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Phase diagrams of hard-core repulsive Yukawa particles
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We determine the phase behavior of hard spheres interacting with repulsive Yukawa~screened Coulomb!
interaction using computer simulations. We study the effect of the hard-core diameter on the phase behavior of
repulsive Yukawa particles by comparing our phase diagrams with that of repulsive point Yukawa particles. We
show that for sufficiently high contact values of the pair potential (be520, 39, 81, and higher!, the fluid-face-
centered-cubic~fcc! solid, at high screening, the fluid-body-centered-cubic~bcc! solid and the bcc-fcc coex-
istence for packing fractionsh&0.5 are well described by the phase boundaries of point Yukawa particles, by
employing a mapping of the point Yukawa system onto a hard-core repulsive Yukawa system. While the
bcc-fcc coexistence is well described by the point Yukawa limit forh,0.5, we find a deviation at higherh as
the hard-core repulsion favors the fcc solid forh>0.5, independent of the screening. Consequently, a second
triple point appears in the phase diagram in the weak screening regime. In addition, we find that all the phase
coexistence regions in our phase diagrams for hard-core repulsive Yukawa system are very narrow, i.e., a small
density jump in the coexisting phases.

DOI: 10.1103/PhysRevE.68.021407 PACS number~s!: 82.70.Dd, 64.70.2p, 64.60.Cn
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I. INTRODUCTION

Particles whose interactions are described by the repul
Yukawa ~screened Coulomb! pair potential can be used t
model various physical systems including elementary p
ticles, small charged ‘‘dust’’ grains observed in plasma en
ronments, and suspensions of charge-stabilized colloids.
interest lies especially in the phase behavior of the last
ample, i.e., colloids. In what follows, since there is no dan
of misinterpretation, we refer to ‘‘repulsive Yukawa pote
tial’’ simply as ‘‘Yukawa potential.’’

Charge-stabilized colloidal suspensions consist of sph
cal or anisotropic mesoscopic colloidal particles suspen
in a polar solvent with coions and counterions. A direct tre
ment of the full problem, including the microscopic coio
and counterions and the mesoscopic colloids, is, in m
cases, impractical due to a large gap between the length
time scales involved for the various species. Therefore, m
studies on charge-stabilized colloids are based on mode
which the degrees of freedom of the microscopic partic
have been integrated out such that the mesoscopic part
interact with an effective potential. The standard way to
this coarse graining to an effective one-component syste
due to the seminal work of Derjaguin, Landau, Verwey, a
Overbeek, which is known as the DLVO theory after the
@1#. The DLVO theory predicts that the effective pair inte
action between the colloids consists of a hard-core repul
due to the finite size of the colloids, screened-Coulo
~Yukawa! repulsion with the screening length given by t
Debye lengthk21 of the electrolyte, and van der Waals a
tractions with a typical range of a few nm. The screen
length k21 defines the thickness of the double layer of o
posite charge surrounding each colloidal surface. Rangek21

of the screened-Coulomb repulsion is a function of the
concentration of the electrolyte, the dielectric constant of
solvent, and the temperature. In most situations the van
Waals attractions can be neglected and one ends up w
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model for the colloid-colloid interaction that is given by th
hard-core Yukawa potential.

The phase diagram of point Yukawa particles is kno
from earlier studies@2,3#. While the small dust grains can b
thought of as being pointlike, i.e., without physical dime
sions, the same is not outright true for colloidal particles w
a mesoscopic diameter. Intuitively, two limiting cases for t
effect of the hard core can be considered.

~i! In the limit of highly charged colloids, or low densit
of colloids ~or both!, the particles hardly ever come clos
enough to touch each other and therefore, the effect of
hard-core diameter is minimal.

~ii ! Analogously, in the other extreme of low charge,
high density~or both!, the hard-core interaction should pla
a large role. However, in order to make a more precise an
sis, we decide to study the phase behavior of hard-c
Yukawa particles systematically.

Phase diagram of hard-core Yukawa particles has b
earlier studied in Refs.@4,5#. These earlier studies have,
many ways, inspired our work: Not only do we use simil
methods but also directly utilize the data given in the
Among other things studied in Ref.@5#, a full phase diagram
was presented for one contact valuebe58 and also some
comparison with point Yukawa particle results was made.
extend this study by calculating phase diagrams for sev
values ofbe and perform a mapping between the hard-co
Yukawa and the point Yukawa systems. Our main conclus
is that the phase diagram of hard-core repulsive Yukawa
ticles can be obtained for any contact valuebe which is
sufficiently high (be520 or higher!, by mapping the well-
known phase boundaries of the point Yukawa system o
those of the hard-core repulsive Yukawa system and us
that the stable bcc region is bounded by a bcc-fcc coex
ence ath'0.5, i.e., the hard-core repulsion favors the f
phase forh.0.5.

