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Phase diagrams of hard-core repulsive Yukawa patrticles
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We determine the phase behavior of hard spheres interacting with repulsive Y($ewaned Coulomb
interaction using computer simulations. We study the effect of the hard-core diameter on the phase behavior of
repulsive Yukawa particles by comparing our phase diagrams with that of repulsive point Yukawa particles. We
show that for sufficiently high contact values of the pair poteniiad=€ 20, 39, 81, and highgrthe fluid-face-
centered-cubidfcc) solid, at high screening, the fluid-body-centered-cubizc) solid and the bce-fcc coex-
istence for packing fractiong=0.5 are well described by the phase boundaries of point Yukawa particles, by
employing a mapping of the point Yukawa system onto a hard-core repulsive Yukawa system. While the
bce-fce coexistence is well described by the point Yukawa limit7er0.5, we find a deviation at highey as
the hard-core repulsion favors the fcc solid #ge 0.5, independent of the screening. Consequently, a second
triple point appears in the phase diagram in the weak screening regime. In addition, we find that all the phase
coexistence regions in our phase diagrams for hard-core repulsive Yukawa system are very narrow, i.e., a small
density jump in the coexisting phases.
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I. INTRODUCTION model for the colloid-colloid interaction that is given by the
hard-core Yukawa potential.

Particles whose interactions are described by the repulsive The phase diagram of point Yukawa particles is known
Yukawa (screened Coulombpair potential can be used to from earlier studie$2,3]. While the small dust grains can be
model various physical systems including elementary parthought of as being pointlike, i.e., without physical dimen-
ticles, small charged “dust” grains observed in plasma envi-sions, the same is not outright true for colloidal particles with
ronments, and suspensions of charge-stabilized colloids. O@ mesoscopic diameter. Intuitively, two limiting cases for the
interest lies especially in the phase behavior of the last exeffect of the hard core can be considered.
ample, i.e., colloids. In what follows, since there is no danger (1) In the limit of highly charged colloids, or low density

of misinterpretation, we refer to “repulsive Yukawa poten- Of colloids (or both, the particles hardly ever come close
tial” simply as “Yukawa potential.” enough to touch each other and therefore, the effect of the

Charge-stabilized colloidal suspensions consist of spheri?ard-core diameter is minimal.
(i) Analogously, in the other extreme of low charge, or

cal or anisotropic mesoscopic colloidal particles suspended. ) . .
in a polar solvent with coions and counterions. A direct treat-p"gh density(or bothy, the hard-core interaction should play

. . . . . a large role. However, in order to make a more precise analy-
ment of the full problem, including the microscopic coions 9 P y

. . . L ?is, we decide to study the phase behavior of hard-core
and counterions and the mesoscopic colloids, is, in mosy,

. . éjkawa particles systematically.
cases, impractical due to a large gap between the length an Phase diagram of hard-core Yukawa particles has been
time scales involved for the various species. Therefore, Mot i

studies on charge-stabilized colloids are based on models many ways, inspired our work: Not only do we use similar

which the degrees of freedom of the microscopic particlesneihods but also directly utilize the data given in them.
have been integrated out such that the mesoscopic particlg\':}nong other things studied in RdB], a full phase diagram
interact with an effective potential. The standard way to doyas presented for one contact valde=8 and also some
this coarse graining to an effective one-component system isomparison with point Yukawa particle results was made. We
due to the seminal work of Derjaguin, Landau, Verwey, andextend this study by calculating phase diagrams for several
Overbeek, which is known as the DLVO theory after themvalues of Be and perform a mapping between the hard-core
[1]. The DLVO theory predicts that the effective pair inter- Yukawa and the point Yukawa systems. Our main conclusion
action between the colloids consists of a hard-core repulsiois that the phase diagram of hard-core repulsive Yukawa par-
due to the finite size of the colloids, screened-Coulombiticles can be obtained for any contact val@e which is
(Yukawa repulsion with the screening length given by the sufficiently high (Be=20 or highe), by mapping the well-
Debye lengthx ! of the electrolyte, and van der Waals at- known phase boundaries of the point Yukawa system onto
tractions with a typical range of a few nm. The screeningthose of the hard-core repulsive Yukawa system and using
length «~* defines the thickness of the double layer of op-that the stable bcc region is bounded by a bcc-fec coexist-
posite charge surrounding each colloidal surface. Range ence at»~0.5, i.e., the hard-core repulsion favors the fcc
of the screened-Coulomb repulsion is a function of the salphase forp>0.5.

