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We perform a study of the interfacial properties of a model suspension of hard sphere colloids with diameter
sc and nonadsorbing ideal polymer coils with diametersp. For the mixture in contact with a planar hard wall,
we obtain from simulations the wall-fluid interfacial free energy,gwf, for size ratiosq=sp/sc=0.6 and 1, using
thermodynamic integration, and study thesexcessd adsorption of colloids,Gc, and of polymers,Gp, at the hard
wall. The interfacial tension of the free liquid-gas interface,glg, is obtained following three different routes in
simulations:sid from studying the system size dependence of the interfacial width according to the predictions
of capillary wave theory,sii d from the probability distribution of the colloid density at coexistence in the grand
canonical ensemble, andsiii d for state points where the colloidal liquid wets the wall completely, from Young’s
equation relatingglg to the difference of wall-liquid and wall-gas interfacial tensions,gwl −gwg. In addition, we
calculategwf, Gc, andGp using density functional theory and a scaled particle theory based on free volume
theory. Good agreement is found between the simulation results and those from density functional theory, while
the results from scaled particle theory quantitatively deviate but reproduce some essential features. Simulation
results forglg obtained from the three different routes are all in good agreement. Density functional theory
predictsglg with good accuracy for high polymer reservoir packing fractions, but yields deviations from the
simulation results close to the critical point.
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I. INTRODUCTION

Mixtures of sterically stabilized colloids and nonadsorb-
ing polymers are widely studied complex fluidsf1–3g. Pro-
vided the size and the number of polymers is sufficiently
high, such mixtures can phase separate into a colloidal gas
phase that is poor in colloids and rich in polymers, and a
colloidal liquid phase that is rich in colloids and poor in
polymers. The mechanism behind this demixing transition is
of entropic origin and is due to the so-called depletion effect:
An effective attraction between the colloids is generated due
to an unbalanced osmotic pressure arising from the exclusion
of polymer coils in the depletion zones between the colloids
f4,5g. Since the associated relevant time and length scales are
much larger than in atomic and molecular systems, direct
experimental observations using advanced microscopy tech-
niques enable the study of many interesting physical phe-
nomena, e.g., thermal capillary waves at fluid interfaces and
droplet coalescence were observed recently in real space and
real time using confocal microscopyf6g. Other recent ex-
amples are the direct measurement of the contact angle of the
colloidal gas-liquid interface and different substratesf7g,
complete wetting of a substratef8,9g, a wetting transition
from complete to partial wettingf9g, and capillary conden-
sation in confining geometryf10g. Hence it is fair to say that

these mixtures serve as excellent model systems to investi-
gate fundamental issues in statistical physics. A particularly
simple model for colloid-polymer mixtures was proposed by
Vrij f5g, and is often referred to as the Asakura-Oosawa-Vrij
sAOVd model. A good historical introduction to this model
together with many recent results can be found in the paper
by Brader et al. f3g. The bulk phase behavior as well as
inhomogeneous properties of the AOV model were studied
with both theoryf3,11–14g and computer simulationf15–23g.
Recently, attention was paid to more realistic model interac-
tions f14,18,24g for colloid-polymer mixtures. However,
most of the essential physics of real colloid-polymer mix-
tures is indeed captured by the AOV model.

In this work we study the wall-fluid and liquid-gas inter-
facial tensions of the AOV colloid-polymer mixture using
Monte Carlo simulations and check the predictions of den-
sity functional theorysDFTd f14,25g based on an extension
of the Rosenfeld functionalf26g, and of a scaled particle
theorysSPTd f14g based on the free volume theoryf11g. The
wall-fluid interfacial tension of a hard-sphere fluid in contact
with a planar hard wall was recently calculated by Heni and
Löwen using a thermodynamic integration procedure along a
path that corresponds to the growth of a wall in a bulk sys-
tem f27g. Here, we propose a thermodynamic integration ap-
proach similar in spirit, to determine the wall-fluid interfacial
free energy of the AOV colloid-polymer mixture in contact
with a planar hard wall.

Different routes exist to determine the liquid-gas interfa-
cial tension. The pressure tensor methodf28,29g is particu-
larly suitable for Molecular Dynamics simulation studies.
The probability distribution methodf30g was used in Monte
Carlo simulationsf31,32g and was recently applied to calcu-
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late the liquid-gas interfacial tension of colloid-polymer mix-
tures f21–23,33g. The authors showed that the interfacial
width depends on system size and they verified the predic-
tions from capillary wave theory on system size dependence
f22g. Sideset al. and Lacasseet al. found good agreement
between the interfacial tension obtained from the pressure
tensor method and from the predictions of capillary wave
theory, provided that the density profile is fit to an error
function for Lennard-Jones particles and polymer blends
f34,35g. In this work, we use both the capillary wave theory,
as proposed in Refs.f34,35g, as well as the probability dis-
tribution method to calculate the liquid-gas interfacial ten-
sion. In addition, we employ Young’s equation in the com-
plete wetting regime to obtain an estimate for the tension of
the liquid-gas interface from the difference in wall tensions,
and compare our results with DFT calculations.

The paper is organized as follows. In Sec. II we briefly
review the AOV model. In Sec. III A an overview of the
thermodynamics of inhomogeneous systems is given. In Sec.
III B we lay out the simulation methods used in the determi-
nation of the wall-fluid tension. In Sec. III C we detail the
simulation method to obtain the adsorption at a hard wall. In
Sec. III D we present the corresponding derivation using
scaled particle theory. In Sec. III E we review the capillary
wave theory for the width of a liquid-gas interface. Sections
III F and III G are devoted to obtaining the liquid-gas inter-
facial tension from the probability distribution of the colloid
density at coexistence and from Young’s equation, respec-
tively. In Sec. III H we give a brief overview of the DFT. In
Sec. IV we discuss our results for the wall-fluid tensionsSec.
IV A d, adsorptionsSec. IV Bd, and liquid-gas interfacial ten-
sion sSec. IV Cd. Concluding remarks are given in Sec. V.

