlations become more important once more. Despite these shortcomings, our main
conclusion should be that the layering phenomenon at low salt concentration, say at κσ � 1–2,
is a real effect that can be understood from a colloid–ion mixture perspective as well as from a
colloids-only perspective. We hope that these findings stimulate experimental study of these
phenomena.

Acknowledgments

This work is part of the research programme of the ‘Stichting voor Fundamenteel Onderzoek
der Materie (FOM)’, which is financially supported by the ‘Nederlandse organisatie voor
Wetenschappelijk Onderzoek (NWO)’.

References

[1] Derjaguin B and Landau L 1941 Acta Physicochim. URSS 14 633
Verwey J W and Overbeek J T G 1948 Theory of the Stability of Lyotropic Colloids (Amsterdam: Elsevier)

[2] Robbins M O, Kremer K and Grest G S 1988 J. Chem. Phys. 88 3286
Hamaguchi S, Farouki R T and Dubin D H E 1997 Phys. Rev. E 56 4671
Meijer E J and El Azhar F 1997 J. Chem. Phys. 106 4678
El Azhar F, Baus M, Ryckaert J-P and Meijer E J 2000 J. Chem. Phys. 112 5121
Hynninen A-P and Dijkstra M 2003 Phys. Rev. E 68 021407
Sirota E B, Ou-Yang H D, Sinha S K, Chaikin P M, Axe J D and Fujii Y 1989 Phys. Rev. Lett. 62 1524
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