concentration of the electrolyte, the dielectric constant of the This paper is organized as follows. In Sec. Il we describe
solvent, and the temperature. In most situations the van déhe model and the methods which are used to determine the
Waals attractions can be neglected and one ends up withghase behavior of the hard-core Yukawa particles. In Sec. llI

1063-651X/2003/6@)/0214078)/$20.00 68 021407-1 ©2003 The American Physical Society



A.-P. HYNNINEN AND M. DIJKSTRA PHYSICAL REVIEW E68, 021407 (2003

we present the results, compare them to earlier results afhce regions between any two phases. Therefore, the deter-
point Yukawa particles, and give technical details regardingnination of the phase diagram reduces to the calculation of

the calculations, and finally, in Sec. IV, we conclude. the coexistence lines. Points on the coexistence line can be
determined by calculating, for each phase, the Helmholtz
Il. MODEL AND METHODS free energy per volume as a function of density and using the

common tangent construction to obtain the densities of the

Our model consists of particles interacting with the pair-coexisting phases. In principle, this could be repeated for
wise repulsive Yukawa potential, which includes the hard-every point to obtain a smooth coexistence line. However,
core interaction. This means that the pair potential is givenhis would be computationally very demanding and, as it

by turns out, not even necessary. The reason for this is that once
one point on the coexistence line is known, the rest of the
eeXF{— ko(rlo—1)] r>o line can be calculated without performing additional free en-
Bu(r)= rlo ' (1) ergy calculations. This can be achieved by employing a nu-
o, r<o, merical method first proposed by Kofk8]. We are inter-

ested in calculating the phase coexistence lines in the
where Be is the value of the pair potential at contact per (7:x) plane for a fixedge. In this case, Kofke's method
kgT, « is the inverse Debye screening length, ands the ~ @mounts to integrating
hard-core diameter. Note that with the help of the DLVO pair , ,
potential, the contact value can be written as do= — (BU'IN);—=(BU'IN), (ko) @
(VING®);—(VING?),

z2 \g

pe= (1+kal2)? o ’

(2)  (for the derivation, see Reff5]) from a known starting point
(p,xo). Note that the two phases in coexistence have the
samep, B¢, andko but differentz. In Eq.(4), p=BPc° is

the dimensionless pressute; - ); denotes ensemble average
of theith phase (=1,2), andU’ is the partial derivative of
the total potential energy with respect 4o

In practice, Eq.(4) is integrated as follows. Differentials

whereZ is the charge of the colloids ands=Be?/¢; is the
Bjerrum length of the solvent with dielectric constant1].
The total potential energy df particles is given by the sum
over all pairs, i.e.,

N dp and d(«xo) are replaced by finite differencesp and
U(rN):E u(ro). ) A(ka). Starting from a known coexistence point wittand
= Y ko, Monte Carlo(MC) simulations[10] are performed for

both the phases in tHdPT (isobarig ensemble to calculate

In most experiments on charge-stabilized colloidal suspenthe ensemble averages in E4). This gives us a prediction
sions, one makes several assumptions for charged the for the slope in the coexistence line in thp, ko) plane.
inverse Debye screening lengitu. ChargeZ is often re-  Changingxo to ko+A(ko), we perform MC simulations
placed by a so-called renormalized or saturated charge th@gr both the phases at pressyre- Ap predicted by Eq(4)
depends both onko and on the packing fractionp  and we calculate again the ensemble averages in(4g.
= m/6°N/V [6,7]. Furthermore, one often considerska  Continuing in this manner gives us a series of points
that depends o, 7, and on the added salt concentration{p; ,(«xc);} that lie on the coexistence line. At each point the
[8]. This means that the relationship betwggh «o, andn  packing fractions of the two phases are determined using the
is complicated. However, an andZ independenko can be  ensemble averagesg;=7/60°N/(V);, obtained from the
realized by coupling the system to a salt reservoir and cONNP T simulations.
sideringxo to be that of the reservoir. In addition, we take  The practical limitation of this method is that there is no
the value ofe to be fixed, which can later be related to inherent mechanism that guarantees that we stay on the co-
experimental system parameters through@y.1n this way,  existence line. In other words, during the integration of Eq.
Be and ko are independent variables, i.e., independent of4), numerical errors may accumulate to yield large devia-
each other and of the colloid packing fraction and we tions from the actual coexistence line. This problem can be
calculate the phase behavior in the three dimensional spa@oided by employing a more sophisticated version of the
spanned by them. This means that two phases in coexistenagethod by Meijer and El Azhar, where additional free energy
have, as usual, equal pressprand equal chemical potential calculations are used to fix the estimates of the coexisting
u, but have also equato and equalBe, while # is differ- points[4]. However, instead of implementing the method of
ent. Meijer and El Azhar, we decided to check the stability of the