II. MODEL

We consider a mixture of sterically stabilized colloidal
spheressspeciescd and nonadsorbing polymer coilssspecies
pd immersed in a solvent. The interaction between two steri-
cally stabilized colloids resembles closely that of hard
spheres, while a dilute solution of polymer coils in a theta
solvent can be treated as an ideal gas as the polymer coils are
interpenetrable and noninteracting. The polymer coils are as-
sumed to be excluded from the colloids to a center-of-mass
distance ofssc+spd /2, wheresc is the diameter of the col-
loids, andsp=2Rg is the diameter of the polymer coils, with
Rg being the radius of gyration of the polymers. A simple
idealized model for such a mixture is the so-called Asakura-
Oosawa-VrijsAOVd modelf4,5g defined through pair poten-
tials, that between colloids being

vccsRijd = H`, if Rij , sc

0, otherwise,
J s1d

where Rij = uRW i −RW ju is the center-of-mass distance between

two colloidal particles, withRW i sRW jd the center-of-mass coor-
dinate of colloidi s jd. The polymers are described as nonin-
teracting particles with

vppsr ijd = 0, s2d

wherer ij = urWi −rW ju is the distance between two polymers, with
rWi srW jd the center-of-mass coordinate of polymeri s jd. The
colloid-polymer interaction is

vcpsuRW i − rW jud =H`, if uRW i − rW ju , ssc + spd/2,

0, otherwise,
J s3d

whereuRW i −rW ju is the distance between colloidi and polymer
j . Our simulations are performed in a box with dimensions
L3L3H with three-dimensional periodic boundary condi-
tions in the case of bulk simulations. To create a wall-fluid or
a liquid-gas interface, we perform simulations in a box with
periodic boundary condition solely in thex andy directions
and two impenetrable hard walls in thez direction. The wall-
particle potential acting on particles of speciesk=c, p reads
as

vwkszk,id = H0, if sk/2 , zk,i , Hk − sk/2,

`, otherwise,
J s4d

wherezk,i is thez coordinate of particlei of speciesk, andHk
is the separation distance between the two walls for species
k. For the simulations of hard wall properties, we useHc
=Hp;H, corresponding to two planar hard walls. For the
simulations of the liquid-gas interface we use a box with
periodic boundary conditions in thex and y directions and
delimited in thez direction by one impenetrable and one
semipermeable wall; this asymmetric slit is defined by the
wall-particle potentials4d with Hc=H−2sc andHp=H. The
impenetrable wall atz=0 favors the colloidalliquid phase,
while the semipermeable wall atz=Hc is impenetrable for
the colloidal particles, but penetrable for the polymers
swhich are free to overlap with this walld. Hence, there is
no effective polymer-mediated wall-colloid attraction and
the semipermeable wall favors the colloidal gas phase
f14,17,19,20g.

The size ratioq=sp/sc is a geometric parameter that con-
trols the range of the effective depletion interaction between
the colloids. Packing fractions are denoted byhk
=spsk

3Nkd / s6L2Hd, and the number density is denoted by
rk=Nk/ sL2Hd for speciesk=c,p. We also employ, as an al-
ternative thermodynamic variable tohp, the polymer reser-
voir packing fraction,

hp
r =

p

6
sp

3rp
r =

p

6
sp

3zp, s5d

wherezp is the fugacity of the polymers that constitute an
ideal gas with densityrp

r in the reservoir.

III. METHODS

A. Overview of interfacial thermodynamics

Generally, the interfacial tension in an inhomogeneous
system is the grand potential per unit area needed to create
an interface in an initially uniform bulk system at fixed
chemical potential of colloids,mc, and polymers,mp, and
fixed volumeV and temperatureT. The grand potential for a
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bulk mixture of colloids and polymers reads as

Vbulksmc,mp,V,Td = − psmc,mp,TdV, s6d

wherep is the bulk pressure. The system in contact with an
interface possesses the grand potential,

Vsmc,mp,V,T,Ad = − psmc,mp,TdV + gsmc,mp,TdA, s7d

whereA is the area of the interface andgsmc,mp,Td is the
interfacial tension, which can hence be expressed as

g =
Vsmc,mp,V,T,Ad − Vbulksmc,mp,V,Td

A
. s8d

Besides the liquid-gas interface, whereg=glg, Eqs. s6d–s8d
apply also for a fluid adsorbed between two parallel plates
swallsd, whereg=gwf, provided that the wall separation is
sufficiently largef36,37g, and that the areaA is equal to the
total area of the two plates,A=2L2. At fixed chemical poten-
tials the number of particles in the inhomogeneous system,
Nc andNp, of colloids and polymers, respectively, will be in
general different from those in the bulk,Nc

bulk andNp
bulk. The

excess number of colloids and polymers per unit area, i.e. the
adsorptionsGc andGp, respectively, are defined as

Gcsmc,mp,Td =
Nc − Nc

bulk

A
, s9d

Gpsmc,mp,Td =
Np − Np

bulk

A
. s10d

The grand potentialss6d and s7d in differential form read as

dVbulksmc,mp,V,Td = − Nc
bulk dmc − Np

bulk dmp − p dV

− Sbulk dT, s11d

dVsmc,mp,V,T,Ad = − Nc dmc − Np dmp − p dV− S dT

+ g dA. s12d

Using Eqs.s11d ands12d and Eq.s8d in differential form, it is
straightforward to showf38g that the adsorptions are related
to the interfacial tension through

Gc = − S ]g

]mc
D

mp,T
andGp = − S ]g

]mp
D

mc,T
. s13d

B. Hard wall-fluid interfacial tension via thermodynamic
integration

To determine, from simulations, the wall-fluid tensiongwf
of the AOV model we should apply Eq.s8d, as is manifest in
the grand canonical ensemble, i.e. for constant colloid and
polymer fugacities. However, in our simulation it is more
convenient to use the semigrand canonical ensemble fixing
the number of colloids and the fugacity of the polymers. The
reason is twofold. First the interfacial tension as a function of
the fugacity of polymers can be directly compared to the
DFT results of Ref.f14g. Second, fixing the number of col-
loids instead of their fugacity allow us to efficiently study

state points with high packing fractions of colloids; generally
grand ensemble simulations are difficult to perform at high
densities due to small particle insertion probabilities. To
compute the tension we have to recast Eq.s8d in a way that
is consistent with the semigrand canonical ensemble. The
grand potentials for the bulk and the inhomogeneous system
are related to the corresponding Helmholtz free energies via
a Legendre transformation,

Vbulksmc,mp,V,Td = FbulksNc
bulk,Np

bulk,V,Td − mcNc
bulk

− mpNp
bulk, s14d

Vsmc,mp,V,T,Ad = FsNc,Np,V,T,Ad − mcNc − mpNp.