This paper is organized as follows. In Sec. II we descr
the model and the methods which are used to determine
phase behavior of the hard-core Yukawa particles. In Sec
©2003 The American Physical Society07-1
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we present the results, compare them to earlier result
point Yukawa particles, and give technical details regard
the calculations, and finally, in Sec. IV, we conclude.

II. MODEL AND METHODS

Our model consists of particles interacting with the pa
wise repulsive Yukawa potential, which includes the ha
core interaction. This means that the pair potential is giv
by

bu~r !5H be
exp@2ks~r /s21!#

r /s
, r .s

`, r ,s,

~1!

where be is the value of the pair potential at contact p
kBT, k is the inverse Debye screening length, ands is the
hard-core diameter. Note that with the help of the DLVO p
potential, the contact value can be written as

be5
Z2

~11ks/2!2

lB

s
, ~2!

whereZ is the charge of the colloids andlB5be2/es is the
Bjerrum length of the solvent with dielectric constantes @1#.
The total potential energy ofN particles is given by the sum
over all pairs, i.e.,

U~rN!5(
i , j

N

u~r i j !. ~3!

In most experiments on charge-stabilized colloidal susp
sions, one makes several assumptions for chargeZ and the
inverse Debye screening lengthks. ChargeZ is often re-
placed by a so-called renormalized or saturated charge
depends both onks and on the packing fractionh
5p/6s3N/V @6,7#. Furthermore, one often considers aks
that depends onZ, h, and on the added salt concentrati
@8#. This means that the relationship betweenbe, ks, andh
is complicated. However, anh andZ independentks can be
realized by coupling the system to a salt reservoir and c
sideringks to be that of the reservoir. In addition, we tak
the value ofbe to be fixed, which can later be related
experimental system parameters through Eq.~2!. In this way,
be and ks are independent variables, i.e., independent
each other and of the colloid packing fractionh, and we
calculate the phase behavior in the three dimensional s
spanned by them. This means that two phases in coexist
have, as usual, equal pressurep and equal chemical potentia
m, but have also equalks and equalbe, while h is differ-
ent.

Our purpose is to use a combination of Helmholtz fr
energy calculations and the so-called Kofke integrat
method@9# to trace out the phase diagram of the hard-c
Yukawa particles. Similar method has already been use
study the phase diagram of the hard-core Yukawa particle
Refs.@4,5#. The phase diagram consists of stable regions
the fluid, bcc, and fcc phases that are bounded by coe
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ence regions between any two phases. Therefore, the d
mination of the phase diagram reduces to the calculation
the coexistence lines. Points on the coexistence line ca
determined by calculating, for each phase, the Helmh
free energy per volume as a function of density and using
common tangent construction to obtain the densities of
coexisting phases. In principle, this could be repeated
every point to obtain a smooth coexistence line. Howev
this would be computationally very demanding and, as
turns out, not even necessary. The reason for this is that o
one point on the coexistence line is known, the rest of
line can be calculated without performing additional free e
ergy calculations. This can be achieved by employing a
merical method first proposed by Kofke@9#. We are inter-
ested in calculating the phase coexistence lines in
(h,ks) plane for a fixedbe. In this case, Kofke’s method
amounts to integrating

dp52
^bU8/N&12^bU8/N&2

^V/Ns3&12^V/Ns3&2

d~ks! ~4!

~for the derivation, see Ref.@5#! from a known starting point
(p,ks). Note that the two phases in coexistence have
samep, be, andks but differenth. In Eq. ~4!, p5bPs3 is
the dimensionless pressure,^•••& i denotes ensemble averag
of the i th phase (i 51,2), andU8 is the partial derivative of
the total potential energy with respect toks.

