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Abstract

Using computer simulations we study the phase behaviour of hard spheres with
repulsive Yukawa interactions and with the repulsion set to zero at distances
larger than a density-dependent cut-off distance. Earlier studies based on
experiments and computer simulations in colloidal suspensions have shown that
the effective colloid—colloid pair interaction that takes into account many-body
effects resembles closely this truncated Yukawa potential. We present a phase
diagram for the truncated Yukawa system by combining Helmholtz free energy
calculations and the Kofke integration method. Compared to the non-truncated
Yukawa system we observe (i) a radical reduction of the stability of the body
centred cubic (BCC) phase, (ii) a wider fluid region due to instability of the face
centred cubic (FCC) phase and due to are-entrant fluid phase and (iii) hardly any
shift of the (FCC) melting line when compared with the (BCC) melting line for
the full Yukawa potential for sufficiently high salt concentrations, i.e. truncation
of the potential does not affect the location of the solid—fluid line but replaces
only the BCC phase with the FCC at the melting line. We compare our results
with earlier results on the truncated Yukawa potential and with results from
simulations where the full many-body Poisson—Boltzmann problem is solved.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Charge-stabilized colloidal suspensions consist of spherical or anisotropic mesoscopic
colloidal particles suspended in a polar solvent with co- and counterions. The standard way
to describe the effective one-component colloid—colloid interactions is to use the so-called
DLVO theory by Derjaguin, Landau, Verwey and Overbeek [1]. The DLVO theory predicts
that, at large separations, the effective-pair interaction between two isolated charged colloidal
spheres consists of a hard-core repulsion due to the finite size of the colloids and Yukawa
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(screened Coulomb) repulsion with the screening length given by the Debye length « ~! of the
electrolyte. The screening length « ~! defines the thickness of the double layer of opposite
charge surrounding each colloid. One speaks of a high-salt (low-salt) regime when the double
layer around the colloid is concentrated (expanded).

In the regime of high-salt and/or low colloid volume fraction, where there is little overlap
of more than two double layers, pairwise additivity is often assumed and the effective colloidal
interactions are well described by the hard-core repulsive Yukawa model. However, in the
opposite limit of low-salt and (relatively) high colloid volume fraction, the double layers of
more than two colloids overlap considerably and there is no guarantee that the assumption of
pairwise additivity should work. Instead, the total potential energy of the system is expected
to be a sum of many-body (pair, triplet and so on) potentials of the colloids. By now it has been
established both experimentally [2] and by computer simulations [3, 4] that these many-body
interactions between the colloids do exist and that they manifest themselves as an enhanced
decay in the effective colloid pair potential at distances larger than the typical pair separation.
Qualitatively this effect can be understood as follows. For a pair of colloids at distances greater
than the typical pair separation (at that density p), itis likely that there is a third particle between
the pair. The effect of the third particle is to screen the repulsion between the pair of colloids, as
shown by explicit numerical calculations [4]. The simplest way to incorporate this many-body
screening into the colloid pair potential is to state that, after a certain distance, the colloids do
not feel each other anymore and therefore the pair force is set to zero [3]. The distance at which
the potential is truncated, the so-called cut-off distance, depends on the average separation of
colloids, i.e. it is proportional to p~!/3. This takes us to a simple model for the effective colloid
pair potential which has the usual hard-core Yukawa form at distances smaller than the cut-off
distance but is set to zero at colloid separations exceeding the cut-off distance. We use this
so-called truncated hard-core Yukawa interaction as our effective colloid pair potential and we
study the resulting phase behaviour.