s15d

We substitute Eqs.s14d and s15d in Eq. s8d to obtain

g =
FsNc,Npd − FbulksNc

bulk,Np
bulkd

A
− mcGc − mpGp, s16d

where we omitted the dependence on the variablesV, T, mc,
andmp in the notation. Note that the tension is not only the
difference of the Helmholtz free energies, but additional
terms, mcGc and mpGp, arise in Eq.s16d. One can further
simplify by Taylor expandingFsNc,Np,V,T,Ad aroundNc

bulk,

FsNc,Np,V,T,Ad = FsNc
bulk,Np,V,T,Ad +

]F

]Nc
sNc − Nc

bulkd

+ OssNc − Nc
bulkd2d. s17d

Keeping only the first order term, one can approximate the
interfacial tension as

g .
FsNc

bulk,Np,V,T,Ad − FbulksNc
bulk,Np

bulk,V,Td
A

− mpGp.

s18d

The same approximation was employed in Ref.f27g susing
Np=0 andNp

bulk=0d to calculate the interfacial free energy of
hard spheres in contact with a planar hard wall. To compute
the wall tension, we need to performtwo free energy calcu-
lations, one for the bulk and one for the inhomogeneous
system. As the free energy cannot be measured directly in a
Monte Carlo simulation, we use the thermodynamic integra-
tion techniquef39g to relate the free energy of the system of
interest to that of a reference system

FsNc,Np,V,T,A,l = lmaxd

= FidsNc,Np,V,T,l = 0d +E
l=0

lmax

dlK ]F

]l
L

l

. s19d

The reference system is chosen to be an ideal gas, so
FidsNc,Np,V,T,l=0d is the Helmholtz free energy ofNc

ideal colloids andNp ideal polymers in a volumeV at tem-
peratureT. We then introduce the suitable auxiliary Hamil-
tonian,
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Hl = lSo
i, j

Nc

VccsRijd + o
i=1

Nc

o
j=1

Np

VcpsuRW i − rW jud + eo
i=1

Nc

Vwcszc,id

+ eo
i=1

Np

Vwpszp,idD , s20d

where we approximate the hard-core potentials of the AOV
model with penetrable potentials: The colloid-colloid inter-
action reads as

VccsRijd = Qssc − Rijd, s21d

whereQsxd is the Heaviside step function. Likewise we de-
fine the interaction potential between the colloids and the
polymers as

VcpsuRW i − rW jud = QS ssc + spd
2

− uRW i − rW juD . s22d

The interaction between the walls and the particles of species
k=c,p is

Vwkszk,id = QSsk

2
− zk,iD + QSsk

2
− sHk − zk,idD , s23d

wherezk,i is the z coordinate of particlei of speciesk. For
l=0, this system reduces to an ideal gas, while forl→`,
the system describes the AOV model given by Eqs.s1d–s4d
in bulk se=0d or confined by two wallsse=1d. The interac-
tion potential is switched on adiabatically using the coupling
parameterl. In principle, our system of interest is described
by the Hamiltonians20d using lmax→`, but also for suffi-
ciently high values oflmax the system reduces to our system
of interest with hard-core potentials. Clearly,lmax should be
sufficiently large to ensure that the system is indeed behav-
ing as the hard-core system of interest. On the other hand,
lmax should not be too large, as this would make the numeri-
cal integration less accurate. The integrand function of Eq.
s19d is then

K ]F

]l
L

l

=K ]Hl

]l
L

l

=KHl

l
L

l

. s24d

The functionkHl /lll is computed counting the number of
overlaps between colloids, colloids and polymers andsfor
the inhomogeneous system onlyd particles and walls. The
free energy can then be obtained using Eq.s19d. The inte-
grals are evaluated using a 21-point Gauss-Kronrod formula,
where 5000–15 000 MC cycles per particle are used for the
sampling of each integration point. The wall-fluid interfacial
tension is then computed using Eq.s18d. In detail, we first
perform a simulation of the AOV model in bulk and a sepa-
rate simulation of the AOV model confined by two walls,
given by the interactionss1d–s4d, both in the semigrand ca-
nonical ensemble, i.e., we fix the number of colloidsNc

bulk,
the chemical potential of the polymersmp, and the volume
V=L3L3H. We measure the average number of polymer in
the bulk,kNp

bulkl, and in the confined system,kNpl. We then
perform two separate thermodynamic integrationssin the ca-
nonical ensembled to obtain the free energy of the bulk sys-
tem with Nc

bulk colloids andkNp
bulkl polymers in a volumeV,

and the confined system of volumeV with Nc
bulk colloids and

kNpl polymers. In the canonical ensemble simulations, we
determined the chemical potential of the polymer as a con-
sistency check. Typical number of the colloids and the poly-
mers areNc

bulk=54–900 andNp
bulk=0–20000, while the vol-

ume of the simulation box is aboutV=s1200–3000dsc
3 and

H.16sc. The errors are estimated calculating the standard
deviation from four or five independent simulations.

C. Adsorption at a hard wall from simulation

To study thesexcessd adsorption of colloid-polymer mix-
tures at a planar hard wall we simulated both the bulk mix-
ture and the mixture in contact with the hard wall in two
independent Monte Carlo simulations in the grand canonical
ensemble and hence we considered only state points of low
colloid packing fractionhc. After discarding 50 000 MC
steps per particle for equilibration, we take the average of the
number of particles for another 50 000 MC steps per particle.
The differences in particle numberssper unit aread in the
confined system and in the bulk system then give the adsorp-
tion of both species via Eqs.s9d and s10d.

D. Adsorption at a hard wall from scaled-particle theory

For a system of hard spheres the scaled particle theory
f40,41g describes quite accurately the pressurep, the hard
wall-fluid interfacial tensionghs, and thesexcessd adsorption
Ghs, given through the expressions

bp

rc
=

1 + hc + hc
2

s1 − hcd3 , s25d

bghssc
2 = 3hc

s2 + hcd
2ps1 − hcd2 , s26d

Ghssc
2 =

9hc
2

ps1 + 2hcd
−

3hc

p
. s27d

In particular, Eq.s27d was shown to compare well with simu-
lation f28g and DFTf42g results.