In practice, Eq.~4! is integrated as follows. Differentials
dp and d(ks) are replaced by finite differencesDp and
D(ks). Starting from a known coexistence point withp and
ks, Monte Carlo~MC! simulations@10# are performed for
both the phases in theNPT ~isobaric! ensemble to calculate
the ensemble averages in Eq.~4!. This gives us a prediction
for the slope in the coexistence line in the (p,ks) plane.
Changingks to ks1D(ks), we perform MC simulations
for both the phases at pressurep1Dp predicted by Eq.~4!
and we calculate again the ensemble averages in Eq.~4!.
Continuing in this manner gives us a series of poi
$pj ,(ks) j% that lie on the coexistence line. At each point t
packing fractions of the two phases are determined using
ensemble averagesh i5p/6s3N/^V& i , obtained from the
NPT simulations.

The practical limitation of this method is that there is n
inherent mechanism that guarantees that we stay on the
existence line. In other words, during the integration of E
~4!, numerical errors may accumulate to yield large dev
tions from the actual coexistence line. This problem can
avoided by employing a more sophisticated version of
method by Meijer and El Azhar, where additional free ene
calculations are used to fix the estimates of the coexis
points @4#. However, instead of implementing the method
Meijer and El Azhar, we decided to check the stability of t
Kofke integration by performing separate free energy cal
lations at a couple of points along the coexistence line. T
difference between the results from the free energy
Kofke integration gives us an idea of the total numeric
error accumulated. To calculate the Helmholtz free ene
we use the so-calledl integration for the fluid phase an
Frenkel-Ladd method for the crystal phases@10,11#.
7-2
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In order to compare our results for hard-core Yukawa p
ticles to the earlier results obtained for point Yukawa p
ticles @2,3#, we need to define a mapping between the t
systems. A natural choice for this mapping is to equate
two Yukawa potentials outside the hard core. However, si
the results for the point Yukawa particle phase diagrams
typically presented in units different than those for the ha
core Yukawa particles, we have to explain the situation
little further.

In the case of point Yukawa particles, the relevant len
scale is the characteristic interparticle separationa5r21/3.
Oncea is chosen as the length scale, the pair potential
scribing the point Yukawa particles can be written as

bu~r !5bU0

exp~2lr /a!

r /a
, ~5!

wherebU0 is a constant prefactor andl is the inverse of the
screening length in units ofa. While the phase space o
hard-core Yukawa particles is three dimensional (be, ks,
andh), only two independent variables exist in the case
point Yukawa particles; sincea is chosen as the length scal
there is no need for a density axis. We are therefore left w
a two dimensional phase space consisting of prefactorbU0
and the inverse screening lengthl. Setting the two pair po-
tentials in Eqs.~1! and~5! to be equal forr .s results in two
equations given by

k5l/a,

ekssbe5bU0a. ~6!

The first line of Eq.~6! results from setting the exponenti
decays of the two pair potentials to be equal and the sec
from the equality of the prefactors. Using the fact thata
5(6h/p)21/3s, we can rewrite Eq.~6! as

bU05eksbe~6h/p!1/3,

l5ks~6h/p!21/3. ~7!

Equation~7! can be used to map a phase diagram of ha
core Yukawa particles to a phase diagram of point Yuka
particles, and vice versa.

As mentioned above, the phase diagram of the po
Yukawa particles can be given in terms of the inverse scre
ing length l and prefactorbU0. This is what we call the
(l,bU0) representation. Another representation of the po
Yukawa phase diagram is the (l,T̃), where

T̃5F2

3
l2bU0uM~l!G21

~8!

is the dimensionless temperature and whereuM is the Made-
lung energy of a fcc crystal~i.e., the potential energy of a
ideal crystal! per particle perbU0 @2,3#. The (l,T̃) represen-
tation is convenient since it leads to phase boundaries
are almost straight lines. In Ref.@3#, the results for the fluid-
bcc and fluid-fcc melting lines and the bcc-fcc phase bou
ary are given as polynomial fits in the (l,T̃) plane. We give
02140
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fits here for the phase boundaries of point Yukawa partic
in the (l,bU0) plane using the results of Ref.@3#, as this
representation does not include the more elaborate Made
energy calculation. The fluid-bcc phase boundary is well
ted by

ln~bU0!54.67020.041 71l10.1329l220.010 43l3

14.34331024l4

26.92431026l5, for 0<l<12, ~9!

while the fit of the bcc-fcc phase boundary is given by

ln~bU0!597.651 062150.469 699l1106.626 405l2

241.671 36l319.639 931l421.315 024 9l5

10.097 848 11l6

20.003 063 96l7, for 1.85<l<6.8. ~10!