The motivation for our study is to find out what are the implications of the cut-off for the
phase behaviour of Yukawa particles. In previous works on the phase diagram of the truncated
Yukawa system, Dobnikar et al [3] used the Lindemann criterion [5] to estimate the solid—
liquid phase boundaries. This method, however, is, for example, not suited for studying the
relative stability of body centred cubic (BCC) and face centred cubic (FCC) crystal structures.
Therefore, we were motivated to calculate the ‘exact’ phase behaviour of a truncated Yukawa
system using a combination of Helmholtz free energy calculations and Kofke integration.
Our findings are in agreement with the results of Dobnikar et al [3] where it was found that
the truncation promotes the fluid phase, i.e. parts of the phase diagram that show a stable
crystal phase (BCC or FCC) for the full Yukawa potential are now replaced by the fluid when
the potential is truncated. This observation is also supported by Brownian dynamics (BD)
simulations where the Poisson—Boltzmann (PB) equation is solved numerically ‘on the fly’
for each colloid configuration during the BD simulation, i.e. it includes all the effective many-
body interactions [3]. These PB-BD simulations are regarded here as the ones that have the
correct effective many-body interactions and thus gives the true phase behaviour, while the
truncated Yukawa model tries to explain the results only with an effective density-dependent
pair interaction that incorporates some of the many-body interactions. The current study
makes the phase diagram of truncated Yukawa particles somewhat more precise: we show that
the re-entrance of the fluid phase suggested in [3] does indeed exist. More importantly, we
demonstrate the instability of the BCC phase with respect to the FCC phase. Destabilization
of the BCC phase was also found recently in a simulation study that investigated the effect
of triplet attractions on the phase diagram of charged colloids as a first-order correction to
pairwise additivity [6].
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This paper is organized as follows. In section 2, we present the model and briefly discuss
the methods used to calculate the phase diagram. In section 3, we present the results and
make comparisons with the results of Dobnikar et al [3]. Finally, in section 4 we draw our
conclusions.

2. Model and methods

Our model consists of particles interacting with the pairwise repulsive hard-core Yukawa
potential that is truncated at a distance which depends on the average distance between the
particles. More specifically, our pair potential is given by

0, r<o
exp(—ko(r/o — 1)) _
pu(r) = | pe22 r/a/ . o<r<xph ()
0, r=xp ',

where e is the value of the pair potential at contact per kg7, k is the inverse Debye screening
length, o is the hard-core diameter, p is the number density of particles and x is a dimensionless
constant. In equation (1) xp~!'/? is the cut-off distance, where p~'/* describes the average
distance between particles and x is a prefactor that can be used to tune the cut. For example,
in a crystal phase x determines how many nearest-neighbour particles are included before the
potential is truncated. The choice x = 1.5 considered in the current study gives a potential
that is truncated for the FCC between the first and second nearest neighbour and between the
second and the third for the BCC. With this value for x, both FCC and BCC have approximately
equal numbers of neighbour interactions: 12 for FCC and 14 for BCC.

A subtle difference between our model for the cut potential in equation (1) and the one
used by Dobnikar et al [3] is that, while we truncate the pair potential, they truncate the force.
Our motivation to truncate the potential instead of the force stems from the experiments [2]
that suggest truncation in the pair potential. In the case of truncation with a smooth decay to
zero, i.e. the one proposed by the experiments [2], truncation of both the force and potential
yield the same pair potential. However, in the case of non-smooth truncation, there are two
differences between a truncated pair potential and a pair potential obtained by integrating the
truncated force (called the force-truncated potential in what follows):

(i) the truncated potential has a step to zero at the cut-off distance while the force-truncated
potential does not and

(ii) the truncated potential has a fixed contact value Be while the contact value of the force-
truncated potential depends on the density.

While the effect of (i) on the phase diagram is not known and would require further studies,
the effect of (ii) was studied and found to be small.

Our goal is to calculate the phase diagram of a system in which the particles interact
with (1) for fixed contact value e = 81. The phase diagram consists of stable regions of
fluid, BCC and FCC phases that are bounded by coexistence regions between the two phases.
Therefore the determination of the phase diagram reduces to the calculation of the coexistence
curves. We use acombination of Helmholtz free energy calculations [7] and the so-called Kofke
integration method [8] to trace out the coexistence curves. In this method Helmholtz free energy
calculations are used to obtain phase coexistence points from which Kofke integration can be
started to trace the rest of the coexistence curves. The same method has been applied earlier
to study the phase diagram of hard-core Yukawa particles without truncation [9] (see also [10]
where a similar method has been used). NPT and NV T Monte Carlo (MC) simulations
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needed in the Kofke integration and free energy calculations are carried out in a cubic box with
periodic boundary conditions [7]. The number of particles used in the simulations is N = 256
for the fluid and the FCC phase, and N = 250 for the BCC phase.

The results of Dobnikar e al [3] were given in the so-called (A, T) representation, a typical
way to represent phase diagrams of repulsive point Yukawa particles [11, 12], while our results
are given in (packing fraction n, Debye screening length 1/k o) representation. Therefore, in
order to compare our results with those in [3], we need to define a mapping between the two
systems. The mapping that we present below is the same as in [9], where it was shown that,
for sufficiently high Be of the hard-core repulsive Yukawa potential, the phase boundaries are
well described by those of point Yukawa particles by employing this mapping.