Recently an SPT expression for the wall-fluid tension of
AOV model colloid-polymer mixtures was derived by Wes-
selset al. f14g using the bulk free energy for a ternary mix-
ture obtained from free volume theoryf11g as an input, and
taking the limit of vanishing concentration and infinite size
of the third component. Their expression reads as

bgwfsc
2 = bghssc

2 + hp
r fshcd, s28d

where fshcd=3ashcd / sq2pdf1+s1+3q+q2dt+s3q+4q2dt2

+3q2t3g, t=hc/ s1−hcd andbghssc
2 is given by Eq.s26d. The

polymer free volume is given by the scaled particle theory as

ashcd = s1 − hcdexps− s3q + 3q2 + q3dt

− s9q2/2 + 3q3dt2 − 3q3t3d.

Results forgwf from Eq. s28d were found in Ref.f14g to
compare reasonably well with those from full numerical den-
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sity functional calculations. Below we will compare these
approaches against our simulation data.

Here we derive an SPT expression for the adsorption of
the AOV model at a hard wall starting from Eq.s28d and
building derivatives according tos13d. The colloid chemical
potential obtained from the free volume theoryf11g is

bmc = bmhsshcd − hp
r a8

q3 , s29d

where bmhsshcd=hcs14−13hc+5hc
2d / s2s1−hcd3d−logs1

−hcd+logs6hc/pd is the SPT expression of the chemical po-
tential of a system of pure hard spheres at packing fraction
hc anda8=]a /]hc. We compute the colloidal adsorption us-
ing Eq. s13d,

Gcsc
2 = −

]bgwfsmc,mpdsc
2

]bmc
= −

]bgwfshc,mpdsc
2

]hc

]hc

]bmc
,

s30d

where

]hcsmc,mpd
]bmc

= S ]bmcshc,mpd
]hc

D−1

, s31d

is computed using Eq.s29d. The final expression is

Gcsc
2 = Ghssc

211 + hp
r f8

bghs8 sc
2

1 − hp
r a9

bmhs8 q3
2 , s32d

where f8=]f /]hc, ghs8 =]ghs/]hc, mhs8 =]mhs/]hc and a9
=]2a /]hc

2. We note that the hard-sphere limit is obtained
correctly for hp

r =0. We also calculate the polymer adsorp-
tion,

Gpsc
2 = −

]bgwfshc,mpdsc
2

]bmp

= − hp
r f − S ]bghsshcdsc

2

]hc
+ hp

r ]fshcd
]hc

D ]hc

]bmp
. s33d

Rewriting Eq.s29d as

hp
r =

bmhsshcd − bmc

a8
q3, s34d

we arrive at

]hc

]bmp
= hp

rS ]hp
r

]hc
D−1

=
hp

r a8

q3bmhs8 − hp
r a9

. s35d

The final expression reads as

Gpshcdsc
2 = − sbgwf − bghsdsc

2 + hp
r a8

q3 Gcshcdsc
2. s36d

E. Liquid-gas interfacial tension from capillary wave
broadening

Capillary wave theory describes the broadening of an in-
trinsic interface of widthw0 due to thermal fluctuations. This

broadening depends primarily on the interfacial tension and
the area of the interface. To calculate the capillary wave con-
tribution to the interfacial width one has to sum over the
contributions from each thermally excited capillary wave to
the amplitude of the oscillations in the instantaneous inter-
face position. Here we briefly sketch the derivation of Sides
et al. and Lacasseet al. and refer the reader to Refs.f34,35g
for further details; a very recent study devoted to capillary
waves in colloid-polymer mixtures is that by Vinket al. f43g.
Fluctuations due to capillary waves inzsx,yd, the mean lo-
cation of the interface in thez direction, have an energy cost
due to the increase in surface area of the interface. The free
energy cost of the interfacial fluctuations is the product of the
excess area of the undulated interface over that of the flat
one, and a liquid-gas interfacial tensionglg, which is as-
sumed to be independent of curvature. The interfacial Hamil-
tonian, assuming thatz and its derivatives are small, reads as

H =
glg

2
E dx dyu = zsx,ydu2. s37d

Introducing a Fourier expansion ofzsx,yd, one arrives at

H =
glg

2
E dqW q2uz̃sqWdu2, s38d

where qW =sqx,qyd denotes a two-dimensional wave vector

and z̃sqWd is the Fourier transform ofzsx,yd. Using the equi-
partition theorem, the mean-square amplitude for each inter-
facial excitation mode reads as

kuz̃sqWdu2l =
kBT

glgq
2 . s39d

The mean-squared real space fluctuations can be calculated
by summing over all allowed modes:

kuzsx,ydu2l =
1

s2pd2E
qmin

qmax

dqWkuzsqWdu2l =
kBT

2pglg
lnS L

jb
D ,

s40d

where the lowq cutoff, qmin, is determined by the system
size, i.e.,qmin=2p /L in our simulations and gives rise to
system size dependence. The highq cutoff, qmax=2p /jb, is
determined by the bulk correlation lengthjb, which is of the
order of the colloid diameter, and avoids the divergence in
the integral.

The total width of the interface, as measured in experi-
ments and simulations, includes contributions from the in-
trinsic width and the broadening due to capillary wave fluc-
tuations. If one assumes that the capillary-wave fluctuations
are decoupled from the intrinsic profile, the total interfacial
profile Cszd can be expressed as a convolution of the intrin-
sic interfacial profilecszd and the fluctuations due to capil-
lary waves,
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Cszd =E
−`

`

csz− z0dPsz0ddz0, s41d

wherePsz0d is the probability of finding the local interface at
z0. The interfacial order parameter profileCszd is defined
such that it varies between −1 and 1,

Cszd =
2

rc
l − rc

gFrcszd −
rc

l + rc
g

2
G , s42d

wherercszd is the cross-section averaged density profile of
the colloids andrc

l and rc
g are the colloid densities of the

colloidal “liquid” and “gas” phase at coexistence. In Refs.
f34,35g, the authors define the variance of the derivative of
the total interfacial profiledCszd /dz;C8 as a measure of
the width of the interface. The variance of a distributionf
reads as

vffg =

E
−`

`

z2fszddz

E
−`

`

fszddz

=
u − sd2/dq2d f̃sqduq=0

f̃s0d
, s43d

where f̃sqd is the Fourier transform offszd. Using this choice
of measure for the interfacial width, one can show explicitly
using the convolution theorem that the total interfacial width
can be written as the sum of an intrinsic part and a contribu-
tion due to capillary wave fluctuations,

vfC8g = vfc8g + vfPg = vfc8g +
kBT

2pglg
lnS L

jb
D , s44d

where we identifyvfPg as the mean-squared fluctuations due
to capillary waves, i.e.,kuzsx,ydu2l.