Our purpose is to use a combination of Helmholtz freeKofke integration by performing separate free energy calcu-
energy calculations and the so-called Kofke integratiorlations at a couple of points along the coexistence line. The
method[9] to trace out the phase diagram of the hard-coredifference between the results from the free energy and
Yukawa particles. Similar method has already been used tRofke integration gives us an idea of the total numerical
study the phase diagram of the hard-core Yukawa particles ierror accumulated. To calculate the Helmholtz free energy,
Refs.[4,5]. The phase diagram consists of stable regions ofve use the so-called integration for the fluid phase and
the fluid, bcc, and fcc phases that are bounded by coexisFrenkel-Ladd method for the crystal phas#8,11].
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In order to compare our results for hard-core Yukawa par{fits here for the phase boundaries of point Yukawa particles
ticles to the earlier results obtained for point Yukawa par-in the (\,8U,) plane using the results of R€f3], as this
ticles [2,3], we need to define a mapping between the tworepresentation does not include the more elaborate Madelung
systems. A natural choice for this mapping is to equate thenergy calculation. The fluid-bcc phase boundary is well fit-
two Yukawa potentials outside the hard core. However, sincéed by
the results for the point Yukawa particle phase diagrams are
typically presented in units different than those for the hard-  In(8Uq)=4.670-0.041 7\ +0.132%?—0.010 433
core Yukawa particles, we have to explain the situation a _
little further. P P +4.343¢10° ¢

In the case of point Yukawa particles, the relevant length —6.924X 10 6)\°, for 0=\<12, (9)
scale is the characteristic interparticle separatienp 3.

Oncea is chosen as the length scale, the pair potential dewnhile the fit of the bce-fcc phase boundary is given by
scribing the point Yukawa particles can be written as
In(BU,)=97.651 06- 150.469 698 + 106.626 4052
exp(—Ar/a)
Bu(r)=pUp———, 5 —41.67136°+9.6399314—1.315024 9.5
6
whereBU, is a constant prefactor andis the inverse of the +0.09784811
screening length in units of. While the phase space of —0.003063987, for 1.85<\<6.8. (10
hard-core Yukawa particles is three dimensiondk, ko,
and ), only two independent variables exist in the case ofTogether with Eq(7), the fits in Eqs(9) and(10) enable us
point Yukawa particles; sincais chosen as the length scale, to map the phase diagram of point Yukawa particles onto any
there is no need for a density axis. We are therefore left witthard-core Yukawa system.
a two dimensional phase space consisting of prefg8tdg NPT andNVT MC simulations, needed in the Kofke in-
and the inverse screening length Setting the two pair po- tegration and free energy calculations, were carried out in a
tentials in Eqs(1) and(5) to be equal for > ¢ results intwo  cubic box(with few exceptionsand with periodic boundary
equations given by conditions. The cutoff radius of the potential was always
chosen to be half of the box length and a continuous distri-
k=M\la, bution of particles beyond the cutoff was assumed for the tail
o correction of the total potential enerd§0]. In the limit of
e*ope=pUoa. (6)  \weak screeningo<1, the use of cutoffs in the potential is
inaccurate, as the range of the potential is larger than half of
nt&]e box length. This problem can be fixed by using Ewald
summation adapted for Yukawa interactidid®], or by ap-
plying the method elaborated in Rg€L3], where spline func-
tions are used to approximate the effective interactions that

The first line of Eq.(6) results from setting the exponential
decays of the two pair potentials to be equal and the seco
from the equality of the prefactors. Using the fact tlaat
=(67/7) Y30, we can rewrite Eq(6) as

BU,=e*"Be(67/m)'" result from tgki_ng into account gll image_particles. In the
current case, it is, however, sufficient to limit ourselves in the
N=ko(6y/m) 3 (7)  regimexo=2.0, where the effects of the finite cutoff remain

small or can be eliminated by moderately increasing the sys-
Equation(7) can be used to map a phase diagram of hardtem size. We believe that the essential results remain the
core Yukawa particles to a phase diagram of point Yukawaame although, with the inclusion of noncut potentials, the
particles, and vice versa. error bars could be made smaller.

