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Suppression of Thermally Excited Capillary Waves by Shear Flow
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We investigate the thermal fluctuations of the colloidal gas-liquid interface subjected to a shear flow
parallel to the interface. Strikingly, we find that the shear strongly suppresses capillary waves, making the
interface smoother. This phenomenon can be described by introducing an effective interfacial tension o
that increases with the shear rate. The increase of o is a direct consequence of the loss of interfacial
entropy caused by the flow, which affects especially the slow fluctuations. This demonstrates that the
interfacial tension of fluids results from an intrinsic as well as a fluctuation contribution.
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Wind blowing across a lake causes the water surface to
ripple. This rippling is resisted by both interfacial tension
and gravity. The same forces act at a microscopic scale on
capillary waves that exist as a result of thermal agitation
[1-3]. In this Letter we provide the first visual evidence
that, contrary to what happens for wind driven waves, flow
strongly suppresses thermal interfacial fluctuations. To
explain this, we present a simple model based on the idea
that shear mostly affects the slow modes, since these
couple the strongest to the flow. The observed interface
smoothening will have repercussions for the understanding
of the flow in, for example, micro- and nanofluidics [4] and
during the process of droplet coalescence [5]. In addition,
our findings are relevant to studies of shear-induced phase
transitions in lamellar systems [6—10].

Thermal capillary waves have been studied extensively
in molecular fluids using light [11] and x-ray scattering
[12]. Recently they have also been visualized directly with
a confocal microscope in a phase separated colloid-
polymer mixture [13], where excellent agreement with
capillary-wave theory was found. This model system has
the unique property that the interfacial tension is extremely
low: on the order of 107°-107% N/m [13-16]. Thus, the
amplitudes of the waves are much larger (micrometers
versus nanometers) than those on the interface of molecu-
lar liquids, while their in-plane correlation length is much
shorter (micrometers versus millimeters). Here, we use this
system to investigate the effect of a shear flow on a freely
fluctuating interface with a recently developed counter-
rotating shear cell [17] in real space.

We used fluorescently labeled poly(methyl methacry-
late) (PMMA) colloidal spheres with radius 71 nm and
size polydispersity less than 10% dispersed in decalin. The
polymer was polystyrene (Fluka, molecular weight 2 X
10% g/mol) with radius of gyration 43 nm. Samples were
prepared by mixing stock dispersions. The phase diagram
of this mixture has been determined before [13]. In the
present work we used two compositions in the two-phase
region of the phase diagram; one was close to the critical
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point (sample A), the other farther removed (sample B). A
sample was loaded into the shear cell, which was placed on
a Leica TCS-SP2 inverted confocal scanning microscope
equipped with a 100 X 1.4 NA oil immersion objective,
and allowed to fully phase separate for 24 h. For details of
the setup and its performance, we refer to Ref. [17]. Briefly,
the shear cell is a counterrotating cone-plate cell. The
bottom plate consisted of a 6 cm diameter No. 1 cover
slip, while the metal cone had an angle of 1°. By rotating
them in opposite directions, a simple shear flow was cre-
ated with a (nearly) horizontal plane of zero velocity
(ZVP). Objects in this plane remain stationary with respect
to the lab frame while shearing. The vertical position of the
ZVP was carefully adjusted to the horizontal gas-liquid
interface (at a height of ~50 pwm above the glass plate) by
varying the relative rotational velocities of cone and plate.
Thus, a fixed section of the interface remains in focus
during the experiment. This is essential for visualizing
details of the interface without any blurring caused by
the motion. At each shear rate a time series was recorded
of the flow-gradient plane for typically 20 min at a frame
rate of 1.5 Hz (0.67 s/frame). The vertical location of the
interface h(x) is determined for each column of pixels in a
frame by fitting the pixel value I(z), which is proportional
to the local colloid concentration, to a van der Waals profile
I(z) = a + btanh{[z — h(x)]/c}. The position thus found
is shown in Fig. 1 and is seen to describe the interface well.