To measure the tension using the results of capillary wave
theory one needs to create a liquid-gas interface in the simu-
lation box. To stabilize the liquid-gas interface we perform
the simulations in a box with dimensionsL3L3H, with
H=48sc, delimited in thez direction by one impenetrable
wall and one semipermeable wall. We vary the lateral dimen-
sions in the range of 5sc,L,25sc. The canonical simula-
tions are started in the middle of the two-phase region. After
equilibration the system is phase separated, the gas phase in
contact with the semipermeable wall and the liquid phase in
contact with the hard wall. The liquid-gas interface is in the
middle of the simulation boxssee also Fig. 6d. We determine
the total interfacial widthvfC8g from the interfacial order
parameter profileCszd measured in simulations according to
Eq. s42d. A priori, it is not clear whether the density profile
should be fit to an error function or a hyperbolic tangent. In
Ref. f34g, it is shown explicitly that the interfacial width
extracted through fits of the density profile to a hyperbolic
tangent lead to systematic errors and that better results for
the interfacial tensions are obtained using the error function.
In addition, later work on water/carbon tetrachloridef44g and
molten saltsKI d f45g interfaces also found good agreement
between the interfacial tension calculated using the capillary
wave formalism and the pressure tensor components. Fitting
Cszd by an error function erffsz−z0d / swÎ2dg, usingz0 andw

as fitting parameters, we find that the variance of the deriva-
tive of this fitting function is related to the interfacial width
w, i.e., vfC8g=w2. Using Eq.s44d we are able to determine
glg from the fits of the size dependence of the interfacial
width.

In contrast to the wall-fluid tension and the adsorption
simulations described in Secs. III B and III C, we used for
the liquid-gas interfacial tension simulations described in this
section and in Sec. III F, an efficient simulation scheme for
the AOV model that was recently developedf17g. It is based
on the exact effective one-component Hamiltonian of the
colloids, i.e., it incorporates all the effective polymer-
mediated many-body interactions. The effective one-
component Hamiltonian can be derived by integrating out
the polymer degrees of freedom in the binary colloid-
polymer mixture. To this end, we considerNc colloids andNp
polymer coils in a macroscopic volumeV at temperatureT.
The total Hamiltonian consists of interaction termsH=Hcc

+Hcp+Hpp, where Hcc=oi, j
Nc vccsRijd, Hcp=oi

Nco j
NpvcpsuRi

−r jud, andHpp=oi, j
Np vppsr ijd. It is convenient to consider the

system in thesNc,zp,V,Td ensemble, in which the polymer
fugacity is fixed. The thermodynamic potentialF of this sys-
tem can be written as expf−bFg=Trc expf−bHeffg, where
Heff=Hcc+V is the effective Hamiltonian and where Trc is
short for 1/Nc!Lc

3Nc times the volume integral over the coor-
dinates of the colloids, and whereLc is the thermal wave-
length. It is straightforward to show that one obtains for the
present model the exact resultbV=−zpVf, with the so-called
free volumeVf, i.e., the accessible volume for the center of
mass of the polymer coils. This free volume can be calcu-
lated numerically on a smart grid for each static colloid con-
figuration. For more details, we like to refer the reader to
Refs.f17,46g. The advantage of this scheme is that the poly-
mer degrees of freedom are integrated out and enter the ef-
fective one-component colloid Hamiltonian only by the poly-
mer reservoir packing fractionhp

r . Hence, we avoid
equilibration and statistical accuracy problems due to fluctu-
ating polymer numbers. Moreover, our simulations are not
limited by the total number of polymers and can be per-
formed at high polymer reservoir packing fractions far away
from the critical point.

F. Liquid-gas interfacial tension from the probability
distribution

In addition, we determineglg using the probability distri-
bution method. We perform Monte Carlo simulations in the
grand canonical ensemble using again our novel effective
one-component simulation schemef17g, explained in Sec.
III E. To obtain the probability uPsNcduzc,hp

r of observingNc

colloids in a volumeV at fixed colloid fugacityzc and fixed
polymer reservoir packing fractionhp

r , we use a sampling
technique called successive umbrella samplingf47g. Em-
ploying this technique, we sample the probability distribu-
tion uPsNcduzc,hp

r in small windows one after the other, in
which the number of colloidsNc is allowed to fluctuate be-
tween 0 and 1 in the first window, 1 and 2 in the second
window, etc. We first perform an exploratory short run with-
out a bias, yieldingPsNc−1d andPsNcd for window Nc. We
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then perform a biased simulation in which we sample from a
nonphysical distributionpsNcd=gsNcdPsNcd instead of the
grand canonical distributionPsNcd. We have chosen the
weight functiongsNcd=1/PsNcd, where we usePsNcd ob-
tained from the unbiased exploratory simulation run. This
choice for the weight function yields a constantpsNcd and
the system will visit equally the state withNc−1 colloids as
the state withNc colloids. Of course, we have to correct our
weighted sampling for the bias by dividing out the weight
function gsNcd. The more accurate grand canonical distribu-
tion PsNcd is obtained from

PsNcd =
psNcd
gsNcd

. s45d

In addition, we use the histogram reweighting technique to
obtain the probability distribution for anyzc8 oncePsNcd uzc,hp

r

is known for a givenzc f33g:

uPsNcduzc8,hp
r = uln PsNcduzc,hp

r + lnSzc8

zc
DNc. s46d

At phase coexistence, the distribution functionPsNcd be-
comes bimodal, with two separate peaks of equal area for the
“colloidal” liquid and gas phase. To determine phase coex-
istence, we normalizeuPsNcduzc,hp

r to unity,

E
0

`

uPsNcduzc,hp
r dNc = 1, s47d

and we determine the average number of colloids,

kNcl =E
0

`

NcuPsNcduzc,hp
r dNc. s48d

Using the histogram reweighting techniques46d we deter-
mine for whichzc8 the equal area rule,

E
0

kNcl

uPsNcduzc8,hp
r dNc =E

kNcl

`

uPsNcduzc8,hp
r dNc, s49d

representing the condition for phase coexistence, is satisfied.
The liquid-gas interfacial tensionglg for a finite system of

volumeV=L2H can be obtained fromuPsNcduzc8,hp
r at coexist-

ence:

glg,L =
1

2L2FlnSPsNc,max
g d + PsNc,max

l d
2

D − lnfPsNc,mindgG
s50d

wherePsNc,max
g d andPsNc,max

l d are the maxima of the gas and
liquid peaks, respectively, andPsNc,mind is the minimum be-
tween the two peaks. We can determine the interfacial ten-
sion for the infinite system, i.e.,glg, by performing simula-
tions for a range of systems sizes and by extrapolating the
results to the infinite system, as shown by Binder, using the
relation f30,31,33g

glg,L = glg −
x ln L

2L2 −
ln A

2L2 , s51d

whereA andx are generally unknown.