As mentioned above, the phase diagram of the point
Yukawa particles can be given in terms of the inverse screen-
ing length\ and prefactorBU,. This is what we call the
(\,BUg) representation. Another representation of the point

IIl. RESULTS

Using the methods described in Sec. I, we study the

Yukawa phase diagram is tha,(T), where phase behavior of hard-core Yukawa particles, whose inter-
> 1 actions are described by the pair potential given by &g.
T=|=A2BUqup(N) (8)  The phase diagrams are calculated for fixed contact values
3 Be and they are given in they( 1l/ko) representation. We

. . : . calculate the phase diagram for four contact valyass 8,
is the dimensionless temperature and wheyes the Made- 20, 39, and 81, and the resuilts are given in Figs. 1, 2, 3, and

!ung energy of a fCC_ crystal.e., the potential~energy of an 4, respectively. In all the four phase diagrams the gray areas
ideal crystal per particle pepU, [2,3]. The (\,T) represen-  pounded by the solid lines give the coexistence regities
tation is convenient since it leads to phase boundaries thahes are horizonty while the dashed lines give the point

are almost straight lines. In ReB], the results for the fluid-  yykawa phase boundaries of RE8]. The mapping needed
bce and fluid-fcc melting lines and the bee-fee phase boundtg plot the point Yukawa results was discussed in Sec. 1.

ary are given as polynomial fits in tha (T) plane. We give  This section is organized in two parts: First we present the
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FIG. 1. Phase diagram for a system in which the particles inter- FIG. 3. Phase diagram for a system in which the particles inter-
act via a hard-core repulsive Yukawa pair potential EQ.with  act via a hard-core repulsive Yukawa pair potential Ex.with
Be=8 presented in thepacking fraction s, Debye screening Be=39 presented in therf{ 1/ko) plane. The symbols and lines are
length 1ko) plane. In charge-stabilized colloidal suspensions, thethe same as in Fig. 1. Note the difference in #hecale, compared
lower part of the diagram (&r=0) is a high salt regime and the to Figs. 1, 2, and 4.
upper part (l#oc=0.5) is a low salt regime. The solid lines are
coexistence lines obtained by using the Kofke integration and the . . . .
gray areas denote the coexistence regions. The tie lines are horizo[ﬁa-s"mS and second, we give technical details regarding the

tal. We find a stable fluid phase at loy; a stable face-centered- Ccalculations. _ _ _
cubic (fcc) solid at highs, and in between, a stable body-centered- Let us first describe the structure of the phase diagrams in

cubic (bcg solid. The dashed lines are the phase boundaries of thEigS. 1—4. The phase diagrams start from the hard-sphere
point Yukawa particles by Hamaguchi, Farouki, and Dulsih The  limit at 1/ko=0 with coexisting fluid and fcc phases at
squares [0) mark the starting points for the Kofke integration and packing fractionsy=0.491 and»=0.543, respectively. As
the circles ) are checkup points for the coexistence that werethe softness and the range of the interactions increase with
obtained using free energy calculations. increasing screening length«f, the fluid-fcc coexistence
becomes thinner and moves to lower packing fractions, in
agreement with Refl14]. A further increase of o takes us
to the fluid-bcc-fcc triple point. Here, the softness and the
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1/xo
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0 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 2. Phase diagram for a system in which the particles inter- FIG. 4. Phase diagram for a system in which the particles inter-
act via a hard-core repulsive Yukawa pair potential Ef.with act via a hard-core repulsive Yukawa pair potential EQ.with
Be=20 presented in they(, 1/k o) plane. The symbols and lines are Be=81 presented in they(, 1/ko’) plane. The symbols and lines are
the same as in Fig. 1. Note the difference in #hecale, compared the same as in Fig. 1. Note the difference in #hecale, compared
to Figs. 1, 3, and 4. to Figs. 1, 2, and 3.
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range of the interactions are so pronounced that at lowei 0.5
packing fractions it is more favorable to form a bcc crystal \
than a fcc crystal. !
Increasing 4o from the triple point, two phase coexist- 04
ence lines originate, namely, the fluid-bcc and the bcc-fcc. '
While the fluid-bcc coexistence line is relatively smooth, the )
bce-fce line moves quickly to higher packing fraction, pro- 0.3 ,
ducing a broad region of stable bcc phase. This is especially&
true for Be=20, 39, and 81Figs. 2—4, and we can see that — 05 |
the steepness of this “shootup” behavior becomes more pro- :
nounced with larg@e. After the shootup, at higher values of Poeg "~ -- -]
1/k o, the bee-fee coexistence line turns and behaves more o 0.1
less as a straight vertical line gt~0.5. At high 1lko the
fluid-bcc coexistence line turns to higher packing fractions,