Snapshots of the interface in a phase separated colloid-
polymer mixture are shown in Fig. 1. The lower (‘‘liquid™)
phase is dense in fluorescent colloids and thus appears
bright, while the upper (““gas’’) phase is poor in colloids.
The particles are too small to be resolved individually by
the microscope, but the rough interface separating the
phases can be clearly observed. Although the applied shear
is too small to significantly affect the thermal motion of
individual particles (Pe = nyd>/kgT < 0.1 for all experi-
ments), the interfacial roughness is visibly reduced as the
shear rate 7y is increased. This situation is stationary in
time. Turning off the shear immediately restores the equi-
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FIG. 1. Snapshots of the interface of sample A, closest to the
critical point, at three shear rates. Each image is 18 X 106 um?
and shows a vertical cross section through the interface. The
position of the interface is indicated with bright pixels. The
bottom panel schematically shows the flow geometry with the
plane of zero velocity located at the interface.

librium fluctuations. We determine the vertical location of
the interface h(x) at each position along the horizontal (x)
axis as described above and obtain the probability distri-
butions of the interface height for different shear rates
[Figs. 2(a) and 2(b)]. Under shear, these remain Gaussian
but have a reduced width reflecting the strong suppression
of the roughness. This is confirmed in Figs. 2(c) and 2(d)
where the mean-square interfacial height (h?) is plotted
against the shear rate. Sample B, farther from the critical
point, shows a smaller roughness than A and requires
larger shear rates to reduce the roughness.

Next, we calculate the autocorrelation function of the
interface height g, (x) = (h(x + x")h(x')), where the angu-
lar brackets denote averaging over the primed quantities.
For a nonsheared system the theory of independent
capillary-wave fluctuations [18] predicts

kgT
2o

gn(x) = Ko(x/§), (D
where K|, is the modified Bessel function of the second
kind. The interfacial tension o determines the mean-square
height, or roughness, of the interface, and the in-plane

correlation length ¢ equals the capillary length L,, =

Jo/gAp, with g the acceleration of gravity and Ap the
density difference between the phases. From a fit we find
these equilibrium properties for the two state points under
study (Table I).

Interestingly, we find that for sheared interfaces the
shape of the correlation function also obeys Eq. (1), only
with different parameters characterizing its decay (Fig. 3).
This leads to the surprising conclusion that, in the experi-
ment, the interface under shear cannot be distinguished
from an equilibrium interface with a different interfacial
tension. Hence, in the sheared systems, we can assign an
effective interfacial tension o and a correlation length £,
which is not necessarily equal to the capillary length.
Clearly, both the effective interfacial tension and the corre-
lation length increase significantly with shear rate (Fig. 4).

Why shear increases the measured interfacial tension
can be understood as follows. The interface will start to
feel the presence of a shear when the applied shear rate
approaches the relaxation rate of the fluctuating waves. We
determine the lifetime of the capillary-wave fluctuations

probability

FIG. 2. The interfacial roughness at
different shear rates. The panels on top
display the height distribution for
(a) state point A and (b) state point B
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farther from the critical point. In (c) and
(d) the corresponding mean-square inter-
facial height is plotted as function of the
shear rate. The solid curves follow from
the model discussed in the text.
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TABLE I. Physical properties of the equilibrium system at
state point A, near the critical point, and state point B, away
from the critical point. The interfacial tension o, capillary length
L, and capillary time 7, are directly obtained from the
correlation functions of the interface height at zero shear. The
density difference Ap and viscosity 7 are calculated from these
values.

State point A State point B

o (nN/m) 2.5 36
Leap (pm) 2.6 8
Teap (s) 13 6
Ap (g/mL) 0.038 0.057
n (mPas) 13 28

from the dynamical height autocorrelation functions
gn(D) = (h(t + ¢)h(¢')) at zero shear, as described previ-
ously [13]. Capillary-wave theory in the overdamped re-
gime predicts [19] that a mode with wave vector ¢ decays
exponentially in a time

2qLcap

T, = Tegqn————5—.
1 P 1 + quczzap

2
Here the capillary time 7.,, equals 1L,,/o and 7 is the
sum of the viscosities of the two phases. The experimen-
tally obtained capillary times are listed in Table I. We thus
expect that if y7,, > 1, the fluctuations begin to be af-
fected. Solving y7, > 1 leads to two solutions, ¢; and g5,
bounding the range of wave numbers affected by shear.
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FIG. 3. The experimentally obtained static height correlation
function at different shear rates for (a) state point A and (b) state
point B. Symbols refer to the same shear rates as in Fig. 2. The
lines are fits to Eq. (1).