Together with Eq.~7!, the fits in Eqs.~9! and~10! enable us
to map the phase diagram of point Yukawa particles onto
hard-core Yukawa system.

NPT andNVT MC simulations, needed in the Kofke in
tegration and free energy calculations, were carried out
cubic box~with few exceptions! and with periodic boundary
conditions. The cutoff radius of the potential was alwa
chosen to be half of the box length and a continuous dis
bution of particles beyond the cutoff was assumed for the
correction of the total potential energy@10#. In the limit of
weak screeningks!1, the use of cutoffs in the potential i
inaccurate, as the range of the potential is larger than ha
the box length. This problem can be fixed by using Ewa
summation adapted for Yukawa interactions@12#, or by ap-
plying the method elaborated in Ref.@13#, where spline func-
tions are used to approximate the effective interactions
result from taking into account all image particles. In t
current case, it is, however, sufficient to limit ourselves in t
regimeks>2.0, where the effects of the finite cutoff rema
small or can be eliminated by moderately increasing the s
tem size. We believe that the essential results remain
same although, with the inclusion of noncut potentials,
error bars could be made smaller.

III. RESULTS

Using the methods described in Sec. II, we study
phase behavior of hard-core Yukawa particles, whose in
actions are described by the pair potential given by Eq.~1!.
The phase diagrams are calculated for fixed contact va
be and they are given in the (h,1/ks) representation. We
calculate the phase diagram for four contact values,be58,
20, 39, and 81, and the results are given in Figs. 1, 2, 3,
4, respectively. In all the four phase diagrams the gray ar
bounded by the solid lines give the coexistence regions~tie
lines are horizontal!, while the dashed lines give the poin
Yukawa phase boundaries of Ref.@3#. The mapping needed
to plot the point Yukawa results was discussed in Sec.
This section is organized in two parts: First we present
7-3
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FIG. 1. Phase diagram for a system in which the particles in
act via a hard-core repulsive Yukawa pair potential Eq.~1! with
be58 presented in the~packing fraction h, Debye screening
length 1/ks) plane. In charge-stabilized colloidal suspensions,
lower part of the diagram (1/ks50) is a high salt regime and th
upper part (1/ks50.5) is a low salt regime. The solid lines a
coexistence lines obtained by using the Kofke integration and
gray areas denote the coexistence regions. The tie lines are hor
tal. We find a stable fluid phase at lowh, a stable face-centered
cubic ~fcc! solid at highh, and in between, a stable body-centere
cubic ~bcc! solid. The dashed lines are the phase boundaries o
point Yukawa particles by Hamaguchi, Farouki, and Dubin@3#. The
squares (h) mark the starting points for the Kofke integration an
the circles (s) are checkup points for the coexistence that w
obtained using free energy calculations.

FIG. 2. Phase diagram for a system in which the particles in
act via a hard-core repulsive Yukawa pair potential Eq.~1! with
be520 presented in the (h,1/ks) plane. The symbols and lines ar
the same as in Fig. 1. Note the difference in theh scale, compared
to Figs. 1, 3, and 4.
02140
results and second, we give technical details regarding
calculations.

Let us first describe the structure of the phase diagram
Figs. 1–4. The phase diagrams start from the hard-sp
limit at 1/ks50 with coexisting fluid and fcc phases a
packing fractionsh50.491 andh50.543, respectively. As
the softness and the range of the interactions increase
increasing screening length 1/ks, the fluid-fcc coexistence
becomes thinner and moves to lower packing fractions
agreement with Ref.@14#. A further increase of 1/ks takes us
to the fluid-bcc-fcc triple point. Here, the softness and
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FIG. 3. Phase diagram for a system in which the particles in
act via a hard-core repulsive Yukawa pair potential Eq.~1! with
be539 presented in the (h,1/ks) plane. The symbols and lines ar
the same as in Fig. 1. Note the difference in theh scale, compared
to Figs. 1, 2, and 4.

FIG. 4. Phase diagram for a system in which the particles in
act via a hard-core repulsive Yukawa pair potential Eq.~1! with
be581 presented in the (h,1/ks) plane. The symbols and lines ar
the same as in Fig. 1. Note the difference in theh scale, compared
to Figs. 1, 2, and 3.
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range of the interactions are so pronounced that at lo
packing fractions it is more favorable to form a bcc crys
than a fcc crystal.