In the case of point Yukawa particles the relevant length scale is the characteristic
interparticle separation p~'/3. Once p~!/3 is chosen as the length scale, the pair potential
describing the point Yukawa particles can be written as

exp(—ir/p~'/%)

pur) = pUo—— L.

)
where BUj is a constant prefactor and A is the inverse of the screening length in units of p~!/3.
While the phase space of hard-core Yukawa particles is three-dimensional (8¢, ko and ),
only two independent variables exist in the case of point Yukawa particles; since p~'/3 is
chosen as the length scale, there is no need for a density axis. We are therefore left with a
two-dimensional phase space consisting of the prefactor BUj and the inverse screening length
A. By setting the two pair potentials in equations (1) and (2) to be equal for r > o (and

disregarding the cut-off) results in the two equations given by

K = )»/,0_'/3

GKGO'ﬁG = ﬁU0p71/3. (3)

The first line of equation (3) results from setting the exponential decays of the two pair
potentials to be equal and the second from the equality of the prefactors. Using the fact
that p~!/3 = (6n/m)~'3c, we can rewrite equation (3) as

BUy = e Be(6n/m)"/?

L =Ko (6n/m)" 3. )

Finally, in order to obtain a phase diagram where the phase boundaries can be more or less
represented by straight lines, the ‘temperature’ axis:

T = [32*BUgum(M)] ™", )

is used instead of SUj. In equation (5) uy is the Madelung energy of an FCC crystal (i.e. the
potential energy of an ideal crystal) per particle per Uy [11, 12]. Equations (4) and (5) can
be used to map a phase diagram of hard-core Yukawa particles to a phase diagram of point
Yukawa particles, and vice versa.

3. Results

In figure 1 we show the phase diagram of particles whose interactions are described by
equation (1) with contact value Be = 81 and with x = 1.5 in the (packing fraction 1, Debye
screening length 1/k o) representation. The full curves in figure 1 give the coexistence curves
obtained from the Kofke integration that are started from phase equilibria points marked by
the squares. These, and the other phase equilibria points marked by the circles, are calculated
using the common tangent construction on free energy data obtained from separate Helmholtz
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Figure 1. Phase diagram for a system in which the particles interact via a hard-core repulsive
Yukawa pair potential (1) with Be = 81 and cut-off x = 1.5 presented in the (packing fraction ),
Debye screening length 1/ko) plane. The lower part of the diagram (1/ko = 0) is the high-salt
regime and the upper part (1/ko = 0.6) is the low-salt regime. The full curves are coexistence
curves obtained by using Kofke integration and the grey areas denote the coexistence regions with
horizontal tie lines. The broken curves are the phase boundaries of the hard-core Yukawa particles
without truncation from [9] and the dotted curves with labels 2 kg7, 5 kgT and 10 kg T denote
the regions where the potential at the cut-off distance is equal to the respective value. The labels
“fluid’, ‘BCC” and ‘FCC’ printed in italic are for the phase diagram of non-truncated Yukawa
particles and the labels printed in bold are for the phase diagram of truncated Yukawa particles.
The squares mark the starting points for Kofke integration and the circles are check-up points for
the coexistence, both of which are obtained using free energy calculations. The inset shows a
close-up of the BCC pocket region.

free energy calculations. See table 1 for numerical values of the phase equilibria points. The
coexistence regions are shaded, while the tie lines are horizontal. The dotted curves with
labels 2 kg T, 5 kgT and 10 kgT denote the regions where the potential at the cut-off distance
is equal to the respective value. This means, for example, that at the right-hand side of the
curve labelled by 2 kgT the value of the potential at the cut-off is larger than 2 kg7'. For
comparison we plot the phase diagram of the non-truncated Yukawa system obtained from [9]
(broken curves). The phases for the non-truncated and truncated Yukawa systems are labelled
in italic and bold, respectively. The inset in figure 1 shows a close-up of the BCC pocket
region.