G. Liquid-gas interfacial tension from Young’s equation

Young’s equation relatesglg to the difference in wall-fluid
tension for the gas,gwg, and the liquid phase,gwl, via

sgwg − gwld = glg cosu, s52d

whereu is thesmacroscopicd contact angle at which the gas-
liquid interface hits the wall. In the region of complete wet-
ting, the contact angle is zero and henceglg can be obtained
from the difference of the wall-gas and wall-liquid tensions,
glg=sgwg−gwld.

H. Density functional theory for interfacial properties

We use the approximation for the Helmholtz excess free
energy for the AOV model as given inf25g. For given exter-
nal potential, the density functional is numerically mini-
mized using a standard iteration procedure. The interfacial
tension is then obtained from Eq.s8d, and the adsorption of
both species from Eqs.s9d and s10d. Technical details about
the DFT implementation that also apply to the present study
are given inf13g.

IV. RESULTS

A. Wall-fluid interfacial tension

In this section we present the results on the interfacial
tension of model colloid-polymer mixtures from simulation,
SPT and DFT. We checked the simulation technique per-
forming simulations for a system of pure hard spheresshp

r

=0d and started by finding the optimal value forlmax, the
maximum height of the potentials20d. To this end, we com-
puted the average number of overlapskH /lll among par-
ticles and walls for different values of the potential heightl,
with H defined by Eq.s20d. The value oflmax depends on the
particle packing fraction. In Fig. 1 we plot the average num-
ber of overlaps between the colloidal particles and the walls

FIG. 1. The average number of overlapskH /lll, between col-
loidal particles and the walls per unit volume as a function of the
height of the step potential for the pure colloidal systemshp

r =0d
with packing fractionhc=0.4. Forblù10 the number of overlaps
is zero within statistical fluctuations and the system behaves like the
hard-sphere system. The line is a guide to the eye.
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for packing fractionhc=0.4. For all values ofblù10, with
b=1/kT the inverse temperature, the average number of
overlaps is zero within the statistical fluctuations. Smaller
packing fractions require smaller values ofblmax. We
checked the reliability of the approximation by computing
the reduced wall-fluid interfacial tensionbghssc

2 sFig. 2d and

found that our simulation results are consistent with the re-
sults of Ref.f27g. At packing fractionhc*0.45 the precision
of the simulation is low but comparable with the simulation
method of Heni and Löwenf27g using the wall insertion

FIG. 2. The reduced wall-fluid interfacial tensionbgs2 of hard
spheres adsorbed at a hard wall as a function of the colloidal pack-
ing fraction hc. We compare our simulation resultssopen circlesd
with Monte Carlo simulationsf27g sopen squaresd and Molecular
Dynamics simulationsf28g scrossesd. The dotted line indicates the
result from SPT and the solid line denotes the DFT result.

FIG. 3. Phase diagram of the AOV model for size ratioq=1 as
obtained from simulations, taken from Refs.f17g ssymbolsd, and
free volume theoryf11g sdashed lined as a function of the colloid
packing fractionhc and the polymer reservoir packing fractionhp

r .
F and S denote the stable fluid and solidsfccd phase. F+S and F
+F denote, respectively, the stable fluid-fluid, and fluid-solid coex-
istence region.

FIG. 4. The wall-fluid interfacial tension of the model colloid-polymer mixture adsorbed against a hard wall. The symbols denote
simulation results, dotted curves denote SPT resultsf14g, and the solid curves denote DFT resultsf14g. sad Size ratioq=0.6 andhp

r =0, 0.2,
and 0.4;sbd size ratioq=0.6 andhp

r =0.5, 0.6, and 0.7;scd size ratioq=1 andhp
r =0, 0.2, and 0.4;sdd size ratioq=1 andhp

r =0.7, 0.9, and
1.0.
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method, and of Henderson and van Swol using the pressure
tensor methodf28g. The agreement between simulation and
density functional theorysDFTd f14,42g is remarkably good.
The scaled particle theorysSPTd f14g overestimates the wall-
fluid tension at high density. This is due to the inaccuracy of
the SPT equation of state. Better results can be obtained
combining the SPT equation for the interfacial tension and
the Carnahan-Starling equation of state as explained in detail
in Ref. f27g.

We now determine the wall-fluid interfacial tension for
AOV colloid-polymer mixtures of size ratioq=0.6 andq
=1 for different values of the polymer reservoir packing frac-
tion hp

r and of the colloid packing fractionhc. The addition
of nonadsorbing polymers to a colloidal suspension of hard
sphere can induce a phase separation. In Fig. 3 we show the
bulk phase diagram for size ratioq=1 from previous simu-
lations f17g in the shp

r ,hcd representation. For comparison,
we also plot the phase diagram obtained from free volume
theory, which is equivalent to our DFT phase diagramf11g.
At hp

r =0 we find the freezing transition of the pure hard-
sphere system with packing fractionshc

f .0.494 andhc
s

.0.545 for the coexisting fluid and solid phases, respec-
tively. The critical point is estimated to be athp,crit

r =0.86,
while DFT, equivalent to the free-volume theory predicts
hp,crit

r =0.638. Forhp
r ,hp,crit

r , there is a stable fluid phase for
hc,0.494, a fluid-solid coexistence region for 0.494,hc
,0.545, and a stable solid phasesfcc crystald for hc