i.e., here the fluid phase becomes more favorable with re: 0 : . :
spect to the bcc phase. A simple explanation for this is that a 0 0.1 0.2 0.3 0.4 0.5 0.6
high 1/ko, where the range of interactions becomes longer n

than the average interparticle spacing in the crystal, the im-
portance of the repulsive bonds needed to form the bcc crys- FIG. 5. Phase diagrams of Figs. 1-4 plotted in one figure. The
tal vanishes. Since in this case both the fluid and the bc@ashed line gives the line of triple points predicted by the point
phases have a similar energetic contribution to the free entukawa results of Hamaguchi, Farouki, and Dulp8], the dia-
ergy, the fluid phase wins since it has larger entropy. monds @) highlight the triple points aBe=8, 20, 39, and 81, and
It is worthwhile to note that in all the phase diagrams inthe squgres[(]) mark the position of the triple points used in our
Figs. 1-4, both the fluid-bcc and the bcc-fee coexistenc&alculations.
regions are very narrow, or in other words, the density dif-
ference between the two phases is small. In particular, the We now turn our attention to a comparison of our results
bce-fee coexistence region is extremely narrow: The densityn hard-core Yukawa particles with those obtained for point
jump between the bcc and the fcc phases is the Iargest fO(ukawa partides by Hamaguchi, Farouki, and Dul@ﬁ’]
Be=8, where it is less than 0.3¥45]. Therefore, it is sur-  Note that the calculations of Hamaguchi, Farouki, and Dubin
prising that some experiments on charge stabilized colloidgig not include the determination of the phase coexistence
report on(broad bcc-fce coexistence, i.e., they are able 0 ggions, Therefore, in the case of point Yukawa particles, we
haye measurement points well inside the bcc-fcc coexistencgy, only talk about phase boundaries. In Figs. 1-4 these
region[16,17. , phase boundaries are plotted with dashed lines. Figures 1—4
In the case of the lowest contact valde=8 (Fig. 1), the show that the phase boundaries of hard-core Yukawa par-

Eicgch';g'lcz?genf?jic‘?_tfggit:gitsrt'glnecgoégtnz:]ouuen:la_lrig'szésaénceticles approach those of the point Yukawa particles with in-
of the second triple point for the hard-core Yukawa particle creasingfe. This is due to the fact that at high values/pd

has already been found in R¢k], where the phase diagram the pgrticles .hardly ever get close enough tq -feel the h_ard—
for Be=8 was presented. The tendency of the bcc region tgore mtgracuop. In the case of chgrge-stab|llzed collqldal
close up can also be seen in the phase diagranBésr20  SUSPENsions, higBe c_or_responds to highly (_:harged colloids
(Fig. 2), where the fluid-bcc and the bee-fec coexistencelS€€ EA(2)]. The deviation between the point and hard-core
lines turn towards each other at aroungd#0.5. Note also ~ Yukawa results is particularly pronounced in the cas@ef
that this tendency moves to highekd/ with increasing con- =8 (Fig. 1). For the rest of the phase diagram with higher
tact valueBe. Based on our results, we expect another tripleB€, the description with point Yukawa particles improves.
point for all Be at high values of o, although our calcu- Especially, the fluid-fcc line at high &4, the fluid-bcc line
lations could only reach it gBe=8. We also predict that as well as the beginning of the bce-fe line are well predicted
with increasing Be, this other triple point escapes very by the point Yukawa picture. However, the vertical rise of the
quickly to high values of o, i.e., to the regime where bcc-fcc line at high o is completely missing in the point
numerical calculations are difficult to carry out. Yukawa phase diagram. Instead, the bcc region is predicted
In Fig. 5 we summarize the results from Figs. 1-4 byto become indefinitely broad in the point Yukawa limit, hin-
plotting all the phase diagrams in one figure. We observelering the possibility of a second triple point. Thus, we see
from Fig. 5 that the low J¢o triple point moves to lower;  that the closing of the bcc region by a second triple point is
and higher 1#¢ with increasing contact valuge. Another  caused solely by the presence of the hard-core interaction.
observation is that the region of stable bcc phase broadens, Next, we make a small excursion to study the position of
mainly because the fluid-bcc coexistence line moves to loweihe low lko triple point. In the case of point Yukawa par-
packing fractions, while the bce-fec coexistence line movedicles, the position of the triple point is at=6.90 and
only slightly to higher» and seems to saturate aroupd BUF=3474[3]. We can map this point to any hard-core
=0.5. We discuss the dashed line connecting the triple point¥ukawa system by using Eq7). More specifically, we can
in Fig. 5 later. solve the triple pointco for fixed Be from
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FIG. 6. Phase diagram in the. (T) representation. The solid A

lines are point Yukawa results of Hamaguchi, Farouki, and Dubin FIG. 7. Phase diagrams in the,(3U,) representation plotted in

