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Three-body forces between charged colloidal particles

C. Russ and H. H. von Gru¨nberg
Fakultät für Physik, Universita¨t Konstanz, 78457 Konstanz, Germany

M. Dijkstra
Debye Institute, Soft Condensed Matter Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands

R. van Roij
Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands

~Received 19 March 2002; published 15 July 2002!

Within nonlinear Poisson-Boltzmann theory we calculate the pair and triplet interactions between charged
colloidal spheres, specifically in the nonlinear regime of low salt concentrations and high charges. We find
repulsive pair interactions and attractive triplet interactions. Within a van der Waals-like mean-field theory we
estimate in which parameter regime a gas-liquid coexistence is to be expected.
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I. INTRODUCTION

Suspensions of charge-stabilized colloidal particles h
long been understood in terms of the DLVO~Derjaguin, Lan-
dau, Verwey, and Overbeek! theory@1#. This theory predicts
that the effective interactions between a pair of charged
loids immersed in a simple electrolyte consist of the sum
~i! hard-core repulsions due to the finite diameters of the
colloidal spheres,~ii ! van der Waals attractions with a typic
range of a few nm from the colloidal surface, and~iii !
screened-Coulomb~Yukawa! repulsions with the screenin
length given by the Debye lengthk21 of the electrolyte. The
relative strengths of these contributions can be varied
changing the solvent, salt concentration, or temperature.
instance, by increasing the salt concentration the electros
screening becomes more efficient (k21 decreases!, hence the
van der Waals attractions become relatively more p
nounced, and this explains reversible vapor-liquid coex
ence or irreversible flocculation if the salt concentration
high enough@2#. Conversely, by decreasing the salt conce
tration the screened-Coulomb repulsions act on longer
tances (k21 increases!, thereby stabilizing the suspension b
masking the van der Waals attractions, which explains, e.
first-order fluid-to-crystal transition upon increasing the c
loidal density and the existence of colloidal crystals at c
loid volume fractions of only a few percent@3#. For these
reasons, and many more, the DLVO theory has long b
considered a cornerstone of colloid science.

During the past few years, however, evidence has b
accumulating that the DLVO picture breaks down, or at le
needs refinement, in the regime of extremely low-salt c
centrations below, say, a few micromoles per liter. For wa
at room-temperature this regime is such thatk21 is of the
order of 100 nm or larger, i.e., the electrostatic repulsio
should mask the van der Waals attractions completely
cording to the DLVO theory. Nevertheless, some expe
ments provide evidence for the existence of attractive in
actions between the colloids in this regime. The experime
observations include vapor bubbles~‘‘voids’’ ! in otherwise
homogeneous suspensions@4#, lattice spacings of colloida
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crystals smaller than expected on the basis of the total d
sity ~suggesting gas-solid coexistence! @5#, long-lived meta-
stable crystallites@6#, and gas-liquid coexistence@7# ~albeit a
disputed one@8#!. Even though the experimental situation
far from clear, these results did trigger a search for the sou
of possible attractive electrostatic interactions between li
charged colloids. Several papers review the current state
affairs comprehensively, see, e.g., Refs.@9–11#.

By now several mechanisms have been identified and
posed. One can distinguish between approaches aimin
improving the DLVO pair interactions by, e.g., includin
ionic correlations, and those where many-body effects
considered. It has become clear that ion-ion correlations
correlated fluctuations can indeed give rise to an attrac
component in the effective pair interactions@12–18#, and so
can the Coulombic depletion effect@19#. It remains to be
seen, however, whether these attractions are strong en
and of sufficiently long range to explain the experimen
low-salt data. Moreover, in the process of extracting therm
dynamic and structural information of a suspension from p
interactions, one tacitly assumes pairwise additivity. In
low-salt regime of interest, wherek21 is of the order ofs or
even larger, it is rather likely that pairwise additivity brea
down and that many-body effects become important. Th
many-body effects have been included through so-called
ume terms@20–24#, which are coordinate-independent b
density-dependent contributions to the effective Hamilton
of the colloids. The nontrivial density-dependence of the v
ume term can be traced back to a ‘‘smearing’’ effect, whe
~parts of! the coordinate dependences of the effective p
and many-body interactions are ‘‘projected’’ onto effectiv
density-dependent one- and two-body terms in the effec
Hamiltonian. This smearing occurs by, e.g., linearizing t
Poisson-Boltzmann equation about the average potentia
the average ion concentration instead of solving the full n
linear problem@25#. Given the manifestly attractive~cohe-
sive! contributions to the volume term, at low enough sa
we expect attractive many-body interactions within a f
nonlinear theory for the effective colloidal interactions. Th
would also be consistent with recent simulation work
©2002 The American Physical Society02-1
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Refs. @26,27#. In this paper we study the pair and tripl
interactions between charged colloids within the framew
of Poisson-Boltzmann theory, i.e., within mean-field theo
Given the low-salt conditions of interest, we ignore the v
der Waals interactions from the outset, and only consi
Coulombic and hard-core interactions.