How do these shear-affected waves translate into an
effectively higher interfacial tension? The usual model of
a fluid interface is that of an intrinsic profile, as calculated,
for instance, in the mean-field theory of van der Waals [20],
supplemented with fluctuations described by capillary-
wave theory [2,3]. Buff, Lovett, and Stillinger [21] find
that the measurable interfacial tension o is then a sum of a
“bare” interfacial tension o and a negative contribution
to the surface free energy due to the entropy of the
capillary-wave fluctuations:

3

- _- 2
167 kBT(/Imax- (3)

Here, . corresponds to a microscopic cutoff length.
This result can be found by assigning %kBT to each mode
using the equipartition theorem and subsequently integrat-
ing over all modes. In case of shear, we assume that the
shear-affected waves no longer contribute to the entropic
lowering of the interfacial tension. If we then perform the
integration leading to Eq. (3) and exclude the range ¢; <
q < g», this results in a smaller reduction of the interfacial
tension. The effective interfacial tension that follows from
this calculation is

o= o0y

. 3kBT ')'/Tcap . 2
o-eff('}/) =0+t 4 L%dp (’chap) -1 4)

with o the interfacial tension at zero shear. All parameters
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FIG. 4. The effective interfacial tension and the correlation
length along the interface. Solid circles refer to state point A
and open squares to state point B. The solid curves follow from
the model discussed in the text. The dimensionless shear rate is

defined as Y7 eupn/(kgT/0)/ Legp-
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going into Eq. (4) are determined from the experiment at
zero shear rate (Table I). This allows for a direct compari-
son with the data. Without any adjustable parameters we
find very good agreement for both the state point close to
the critical point and, as shown in the inset, the state point
farther away from the critical point [Fig. 4(a)]. Note that
the second term in Eq. (4) is independent of our choice for
gmax and depends, approximately, quadratically on the
shear rate. Interestingly, a similar quadratic increase was
found in recent simulations of homogeneous nucleation of
colloidal crystals under shear [22]. In our model a change
in the interfacial tension will also result in an increased

correlation length, since £(y) = /o.x(7)/gA p, where the

density difference between the two phases is assumed to be
the same as in equilibrium. Again, this is seen to be the
case for state point A [Fig. 4(b)]; for state point B (inset)
the trend is similar while the departure is possibly due to
difficulties of determining a relatively large L., in a small
observation window. Since the mean-square interfacial
roughness is inversely proportional to the interfacial ten-
sion (<h2>7=0 o kzT/0o), the model predicts that the am-
plitude of the capillary waves depends on the shear rate as
(*)(¥) = [0/ oe(7)Kh?)5~o [Figs. 2(c) and 2(d)]. Here
we ignore a small logarithmic correction caused by the
change in correlation length. We find that this simple
calculation provides excellent quantitative agreement
with the experimental data, without any adjustable parame-
ters. Remarkable is the huge impact of shear when ap-
proaching the critical point. According to our model, a
lower interfacial tension, a longer capillary time, and a
shorter capillary length all work to increase o.z/0.
Experimentally, this is exactly what we find, leading to a
reduction of the mean-square roughness of up to a factor 5.

In conclusion, we find that a shear flow reduces thermal
capillary waves, in clear contrast with wind driven waves.
A similar phenomenon is predicted to play a key role in
flow-induced phase transitions in membrane systems [6—
10]. We show that the suppression of thermal fluctuations
at a fluid interface can be understood from a coupling of the
flow with the fluctuations. Interestingly, the experimental
correlation functions can be accurately described by the
theoretical result for the equilibrium case, indicating that
the fluctuation modes appear in the same relative propor-
tions. Assuming that too slow modes, while still present, no
longer contribute to the entropy of the interface allows
prediction of an effective interfacial tension, correlation
length, and interfacial roughness. This produces quantita-
tive agreement with our experimental data. The success of
equilibrium theory and the formulation of a more complete
hydrodynamic theory of the flow-fluctuation coupling are
now clearly put as theoretical challenges. These results do
not depend on the specific dynamics of the particles and
should apply equally to Brownian and molecular systems.
Perhaps the most important conclusion is that assuming a
partial suppression of the fluctuations leads to an increase
in the effective surface tension. This is to our knowledge

the first direct experimental confirmation of the dual nature
of fluid interfaces, with a high surface tension due to the
intrinsic density profile that is lowered by the entropy of
the fluctuations. Further investigation is necessary to see
whether our findings allow one to completely reconcile the
two models, a central point for our understanding of fluid
interfaces.
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