[3] and the rest of the lines are our hard-core Yukawa regiits linear-log scale. The lines are the same as in Fig. 6 and the stars (

=8’. 20, 39, an_d 81 usmg_the mapping discussed in the text. Foﬁwark the approximate positions of the triple points gr=20 and
clarity, the coexistence regions of the hard-core Yukawa results a8y btained by extrapolation

left unfilled and only the coexistence lines are drawn.

representation plotted in linear-log scale. In this representa-
tion, the bce-fcc and the fluid-fcc coexistence line from our
and use the second line of E@) to obtain. The resulting hard-core Yukawa calculations behave as straight lines. This

line of triple points is denoted with the dashed line in Fig. 5,iNSPired us to estimate the position of the second, i.e., the
the diamonds highlight the triple points gte=8, 20, 39, high lia, triple point for fe=20 andBe=39 by simply
and 81, and the squares give the triple points used in c)Lﬁxtrapo_latmg the coe_X|stence I|_nes ano_l calcu!atlng the inter-
calculations. We see that the agreement between the two r&EPt PoInt. The resulting approximate triple points are plotted
sults (the squares and the diamoidies not depend much " Fig. 7 with stars. After converting to thenp(xo) plane
on the value of3e and therefore we can say that the positionUSind EQ.(7), they ready=0.47 andko=1.7 for =20,
of the lower triple point is given precisely enough by the and »=0.57 andxo=1.0 for Se=39.
point Yukawa results.

It is also instructive to map our hard-core Yukawa phase Technical Details

diagrams in the X, 8U,) and (\,T) representations that are e rest of this section is devoted to the technical details

typically used to represent the phase diagram of poingy caiculating the phase diagrams and on the estimation of

Yukawa particles. The mapping is given by EGB.and(8).  the error. The phase diagram fge=8, shown in Fig. 1,

The phase diagram in the\(T) representation is shown in was already in Ref[5], and serves also as a check for the

Fig. 6: The solid lines are the point Yukawa results of methods used. In order to obtain the phase diagram in Fig. 1,

Hamaguchi, Farouki, and Dubii8] and the other lines are four Kofke integrations were started from the three positions

our hard-core Yukawa results. In the regions of the phasgiven in Ref.[5], one from the hard-sphere limit witp

diagram in Fig. 6 where the lines from differegt values  =11.5541, 1k0=0.0001 (o=10000.0), 7q,q=0.491,

fall on top of each other and on top of the point Yukawaand 7,.=0.543, two from the lower triple point withp

lines, the presence of the effects of the hard-core interactior:20.70, 1ko~0.156 [ko=6.4, Eq. (11) predicts ko

are minimal. This is especially true near the low &/triple =6.18], 7quig=0.373, 7pe=0.379, andz.=0.380, and

point region, located at"®=6.90 andT®®=0.0038[3]. Mov-  one from the higher triple point withp=44.1, lko

ing from this triple point to larger values &f, corresponding ~0.286 (ko=3.5), 7guiq=0.453 andy.=0.460. In all the

to decrease of ko, we see that the point Yukawa results for Kofke integrations the system sizes weMg,iq= 256, Ny

the fluid-fcc phase boundary stays between the fluid-fcc co=250, andN.=256, and step size oh(xo) 1=0.004

existence regions of the hard-core Yukawa results. Note thavas used. The thermodynamic averages needed in4xq.

the fluid-fcc phase coexistence region looks very broad irwere calculated by performinys=10000NPT MC steps

this representation and that the tie lines are no longer horitrial moves per particle, or attempt to change the volyme

zontal. Moving away from the triple point along the fluid-bcc both for the equilibration and for the production runs. When

or the bce-fce line, we see that deviations from the pointcalculating the bcc-fcc coexistencdls was increased to

Yukawa limit appear sooner for smallBe, as already men- 30 000.