The phase diagram in figure 1 starts from the hard-sphere fluid-FCC coexistence at

1/ko = 0 (ko = o0). As the softness and range of the interactions increase, i.e. 1/ko
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Table 1. Phase coexistence points of figure 1 (squares and circles) obtained from free energy
calculations. B Po? gives the dimensionless pressure and 7 and 7, give the packing fractions of
the two phases at coexistence. The pressure is only given at coexistence points from which Kofke
integration was started (the squares in figure 1).

l/ke  BPc® m Phases

0.167  5.94 0.145  0.148  Fluid-FCC
0235 — 0.118  0.119  Fluid-FCC
0.250 6.29 0.114 0.116  Fluid-BCC
0.250  7.53 0.122  0.123 BCC-FCC
0.333 731 0.100  0.101  Fluid-FCC

0345 — 0.450 0460 FCC-fluid
0370 — 0.372  0.378 FCC-fluid
0400 — 0.094  0.095 Fluid-FCC
0400 — 0.307 0311 FCC-fluid
0.500 — 0.097  0.098  Fluid-FCC

0.500 37.62 0.166 0.169 FCC-fluid

increases, the fluid—FCC coexistence becomes narrower and moves to lower packing fractions
until a fluid-BCC-FCC triple point is reached at 1/ko ~ 0.24. Below the triple point
(1/ko < 0.24), the truncated and non-truncated potential give basically the same result for
the fluid—FCC coexistence curves. The reason for this is that in this regime, where ko is
high (and the density is low), the pair potential decreases to be close to zero when the cut-off
distance is reached, and therefore the two systems behave in the same manner. Above the
triple point (1/ko > 0.24), important deviations between the results of the truncated and
non-truncated potential emerge: while the system with Yukawa interactions has a large BCC
pocket (the region bounded by the broken curves), only a small region of BCC is seen in the
truncated Yukawa system. This region is concentrated close to the fluid-BCC-FCC triple
point at 1 /ko = 0.24. The instability of the BCC phase is due to the short-range nature of the
truncated potential: BCC is the stable phase in systems that have soft long-range interactions.
This is why we expect that, when the cut is made larger, i.e. x is made smaller, the stability
of the BCC phase is reduced even further. Conversely, with a milder cut, i.e. with larger x,
more BCC phase is expected to be present. Indeed, preliminary free energy calculations with
x = 1.77 showed a stable BCC phase at 1/ko = 0.4. Destabilization of the BCC phase
was also found recently in a simulation study that investigated the effect of triplet attractions
on the phase diagram of charged colloids as a first-order many-body correction to pairwise
additivity [6].

It is also worth mentioning that the fluid-FCC phase boundary above the second triple
point follows closely the fluid-BCC phase boundary of the non-truncated Yukawa system.
Thus, the sole effect of the truncation on the melting curve at low 7 is that the BCC phase is
replaced by the FCC.

Another effect of the truncation seen in figure 1 is a re-entrance of the fluid phase above
1/ko0 = 0.35 at higher 7, i.e. one observes a sequence of fluid, FCC and again a fluid phase
with increasing colloid volume fraction. Re-entrance is not seen in Yukawa systems [9—12]
but has been observed in an earlier study on truncated Yukawa systems [3]. Although not
studied here further, we expect that, because of the hard-core interaction, the fluid phase will
freeze again to the FCC phase at high enough packing fractions, around n =~ 0.5. The reason
why this re-freezing transition was not studied here is that the description using the truncated
potential fails to represent any physically relevant system when the cut becomes too large.
From figure 1 we see that at re-freezing the cut would be more than 10 kg 7.
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Figure 2. Phase diagram for a system in which the particles interact via a hard-core repulsive
Yukawa pair potential (1) with e = 81 and cut-off x = 1.5 presented in the (packing fraction
n, Debye screening length 1/ko) plane. The low part of the diagram (1/ko = 0) is the high-salt
regime and the upper part (1/ko = 0.6) is the low-salt regime. The full curves are coexistence
curves obtained by using Kofke integration and the grey areas denote the coexistence regions
with horizontal tie lines. The filled and open diamonds connected with long-dashed curves are,
respectively, the FCC and the BCC melting curves for a truncated point Yukawa system with
x = 1.5 from [3]. The dotted curves with labels 2 kg7, 5 kg7 and 10 kg7 denote the regions
where the potential at the cut-off distance is equal to the respective value.