Increasing 1/ks from the triple point, two phase coexis
ence lines originate, namely, the fluid-bcc and the bcc-
While the fluid-bcc coexistence line is relatively smooth, t
bcc-fcc line moves quickly to higher packing fraction, pr
ducing a broad region of stable bcc phase. This is espec
true forbe520, 39, and 81~Figs. 2–4!, and we can see tha
the steepness of this ‘‘shootup’’ behavior becomes more p
nounced with largebe. After the shootup, at higher values o
1/ks, the bcc-fcc coexistence line turns and behaves mor
less as a straight vertical line ath'0.5. At high 1/ks the
fluid-bcc coexistence line turns to higher packing fractio
i.e., here the fluid phase becomes more favorable with
spect to the bcc phase. A simple explanation for this is tha
high 1/ks, where the range of interactions becomes lon
than the average interparticle spacing in the crystal, the
portance of the repulsive bonds needed to form the bcc c
tal vanishes. Since in this case both the fluid and the
phases have a similar energetic contribution to the free
ergy, the fluid phase wins since it has larger entropy.

It is worthwhile to note that in all the phase diagrams
Figs. 1–4, both the fluid-bcc and the bcc-fcc coexiste
regions are very narrow, or in other words, the density d
ference between the two phases is small. In particular,
bcc-fcc coexistence region is extremely narrow: The den
jump between the bcc and the fcc phases is the larges
be58, where it is less than 0.3%@15#. Therefore, it is sur-
prising that some experiments on charge stabilized collo
report on~broad! bcc-fcc coexistence, i.e., they are able
have measurement points well inside the bcc-fcc coexiste
region @16,17#.

In the case of the lowest contact valuebe58 ~Fig. 1!, the
bcc region ends at another triple point around 1/ks50.28, at
higher 1/ks, fluid-fcc coexistence continues. The presen
of the second triple point for the hard-core Yukawa partic
has already been found in Ref.@5#, where the phase diagram
for be58 was presented. The tendency of the bcc region
close up can also be seen in the phase diagram forbe520
~Fig. 2!, where the fluid-bcc and the bcc-fcc coexisten
lines turn towards each other at around 1/ks50.5. Note also
that this tendency moves to higher 1/ks with increasing con-
tact valuebe. Based on our results, we expect another tri
point for all be at high values of 1/ks, although our calcu-
lations could only reach it atbe58. We also predict tha
with increasingbe, this other triple point escapes ver
quickly to high values of 1/ks, i.e., to the regime where
numerical calculations are difficult to carry out.

In Fig. 5 we summarize the results from Figs. 1–4
plotting all the phase diagrams in one figure. We obse
from Fig. 5 that the low 1/ks triple point moves to lowerh
and higher 1/ks with increasing contact valuebe. Another
observation is that the region of stable bcc phase broad
mainly because the fluid-bcc coexistence line moves to lo
packing fractions, while the bcc-fcc coexistence line mov
only slightly to higherh and seems to saturate aroundh
*0.5. We discuss the dashed line connecting the triple po
in Fig. 5 later.
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We now turn our attention to a comparison of our resu
on hard-core Yukawa particles with those obtained for po
Yukawa particles by Hamaguchi, Farouki, and Dubin@3#.
Note that the calculations of Hamaguchi, Farouki, and Du
did not include the determination of the phase coexiste
regions. Therefore, in the case of point Yukawa particles,
can only talk about phase boundaries. In Figs. 1–4 th
phase boundaries are plotted with dashed lines. Figures
show that the phase boundaries of hard-core Yukawa
ticles approach those of the point Yukawa particles with
creasingbe. This is due to the fact that at high values ofbe
the particles hardly ever get close enough to feel the ha
core interaction. In the case of charge-stabilized colloi
suspensions, highbe corresponds to highly charged colloid
@see Eq.~2!#. The deviation between the point and hard-co
Yukawa results is particularly pronounced in the case ofbe
58 ~Fig. 1!. For the rest of the phase diagram with high
be, the description with point Yukawa particles improve
Especially, the fluid-fcc line at high 1/ks, the fluid-bcc line
as well as the beginning of the bcc-fcc line are well predic
by the point Yukawa picture. However, the vertical rise of t
bcc-fcc line at high 1/ks is completely missing in the poin
Yukawa phase diagram. Instead, the bcc region is predi
to become indefinitely broad in the point Yukawa limit, hin
dering the possibility of a second triple point. Thus, we s
that the closing of the bcc region by a second triple poin
caused solely by the presence of the hard-core interactio