tioned. The accuracy of the Kofke integration can be checked by
In Fig. 7 we show the phase diagram in the,8U,) measuring how the end points of the integration match with

ko e’ =BUPNY/Be (1)
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the known results. In order to know the fluid-fcc coexistencesystems withN,,..= 700 andN¢..= 768 particles. The system
at 1iko=0.5, free energy calculations were performed withsize was increased in order to minimize the effect of the
system sizeNg,iq= N;=500. Here and in all subsequent finite cutoff length. Note that with these system sizes the
free energy calculations, 10008VT MC steps for the simulation box is not cubic but close to it. The resulting bcc
equilibration and measurement runs were taken in order tand fcc packing fractions aren,.c=0.4835 and 7
calculate the ensemble averages, and ten integration points0.4837 with pressur@=240.318. From this coexistence
were used in the numerical integration using the Gaussiapoint, two Kofke integrations with the larger system sizes
quadrature. In Fig. 1, the resulting fluid-fcc coexistencewere performed towards lower and higheka/ with step
points are marked with circles. As Fig. 1 shows that thesizesA(xo) *=0.002 andA (ko) '=0.006, respectively.
fluid-bce, bee-fee, and low 4o fluid-fce coexistence lines  The number of MC steps for both Kofke integrations was
end up at the correct triple points, we expect that the errors ilNs=20 000. For the Kofke integration going down irx,

the corresponding Kofke integrations are small. However, atarge fluctuations were again seen neardi+ 0.32. In order
1/ko=0.5, the fluid-fcc coexistence pointsy,y=0.486 to obtain a continuous phase diagram we connected the

stable parts of the two Kofke integrations, one starting from
_ _ the triple point and one starting from the bcc-fcc coexistence
ergy results gg,iq=0.476 andp;..=0.485), although the er- i . :
: . . . : : oint determined by free energy calculations. Free energy
ror, i.e., the difference in the packing fractions, is only abou@alculations were performed atrdf= 0.5 for the fluid-bec

1%. To check if the error is due to the difference in thecoexistence 0intNgg= Npoc= 432) and as can be seen, the
system size, we redid the free energy calculation with the b fluid™ * "bee ’

. . ) accuracy of the Kofke integration is adequéteror <2%).
same _system size as used in the Kofke integrathdyyq In the case of the phase diagram fRw=81, given in Fig.
=Ngc=256. This resulted in fluid-fcc coexistence with 4, the location of the triple point is gi=7.242 and o
Nauia= 0.469 andn..=0.477, leading to an error of slightly _ —0.241 [ko=4.15, Eq.(11) predicts xo=4.24] with
less than 2% with respect to the Kofke integration result. wig=0.1214, 7, — 01232 andp,=0.1234. The same
Furthermore, since the result with the same system size dog$" A Lpee ' cco | P

' . - . , . A , f
not correspond to the end point of the Kofke integration, we,® and A(xo) - were used, as previously. Again, as for

lude that th ;  likelv due t .rﬁe=39, the calculation of the bcce-fcc coexistence line was
can conclude that the error 1S most likely due€ 10 an error iy, 4o req pecause of a breakdown of the Kofke integration,
the position of the second triple point atbi~0.286.

. ) hich this ti d close t =0.4. We noticed that
For the other phase diagrams wijte = 20, 39, and 81, which this time occurred close torid e notced na

the location of the triple point, and hence the starting point O@bove Lko=0.4, in order to get rid of the effect of the finite

. : . - utoff, the system size should be increased dramatically.
the Kofke integration, was obtained from Fig. 5 of Ri]. ; ; : : -
For the phase diagram wite— 20 in Fig. 2, three Kofke Therefore, instead of performing Kofke integrations with

. . very large system sizes, we used free energy calculations at
integrations were started frop=15.0, 1ko~0.194[ ko twgypoir?ts gt];ka~0 42 (xo=2.4) and at Mgg:o 5 and
=5.15, while Eq.(11) predicts ko=5.40] With 7ua  connected the two points in order to get an estimate of the
= 0.250, 7.~ 0.2540, andp.=0.2543. Note that while b d

. : , - bcce-fcc coexistence line. The free energy calculation at
Fig. 5 of Ref.[5] gives only the pressure at the triple POIN, 1/, »~0.42 was done with the same parameters asBfer
the packm_g frac_t|0n can be determlne.d by performing & 39, except that the system size for the bcc was increased to
NPT MC simulation. The same system sizes, number of M