Inthe low-saltregime in figure 1, from around 1 /k o = 0.4 upwards, one sees that the fluid—
solid phase boundaries with and without truncation deviate from each other (the difference
between the broken and the full curves); a system with truncation has more fluid phase.
Moreover, at 1/ko =~ 0.55 the fluid-FCC and the re-entrant FCC—fluid phase coexistence
curves join, implying that above this point only the fluid phase is stable.

In figure 2 we compare our results with the truncated-point Yukawa system of Dobnikar
et al [3]: the filled and open diamonds connected with long-dashed curves mark the FCC and
BCC melting curves for a truncated-point Yukawa system with x = 1.5. Before analysing
figure 2 further, we wish to make a few remarks on the Lindemann criterion, which was
employed in [3]. The Lindemann criterion states that, at the melting curve, the root mean
square displacements of the particles about their equilibrium positions in the crystal phase is
a universal fraction of the interparticle distance a, often taken to be 0.19 [5]. The solid phase
should always be the stable phase immediately at the melting curve. A simulation started
from a metastable solid phase melts at lower temperatures or higher packing fractions than
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the stable solid phase [11]. Figure 2 shows that the truncated Yukawa BCC melting curve
of [3] is at a higher packing fraction than the FCC melting curve for all 1/x o, indicating that
the BCC phase is always metastable with respect to the FCC phase at the solid—fluid phase
boundary. The agreement of the FCC melting curve with our fluid—-FCC phase coexistence
curve is reasonable but gets worse with increasing 1/ko. In particular the prediction for the
re-entrant FCC—fluid phase boundary clearly deviates from our result. The method in [3] based
on the Lindemann criterion was not accurate enough to find the tiny pocket of stable BCC phase
at the melting curve. It is tempting to relate the BCC melting curve to the BCC-FCC phase
boundary as was done, although very implicitly, in [3]. However, to our knowledge, it has
never been tested that a universal behaviour of the root mean square displacement holds at the
solid—solid phase boundaries similar to that at the melting curve, as stated by the Lindemann
criterion. Comparing the BCC melting curve obtained from the Lindemann criterion with our
‘exact’ phase diagram, we indeed see that this curve cannot be associated with any of our phase
boundaries.

In figure 3 we show results from figure 2 combined with the PB-BD results of Dobnikar
etal [3]inthe (X, T) representation. The open circles and full squares denote the melting points
obtained from the PB-BD simulations while the (thin) full curves give our results. The thick
full curves show the fluid—solid and BCC-FCC phase boundaries of point Yukawa particles
without truncation [12]. Please note that, according to these non-truncated point Yukawa
results, the triangle formed by the thick curves has a stable BCC phase. From figure 3 we find
that in our results the BCC phase is replaced by FCC, while the PB—-BD results indicate that the
BCC phase gets substituted by fluid. The only agreement between our results and the PB-BD
results is that both show more fluid phase than what is found when no truncation is used.
Because of the lack of data, it cannot be said if the re-entrance, seen in the truncated Yukawa
results, would appear in PB-BD simulations. Keeping in mind that the FCC melting curve is
obtained from the Lindemann criterion for fluid—solid transitions, it is rather surprising that it
follows so accurately the BCC-FCC curve of the full Yukawa system. However, as already
mentioned before and shown to be incorrect for the truncated Yukawa system, we should be
very cautious in using the Lindemann criterion to predict any phase boundaries other than the
fluid—solid one.