Next, we make a small excursion to study the position
the low 1/ks triple point. In the case of point Yukawa pa
ticles, the position of the triple point is atl tp56.90 and
bU0

tp53474 @3#. We can map this point to any hard-co
Yukawa system by using Eq.~7!. More specifically, we can
solve the triple pointks for fixed be from

FIG. 5. Phase diagrams of Figs. 1–4 plotted in one figure. T
dashed line gives the line of triple points predicted by the po
Yukawa results of Hamaguchi, Farouki, and Dubin@3#, the dia-
monds (L) highlight the triple points atbe58, 20, 39, and 81, and
the squares (h) mark the position of the triple points used in ou
calculations.
7-5
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ks eks5bU0
tpl tp/be ~11!

and use the second line of Eq.~7! to obtainh. The resulting
line of triple points is denoted with the dashed line in Fig.
the diamonds highlight the triple points atbe58, 20, 39,
and 81, and the squares give the triple points used in
calculations. We see that the agreement between the tw
sults ~the squares and the diamonds! does not depend muc
on the value ofbe and therefore we can say that the positi
of the lower triple point is given precisely enough by t
point Yukawa results.

It is also instructive to map our hard-core Yukawa pha
diagrams in the (l,bU0) and (l,T̃) representations that ar
typically used to represent the phase diagram of po
Yukawa particles. The mapping is given by Eqs.~7! and~8!.
The phase diagram in the (l,T̃) representation is shown i
Fig. 6: The solid lines are the point Yukawa results
Hamaguchi, Farouki, and Dubin@3# and the other lines are
our hard-core Yukawa results. In the regions of the ph
diagram in Fig. 6 where the lines from differentbe values
fall on top of each other and on top of the point Yukaw
lines, the presence of the effects of the hard-core interac
are minimal. This is especially true near the low 1/ks triple
point region, located atl tp56.90 andT̃tp50.0038@3#. Mov-
ing from this triple point to larger values ofl, corresponding
to decrease of 1/ks, we see that the point Yukawa results f
the fluid-fcc phase boundary stays between the fluid-fcc
existence regions of the hard-core Yukawa results. Note
the fluid-fcc phase coexistence region looks very broad
this representation and that the tie lines are no longer h
zontal. Moving away from the triple point along the fluid-bc
or the bcc-fcc line, we see that deviations from the po
Yukawa limit appear sooner for smallerbe, as already men-
tioned.

In Fig. 7 we show the phase diagram in the (l,bU0)

FIG. 6. Phase diagram in the (l,T̃) representation. The solid
lines are point Yukawa results of Hamaguchi, Farouki, and Du
@3# and the rest of the lines are our hard-core Yukawa resultsbe
58, 20, 39, and 81 using the mapping discussed in the text.
clarity, the coexistence regions of the hard-core Yukawa results
left unfilled and only the coexistence lines are drawn.
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representation plotted in linear-log scale. In this represe
tion, the bcc-fcc and the fluid-fcc coexistence line from o
hard-core Yukawa calculations behave as straight lines. T
inspired us to estimate the position of the second, i.e.,
high 1/ks, triple point for be520 andbe539 by simply
extrapolating the coexistence lines and calculating the in
cept point. The resulting approximate triple points are plot
in Fig. 7 with stars. After converting to the (h,ks) plane
using Eq.~7!, they readh50.47 andks51.7 for be520,
andh50.57 andks51.0 for be539.

Technical Details

The rest of this section is devoted to the technical det
on calculating the phase diagrams and on the estimatio
the error. The phase diagram forbe58, shown in Fig. 1,
was already in Ref.@5#, and serves also as a check for t
methods used. In order to obtain the phase diagram in Fig
four Kofke integrations were started from the three positio
given in Ref. @5#, one from the hard-sphere limit withp
511.5541, 1/ks50.0001 (ks510 000.0), hfluid50.491,
and h fcc50.543, two from the lower triple point withp
520.70, 1/ks'0.156 @ks56.4, Eq. ~11! predicts ks
56.18], hfluid50.373, hbcc50.379, andh fcc50.380, and
one from the higher triple point withp544.1, 1/ks
'0.286 (ks53.5), hfluid50.453 andh fcc50.460. In all the
Kofke integrations the system sizes wereNfluid5256, Nbcc
5250, andNfcc5256, and step size ofD(ks)2150.004
was used. The thermodynamic averages needed in Eq~4!
were calculated by performingNs510 000NPT MC steps
~trial moves per particle, or attempt to change the volum!,
both for the equilibration and for the production runs. Wh
calculating the bcc-fcc coexistence,Ns was increased to
30 000.