_ X =800 (resulting in an almost cubic simulation bo)t
stepsNg, andA (ko) were used as for the phase diagram, /¢ : :
with Be=8. The two check points at &6—0.5 and the 1/ko=0.5, the system sizes were further increasedlg.

fluid-bcc and the bcce-fce coexistence points, were obtained 1024 (cubic boy andNy.:=972 (almost cubic bok

using free energy calculations with system siz¥g,q
= Npec= 686 andN;..=864. As can be seen, the accuracy of
the Kofke integration is good for the bce-fcc coexistence line  We determined the phase diagram of a system in which
(error 199 while the fluid-bcc line is slightly offerror 2%.  the particles interact with the hard-core repulsive Yukawa
For the phase diagram witBe=39 in Fig. 3, the triple  pair potential(1) with contact valuegge=8, 20, 39, and 81.
point is atp=10.516, 1lko~=0.211[k0=4.75, EQ.(11)  We compared the phase diagrams with those of the point
predicts ko=4.84] with 7,q=0.1797, n,,=0.1824, and Yukawa particles by mapping both systems onto each other.
7iec=0.1827. Again the same system sizes, number of MGNe showed that the difference between the phase behaviors
stepsNg, andA (ko) ! were used in the Kofke integration of the hard-core repulsive Yukawa and point Yukawa par-
as forBe=8 and 20. We found that the bcc-fcc coexistenceticles reduces upon increasing the contact vlegas might
line, the Kofke integration, was stable untilki/~0.32. At be expected. By comparing the phase diagrams, in more de-
higher values of o we found large fluctuations im, de-  tail we determined the influence of the hard-core diameter
noting the breakdown of the Kofke integration. Only mild more precisely. We found that the fluid-bcc coexistence line
damping of the fluctuations were observed when the Kofkds well predicted by the point Yukawa phase diagram, while
integration was repeated with a smaller step sif&o) ! the high 1ko bcce-fce coexistence line deviates. The differ-
=0.001(and withNg=15000). In order to resolve the bcc- ence in the bcc-fcc coexistence line is caused by the hard-
fcc coexistence line above dd=0.32, a starting point was core repulsion that at high packing fractiong=0.5) favors
determined by free energy calculations akd~0.35 (ko  the fcc phase. The behavior of the bcc-fcc coexistence line
=2.86). The free energy calculations were performed forfor hard-core Yukawa particles gives rise to the second triple

and 7= 0.495) do not correspond exactly to the free en-

IV. CONCLUSIONS
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point at high lko (existence of which has already been corresponding to chargg&>100 for colloids with diameter
reported in Ref[5]), something that is missing from the o¢=100 nm, suspended in wateby mapping the well-
phase diagram of point Yukawa particles. It was observedknown phase boundaries of the point Yukawa particles given
that with increasingBe, the second triple point escapes by fits (9) and (10) onto those of the hard-core repulsive
quickly to high values of ko where, with the methods used Yukawa system using Ed7) and bearing in mind that the
in this study, the calculations are difficult to carry out. Be- stable bcc region is bounded by a bcc-fcc coexistence at
cause of this, our calculations reached the second triple poirnt 0.5, i.e., the hard-core repulsion favors the bcc-fcc phase
only for the lowest contact valyge; for two other values of for >0.5.
Be we estimated its position by extrapolation.

Our calculations explicitly included the determination of
the phase coexistence regions. We observed that all the co-
existence regions are very small, i.e., the difference between The authors would like to thank H. H. von Grerg for
the densities of the coexisting phases is small. This was searseful discussions and P. Royall for critical reading of the
to be the case especially for the bcc-fcc coexistence. It wamanuscript. This work is part of the research program of the
also observed that the coexistence regions become small&tichting voor Fundamenteel Onderzoek der Materie
with increasing contact valueBe of the hard-core Yukawa (FOM),” which is financially supported by the “Nederlandse
particles. Therefore, one might expect that the coexistenc®rganisatie voor Wetenschappelijk Onderzg¢hkVO).” We
regions of highly charged colloids would be unmeasurablyjthank the Dutch National Computer Facilities foundation for
narrow, a statement that is not supported by all experimentalccess to the SGI Origin3800. The High Performance Com-
observation$8,16,17. puting group of Utrecht University is gratefully acknowl-

In conclusion, we show that the phase diagram of hardedged for ample computer time. A.-P.H. gratefully acknowl-
core repulsive Yukawa particles can be obtained for any conedges the financial support from the Finnish Cultural
tact valueBe which is sufficiently high Be=20 or higher, Foundation.
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