Finally we would like to discuss some problems that arise when comparing the many-body
PB-BD simulation results with results obtained using a pairwise Yukawa potential. The PB—
BD simulation melting points of [3] were determined for several values of x ! by varying the
charge Z at a single packing fraction = 0.03. Once the melting point Z and « ~! were known,
the effective charge Z.¢ and screening length Ke_fg were estimated. These effective values of
Z and k! are needed in order to make comparisons with systems interacting with a pairwise
Yukawa potential. As long as the hard core does not play a role, and this is to be expected at
n = 0.03, it is then possible to plot the results in the (A, T) representation using the effective
charge Z. and screening length /ce_ff', as was done in [3]. In order to replot our truncated
Yukawa results from figure 2 in the (A, T) plane, we employ the mapping that was presented
in section 2 and which is only valid when the hard core does not play an important role. The
effect of the hard core on the phase behaviour of the Yukawa system was studied earlier [9]
and it was found for Se = 81 that only at high packing fractions, around n = 0.5, does the
hard-core interaction lead to deviations in the phase behaviour. In figure 2 only the very end
of the re-entrant FCC—fluid phase coexistence curve reaches such high packing fractions that
one might expect deviations from the point Yukawa system. Therefore, our results can be
plotted in the (A, T) plane. If the PB-BD simulation would be repeated at a different volume
fraction than 7, possibly a different phase diagram in the (A, T) plane would be obtained.
This is because the effective charge Z.¢ and screening length Ke_fg depend on 1. However, the
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Figure 3. Phase diagram in the (A, T') representation. The thick full curves are the phase boundaries
for point Yukawa particles obtained by Hamaguchi ez al [12] and the (thin) full curves are the phase
boundaries for a system of truncated hard-core Yukawa particles with fe = 81 and with cut-off
x = 1.5. The hard-core Yukawa results are plotted using the mapping given in [9]. The filled and
open diamonds connected with long-dashed curves are, respectively, the FCC and the BCC melting
curves for x = 1.5 from [3]. The circles and the filled squares with error bars give the melting
points of [3] for FCC and BCC phases, respectively, obtained from the PB-BD simulations where
the full PB equation is solved giving the ‘exact’ effective many-body interaction for the colloids.
The dotted curves with labels 2 kg7, 5 kg7 and 10 kg7 denote the regions where the potential at
the cut-off distance is equal to the respective value.

pairwise Yukawa ~results, both ours and those from [3], can still be compared with the PB—BD
results in the (A, T') plane.

4. Conclusions

The phase diagram of a system where the particles interact with the truncated hard-core
repulsive Yukawa potential of equation (1) was studied with contact value Be = 81 and
cut-prefactor x = 1.5. We observed:

(i) aradical reduction of the stability of the BCC phase with respect to the FCC phase,
(i) more fluid phase due to instability of the FCC phase and due to a re-entrant fluid phase,

and

(iii) for sufficiently high salt concentrations, hardly any shift of the FCC melting curve when
compared with the BCC melting curve for the full Yukawa potential.
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That is, truncation of the potential does not affect the location of the solid—fluid line, but
only replaces the BCC phase with FCC at the melting curve. Of these observations (ii) has
already been confirmed by Dobnikar et al [3] in the truncated-point Yukawa system, However,
whether observations (i) and (iii) are supported by the earlier study cannot be answered since
the Lindemann criterion used in [3] is not suited to resolve the relative stability of the BCC
and FCC phases. Finally, we like to stress that (i), the instability of the BCC phase, was
also found recently in our simulation study where the effect of triplet attractions on the phase
diagram of charged colloids was investigated [6]. The effect of many-body interactions on
the phase behaviour is a destabilization of the BCC phase, which should be observable in
experiments.

Only one value of the cut x = 1.5 was used in this study. It is natural to expect that, if x is
made larger, all three effects (i), (ii) and (iii) mentioned earlier will become less pronounced
and finally vanish at x = oo. Conversely, with smaller x, we expect that the three effects
become more pronounced.

The only agreement with the full Poisson—Boltzmann Brownian dynamics (PB-BD)
simulation results is the increase in the fluid phase. In order to obtain a more quantitative
comparison, a different cut prefactor x for fluid, BCC and FCC phases should probably be
used. Also, in order to have a pair potential that agrees more with the real effective-pair
potential, instead of truncating the potential, a smooth decay to zero should be made. As a
preliminary result we have seen that adding a smooth truncation alters the phase behaviour of
the system. For example, it is natural to expect that the BCC phase becomes more stable when
introducing a smooth decay. However, playing with the cut and adding a smooth truncation
increases the number of parameters considerably, and the real problem is how to choose these
parameters realistically. One way to obtain them would be to perform PB—BD simulations and
extract the parameters by fitting to an effective pair potential. Finally, it is worth noting that,
since we are using a very simplified model to incorporate some of the many-body effects, one
might not even expect good agreement with the PB-BD results and, thus, a direct comparison
between both approaches is difficult. We also like to mention that it would be highly desirable
to have more results on the phase behaviour from the full PB-BD simulations in order to be
able to make more definite conclusions about the many-body interactions, e.g. when are they
important and what is the effect of them on the phase behaviour and structure of the colloidal
suspension. Still, we think that our work captures the general features of the phase diagram
when a Yukawa potential with (some kind of) truncation is used.
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