The accuracy of the Kofke integration can be checked
measuring how the end points of the integration match w

n

or
re

FIG. 7. Phase diagrams in the (l,bU0) representation plotted in
linear-log scale. The lines are the same as in Fig. 6 and the star* )
mark the approximate positions of the triple points forbe520 and
39, obtained by extrapolation.
7-6
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the known results. In order to know the fluid-fcc coexisten
at 1/ks50.5, free energy calculations were performed w
system sizeNfluid5Nfcc5500. Here and in all subseque
free energy calculations, 10 000NVT MC steps for the
equilibration and measurement runs were taken in orde
calculate the ensemble averages, and ten integration p
were used in the numerical integration using the Gaus
quadrature. In Fig. 1, the resulting fluid-fcc coexisten
points are marked with circles. As Fig. 1 shows that
fluid-bcc, bcc-fcc, and low 1/ks fluid-fcc coexistence lines
end up at the correct triple points, we expect that the error
the corresponding Kofke integrations are small. However
1/ks50.5, the fluid-fcc coexistence points (hfluid50.486
and h fcc50.495) do not correspond exactly to the free e
ergy results (hfluid50.476 andh fcc50.485), although the er
ror, i.e., the difference in the packing fractions, is only abo
1%. To check if the error is due to the difference in t
system size, we redid the free energy calculation with
same system size as used in the Kofke integration,Nfluid

5Nfcc5256. This resulted in fluid-fcc coexistence wi
hfluid50.469 andh fcc50.477, leading to an error of slightl
less than 2% with respect to the Kofke integration res
Furthermore, since the result with the same system size
not correspond to the end point of the Kofke integration,
can conclude that the error is most likely due to an erro
the position of the second triple point at 1/ks'0.286.

For the other phase diagrams withbe 5 20, 39, and 81,
the location of the triple point, and hence the starting poin
the Kofke integration, was obtained from Fig. 5 of Ref.@5#.
For the phase diagram withbe520 in Fig. 2, three Kofke
integrations were started fromp515.0, 1/ks'0.194 @ks
55.15, while Eq. ~11! predicts ks55.40] with hfluid
50.250, hbcc50.2540, andh fcc50.2543. Note that while
Fig. 5 of Ref.@5# gives only the pressure at the triple poin
the packing fraction can be determined by performing
NPT MC simulation. The same system sizes, number of M
stepsNs , andD(ks)21 were used as for the phase diagra
with be58. The two check points at 1/ks50.5 and the
fluid-bcc and the bcc-fcc coexistence points, were obtai
using free energy calculations with system sizesNfluid
5Nbcc5686 andNfcc5864. As can be seen, the accuracy
the Kofke integration is good for the bcc-fcc coexistence l
~error 1%! while the fluid-bcc line is slightly off~error 2%!.

For the phase diagram withbe539 in Fig. 3, the triple
point is atp510.516, 1/ks'50.211 @ks54.75, Eq.~11!
predictsks54.84] with hfluid50.1797, hbcc50.1824, and
h fcc50.1827. Again the same system sizes, number of
stepsNs , andD(ks)21 were used in the Kofke integratio
as forbe58 and 20. We found that the bcc-fcc coexisten
line, the Kofke integration, was stable until 1/ks'0.32. At
higher values of 1/ks we found large fluctuations inh, de-
noting the breakdown of the Kofke integration. Only mi
damping of the fluctuations were observed when the Ko
integration was repeated with a smaller step sizeD(ks)21

50.001~and withNs515 000). In order to resolve the bcc
fcc coexistence line above 1/ks50.32, a starting point was
determined by free energy calculations at 1/ks'0.35 (ks
52.86). The free energy calculations were performed
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systems withNbcc5700 andNfcc5768 particles. The system
size was increased in order to minimize the effect of
finite cutoff length. Note that with these system sizes
simulation box is not cubic but close to it. The resulting b
and fcc packing fractions arehbcc50.4835 and h fcc
50.4837 with pressurep5240.318. From this coexistenc
point, two Kofke integrations with the larger system siz
were performed towards lower and higher 1/ks with step
sizesD(ks)2150.002 andD(ks)2150.006, respectively.
The number of MC steps for both Kofke integrations w
Ns520 000. For the Kofke integration going down in 1/ks,
large fluctuations were again seen near 1/ks50.32. In order
to obtain a continuous phase diagram we connected
stable parts of the two Kofke integrations, one starting fro
the triple point and one starting from the bcc-fcc coexisten
point determined by free energy calculations. Free ene
calculations were performed at 1/ks50.5 for the fluid-bcc
coexistence point (Nfluid5Nbcc5432) and as can be seen, th
accuracy of the Kofke integration is adequate~error ,2%).