.0.545. Forhp
r .hp,crit

r , a fluid-fluid coexistence region ap-
pears where the system demixes in a colloidal liquid phase,
rich in colloids and poor in polymers, and a colloidal gas
phase, that is poor in colloids and rich in polymers. The
triple point, where the gas, the liquid, and the solid are in
coexistence, is located athp,triple

r =6. For hp
r .hp,triple

r , the
fluid-fluid coexistence region disappears, and a wide crystal-
fluid coexistence region appears. The overall phase diagram
is analogous to that of simple fluids upon identifyinghp

r with
the inverse temperature. Despite differences near the critical
point, DFT and simulations results are in good agreement for
state points athp

r .1.5. In Fig. 4sad and Fig. 4scd we show
the wall-fluid tension for state points below the gas-liquid
critical point for size ratioq=0.6 andq=1, respectively. For
comparison, we also plot the results for pure hard spheres
shp

r =0d. The addition of nonadsorbing polymers to a suspen-
sion of hard-sphere colloidssi.e., increasinghp

r d increases the
wall-fluid interfacial tension. Forhc=0, the wall tension is
the work done to introduce an impenetrable wall in an ideal
gas of polymers divided by the total area:bgshc=0d
=bPidsp/2, wherebPid=rp

r is the bulk pressure of the ideal
gas of polymer andsp/2 is the thickness of the depletion
layer of the polymer at the wall. For smallhc, the slope of
the tension is smaller than in the hard sphere case and for
hp

r . =0.4 it is negative. This is due to the attractive interac-
tion that arises between the colloidal particles and the walls.
For largehc the interfacial tension approaches that of pure

FIG. 5. The adsorptionGsc
2 of the colloid-polymer mixture at a hard wall as a function of the average colloid packing fractionkhcl.

Simulation results for polymer reservoir packing fractionhp
r =0 sopen trianglesd, hp

r =0.2 sopen circlesd, and hp
r =0.4 sopen squaresd are

compared with results from DFTssolid linesd and SPTsdashed linesd. The DFT results forhp
r =0 are omitted for clarity.sad Colloid

adsorption for size ratioq=0.6; sbd polymer adsorption forq=0.6; scd colloid adsorption forq=1; sdd polymer adsorption forq=1.
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hard spheres as at high colloid density the number of poly-
mers in the mixture rapidly approaches zero. Simulations and
DFT are in good agreement for all state points that we con-
sidered. The SPT predicts correctly the value athc=0, but it
systematically overestimates the wall-fluid tensions for all
values ofhc.0. One can show that the lowhc expansion
violates an exact wall sum rulef48g. The deviation increases
with increasinghp

r . In Fig. 4sbd we show the results for size
ratio q=0.6 for state points that are at higherhp

r than the
DFT gas-liquid critical point. We did not calculate the bin-
odal with computer simulation, but the system was still in the
one phase region of the phase diagram forhp

r =0.5 and 0.6.
For comparison, we also plot the results from DFT and SPT.
Note that DFT results are only shown in the stable gas and
liquid regimes and are hence disconnected from each other,
showing the biphasic region at intermediatehc. In Fig. 4sdd
we show the results for the size ratioq=1 for state points
that are at higherhp

r than the DFT gas-liquid critical point.
For small hc the SPT fails to reproduce the slope of the
curves, due to the absence of colloid correlationsslayeringd
near the hard wall in SPT theory.

B. Adsorption at a hard wall

In this section we present results on the adsorption of
colloids and polymer at a hard wall. We compare the simu-
lation results with those from DFT and SPT, Eqs.s9d and
s10d. In Figs. 5sad and 5sbd, we show the results on the col-
loidal adsorption while in Figs. 5scd and 5sdd, we show the
results on polymer adsorption for size ratioq=0.6 andq=1,
respectively. We notice that increasing the number of poly-
mer in the systemsi.e., increasinghp

r d the adsorption of col-

loids increases; the colloids are attracted at the hard wall by
the depletion interaction. As shown by the polymer adsorp-
tion, the increase in the number of colloidal particles at the
walls is followed by a decrease of the number of adsorbed
polymers while increasing the total number of polymers in
the system. The agreement between simulations and DFT is
good. This is not surprising since the DFT is known to pro-
vide an accurate description of the colloid-polymer mixture
at a planar hard wallf3g. The SPT equations reproduce the
hc=0 limit correctly. For hcÞ0 the essential features are
reproduced but with low accuracy. We also note that the
differences in SPT are larger for increasing polymer reservoir
packing fraction and for size ratioq=0.6. The SPT perfor-
mance is worse when the number of polymer in the mixture
is relatively high compared to the number of colloids.

C. Liquid–gas interfacial tension

In this section we present results on the liquid-gas inter-
facial tension of AOV colloid-polymer mixtures of size ratio
q=1, using three independent simulation techniques ex-
plained above. First we use the scaling of the interfacial
width. Figure 6 shows typical snapshots of the liquid-gas
interface for hp

r =0.95, 1.05, 1.4, and 2.0. One observes
clearly that the difference in densities of the two coexisting
phases increases with increasinghp

r . Moreover, the liquid-gas
interface becomes sharper upon increasinghp

r . The interfa-
cial order parameterCszd is determined and fitted to an error
function to extract the interfacial width. In Fig. 7 we plot the
square of the interfacial width as a function of the logarithm
of the lateral dimensionL. Employing a linear fit to our data
and using Eq.s44d, we determineglg. In Fig. 8sad and Fig.

FIG. 6. Typical snapshots of the colloid coordinates, obtained from Monte Carlo simulations based on the exact effective one-component
Hamiltonian for the colloids, of the liquid-gas interface of the model colloid-polymer mixture with size ratioq=1 andsad polymer reservoir
packing fractionhp

r =0.95; sbd hp
r =1.05; scd hp

r =1.4; sdd hp
r =2.
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8sbd we plot the liquid-gas interfacial tension as a function of
hc

l −hc
g andhp

r , respectively. We determine the colloid densi-
tieshc

l andhc
g at coexistence from the measured density pro-

file rcszd.
Then in the second method we determined the probability

distributions uPsNcduzc,hp
r for hp

r =0.9, 1.05, 1.15, 1.5, 2.0, 3.0,
and 4.0 in a cubic simulation box of lengthL=7,8,9,10, and
11. We show the probability distribution for box lengthL
=10 for varyinghp

r in Fig. 9. We observe clearly that the
density jump at coexistence andglg,L, i.e., the difference of
the maxima and minimum, increases withhp

r . We determined
glg for an infinite system by plottingglg,l as a function of
1/L2 in Fig. 10 and extrapolating,L→`, according to Eq.
s51d. Again, we plot the liquid-gas interfacial tension as a
function of hc