In the case of the phase diagram forbe581, given in Fig.
4, the location of the triple point is atp57.242 and 1/ks
'50.241 @ks54.15, Eq. ~11! predicts ks54.24] with
hfluid50.1214, hbcc50.1232, andh fcc50.1234. The same
Ns and D(ks)21 were used, as previously. Again, as f
be539, the calculation of the bcc-fcc coexistence line w
hindered because of a breakdown of the Kofke integrati
which this time occurred close to 1/ks50.4. We noticed that
above 1/ks50.4, in order to get rid of the effect of the finit
cutoff, the system size should be increased dramatica
Therefore, instead of performing Kofke integrations wi
very large system sizes, we used free energy calculation
two points, at 1/ks'0.42 (ks52.4) and at 1/ks50.5, and
connected the two points in order to get an estimate of
bcc-fcc coexistence line. The free energy calculation
1/ks'0.42 was done with the same parameters as forbe
539, except that the system size for the bcc was increase
Nbcc5800 ~resulting in an almost cubic simulation box!. At
1/ks50.5, the system sizes were further increased toNbcc
51024 ~cubic box! andNfcc5972 ~almost cubic box!.

IV. CONCLUSIONS

We determined the phase diagram of a system in wh
the particles interact with the hard-core repulsive Yuka
pair potential~1! with contact valuesbe58, 20, 39, and 81.
We compared the phase diagrams with those of the p
Yukawa particles by mapping both systems onto each ot
We showed that the difference between the phase beha
of the hard-core repulsive Yukawa and point Yukawa p
ticles reduces upon increasing the contact valuebe, as might
be expected. By comparing the phase diagrams, in more
tail we determined the influence of the hard-core diame
more precisely. We found that the fluid-bcc coexistence l
is well predicted by the point Yukawa phase diagram, wh
the high 1/ks bcc-fcc coexistence line deviates. The diffe
ence in the bcc-fcc coexistence line is caused by the h
core repulsion that at high packing fractions (h*0.5) favors
the fcc phase. The behavior of the bcc-fcc coexistence
for hard-core Yukawa particles gives rise to the second tr
7-7
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A.-P. HYNNINEN AND M. DIJKSTRA PHYSICAL REVIEW E68, 021407 ~2003!
point at high 1/ks ~existence of which has already bee
reported in Ref.@5#!, something that is missing from th
phase diagram of point Yukawa particles. It was obser
that with increasingbe, the second triple point escape
quickly to high values of 1/ks where, with the methods use
in this study, the calculations are difficult to carry out. B
cause of this, our calculations reached the second triple p
only for the lowest contact valuebe; for two other values of
be we estimated its position by extrapolation.

Our calculations explicitly included the determination
the phase coexistence regions. We observed that all the
existence regions are very small, i.e., the difference betw
the densities of the coexisting phases is small. This was s
to be the case especially for the bcc-fcc coexistence. It
also observed that the coexistence regions become sm
with increasing contact valuesbe of the hard-core Yukawa
particles. Therefore, one might expect that the coexiste
regions of highly charged colloids would be unmeasura
narrow, a statement that is not supported by all experime
observations@8,16,17#.

In conclusion, we show that the phase diagram of ha
core repulsive Yukawa particles can be obtained for any c
tact valuebe which is sufficiently high (be520 or higher,
. E

m

P
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corresponding to chargeZ.100 for colloids with diameter
s5100 nm, suspended in water! by mapping the well-
known phase boundaries of the point Yukawa particles gi
by fits ~9! and ~10! onto those of the hard-core repulsiv
Yukawa system using Eq.~7! and bearing in mind that the
stable bcc region is bounded by a bcc-fcc coexistence ah
'0.5, i.e., the hard-core repulsion favors the bcc-fcc ph
for h.0.5.
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