l −hc
g andhp

r in Fig. 8sad and Fig. 8sbd, respec-
tively. We determinedhc

g andhc
l at coexistence from

hc
g =

2psc
3

6
E

0

kNcl

NcuPsNcduzc8,hp
r dNc,

hc
l =

2psc
3

6
E

kNcl

`

NcuPsNcduzc8,hp
r dNc, s53d

where the factor 2 arises from the normalizations47d. Fi-
nally, we also employed Young’s equation to obtain an esti-
mate forglg. Dijkstra et al. f17g studied the wetting behavior
of AOV model colloid-polymer mixtures using computer
simulations. From measuring adsorption isotherms they con-
cluded that the colloidal liquid phase wets the wall com-
pletely upon approaching the gas branch of the gas-liquid
bulk binodal for values ofhp

r ,1.05. In this region the con-
tact angle vanishes andglg=sgwg−gwld, wheregwg and gwl

are wall-fluid tensionsgwf computed at the liquid-gas coex-
istence. We hence carried out simulations of the wall-fluid
tension for state points at coexistence below the wetting tran-
sition point:hp

r =0.935, and 0.977 and also slightly above the
wetting transition point:hp

r =1.14 and 1.25. The coexisting

densities were previously determined in Gibbs ensemble
simulationsssee Fig. 3d. We stress that the results obtained
on the basis of Young’s equation should be taken with great
care, as the wall-gas tension in our simulations were ob-
tained from a gas phase in contact with a planar hard wall,
which is a metastable state with respect to the equilibrium
state of a macroscopic wetting layer adsorbed at the gas-wall
interface.

However, DFT results show that the contact angle differs
only less than few a percent when the metastable gas-wall
density profile is employed instead of the stable density pro-
file that includes the wetting layer. In Fig. 8sad and Fig. 8sbd
we plot the differencegwg−gwl for hp

r =0.935,0.977,1.14,
and 1.25. Comparing the results obtained forglg from the
three different routes, we find good agreement. The agree-
ment with DFT results is good for high values ofhc

l −hc
g and

hp
r , but deviates close to the critical point, as might be ex-

pected. Similar deviations were found forglg, by Vink et al.

FIG. 7. The squared width of the liquid-gas interface of the
model colloid-polymer mixture with size ratioq=1 for polymer
reservoir packing fractionshp

r =0.95,1.05,1.4,2sfrom top to bot-
tomd, as a function of the logarithm of the lateral dimension of the
interface. Symbols denote simulation results, lines indicate linear
fits to the data.

FIG. 8. The reduced liquid-gas interfacial tensionbgsc
2 of the

model colloid-polymer mixtures with size ratioq=1. Open squares
denote simulation results from the capillary wave method. Filled
squares indicate simulation results using the probability distribution
method. Open circles refer to simulation results employing the dif-
ferencegwg−gwl. The solid curves indicates the DFT results. The
star indicates the position of the critical point,hp

r =0.86, obtained
from simulations.sad As a function of the difference in gas and
liquid packing fractionshc

l −hc
g at coexistence.sbd As a function of

the polymer reservoir packing fractionhp
r , at coexistence. The inset

shows the data close to the critical point on an enlarged scale.
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using the probability distribution method in simulation of the
full mixture for size ratioq=0.8 f22g.

V. CONCLUSIONS

In conclusion we investigated the wall-fluid tension of the
AOV model colloid-polymer mixtures of size ratioq=0.6
andq=1 using Monte Carlo computer simulations. We used
a thermodynamic integration method and a shoulder poten-
tial approximation for the hard-core potentials to determine
the free energy of the bulk system and the inhomogeneous
system. The wall-fluid interfacial tension is the surface ex-
cess free energy per unit area, and is in good agreement with
the DFT results. The SPT wall-fluid interfacial tension is in
overall agreement with simulations, but the comparison is
worse for increasing polymer reservoir packing fraction. We
also investigated the colloid and polymer adsorption of the
colloid-polymer mixture at a planar hard wall and we found
good agreement with DFT results. We derived a SPT expres-
sion for the adsorption of colloid polymer mixtures at a hard
wall. The expression reproduce the essential features of the
adsorption, but with low accuracy. In addition, we studied
the liquid-gas interfacial tension of the AOV model colloid-
polymer mixtures of size ratioq=1 usingsid the dependence
of the interfacial width on the logarithm of the lateral size of
the simulation box as predicted by the capillary wave theory,
sii d the probability distribution method, andsiii d Young’s
equation in the complete wetting regime. We find remarkably
good agreement between the different sets of results. More-
over, as we used the effective one-component simulations in
the probability distribution method, we were able to investi-
gate the interfacial tension for highhp

r . As the bulk binodal
from DFT, equivalent to that of free-volume theoryf11g,
agrees well with the simulation results forhp

r .1.5, one

might expect a similar agreement for the interfacial tension.
We found that our simulation results forglg approaches the
DFT results upon increasinghp

r and agree well with the DFT
results only forhp

r .3. Close to the critical point, deviations
are found between the simulation and DFT results as ex-
pected due to the shift in critical point.

The good agreement of our simulation results for wall-
fluid and fluid-fluid interfacial tensions with those of the
DFT hint at a reliable description of the magnitude of contact
angle of the colloidal liquid-gas interface and a hard wall
f13g. Nevertheless, carrying out detailed simulations at bulk
coexistence in thesnumerically very demandingd partial wet-
ting regime of largehp

r is an interesting issue for future work,
in particular in light of the fact that the contact angle can be
measured in a directsthough not easyd way in experiments
f7,9,10g. Furthermore our thermodynamic integration tech-
nique is well suited to determine the free energy of confined
crystals and hence to predict the full phase behavior of con-
fined colloid-polymer mixtures; work along these lines is in
progress. Finally we mention that interfacial properties at
curved substrates have attracted recent interestf49,50g;
colloid-polymer mixtures are well suited to investigate such
situationsf10g.
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FIG. 10. The system size dependence of thesscaledd liquid-gas
interfacial tensionbglg,Lsc

2 of a colloid-polymer mixture with size
ratio q=sp/sc=1 in a cubic box with volumeV=L3sc

3 at varying
polymer reservoir packing fractionhp

r =0.9, 1.05, 1.15, 1.5, and 2.0
sfrom bottom to topd. The dashed lines are least-squares linear fits.

FIG. 9. Logarithm of the probabilityPsNcd snot normalized, as
Ps0d is taken to be 1d of finding Nc colloids with diametersc for a
colloid-polymer mixture with size ratioq=1 in a cubic box with
volume V=1000sc

3 at varying polymer reservoir packing fraction
hp

r =0.9, 1.05, 1.15, 1.5, and 2sfrom top to bottomd, as a function of
hc. All state points are at coexistence.
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