This study was motivated by a pilot study by one of u
where the pair, triplet, and four-body interactions of infini
parallel, highly charged plates were calculated with
Poisson-Boltzmann theory@28#. The result was that the pa
interactions are purely repulsive, as expected. The triplet
teractions, however, were found to be attractive, and s
that the pair interaction between the two outer plates w
canceled exactly~within the numerical accuracy! by the trip-
let interaction. This implies that the middle plate complete
shields the outer two plates from each other, i.e., one co
interpret this as an instance of screening by a macroion.
four-body interaction is found to be repulsive again, in su
a way that the effective Hamiltonian of a system of fo
parallel charged plates is a sum over nearest-neighbor
interactions—this is very different from a sum over all pai
The question we address in this paper is whether these
nomena for parallel plates have any resemblance to
physical reality of charged spheres.

This article is organized as follows. In Sec. II we sho
how the effective pair, triplet, and more-body potentials b
tween charged colloids follow from the solution of th
Poisson-Boltzmann equation. In Sec. III we discuss
implementation of the numerical scheme and the results
the pair and triplet potentials. In Sec. IV we estimate, on
basis of a simple van der Waals-like theory, whether the
tractive triplet interactions are strong enough to stabiliz
dense liquid in coexistence with a dilute gas. We conclude
Sec. V.

II. POISSON-BOLTZMANN THEORY

We considerN identical colloidal particles at center-o
mass coordinatesr i ( i 51, . . . ,N) immersed in an un-
bounded 1:1 electrolyte solution. The colloids are assume
be spherical, with hard-core diameters, and negatively
charged, with the total charge2Ze distributed homoge-
neously on the colloidal surface. Heree represents the uni
~proton! charge. The electrolyte, at temperatureT, is charac-
terized by the dielectric constante of the solvent~which we
treat as a structureless continuum!, and by the bulk salt con
centrationcs of positive and negative ions, i.e., the total bu
ion concentration is 2cs . For later reference we introduce th
Bjerrum lengthlB5e2b/e, with b51/kT. It turns out to be
convenient to divide space into regions inside and outside
hard core of the colloids. The region of space filled by t
electrolyte solution, i.e., outside the colloids, is denoted
G, and the boundaries of this region, which are the surfa
of the N colloidal particles (i 51, . . . ,N), are denoted by
]Gi . Our first goal is to compute the average electrosta
potential,c(r )5c(r ;$r i%), for fixed colloid configurations
$r i%, for rPG.

Due to the presence of the~fixed! colloidal charges, the
distribution of microions becomes inhomogeneous near
01140
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colloids. In a mean-field approach, the density distributio
of the positive and negative ions,r6(r ), are related toc(r )
through the Boltzmann distributionr6(r )5csexp@7F(r )#
for rPG, whereF(r )5bec(r ) is the dimensionless elec
trostatic potential. The ionic charge distribution is therefo
for rPG, given by

r~r !5r1~r !2r2~r !522cs sinhF~r !. ~1!

OutsideG we haver(r )50 from the hard-core condition
The two unknown fieldsr(r ) andF(r ) also satisfy the Pois-
son equation¹2F(r )524plBr(r ), which yields with Eq.
~1!, the Poisson-Boltzmann~PB! equation

¹2F~r !5k2 sinhF~r !, rPG, ~2!

where the screening parameterk is defined as k2

58plBcs . The PB equation is a nonlinear partial differe
tial equation forF(r ), to be solved with the boundary con
ditions ~BCs! that

F~r !50, ur u→`; ~3!

ni•“F~r !5
4plBZ

ps2
, rP]Gi ,

whereni are unit vectors, normal to the surfaces]Gi of the
colloids labeledi 51, . . . ,N, and pointing into the regionG.
Note that the last line of Eq.~3! is the constant-charge
boundary condition. Due to the negative colloidal chargesF
is negative inG with a positive gradient at]Gi in the direc-
tion of G. The BCs of Eq.~3! are such that~i! the bulk ion
concentrationsr6(r )→cs far from the colloidal particles,
and ~ii ! the total system is charge neutral. This latter po
follows from the spatial integration ofr(r ) over G, which
with Eqs. ~1! and ~2! and a partial integration yieldsNZ as
required.

The potentialF(r ) is the key to the calculation of the
effective interactions of the colloids. Describing the elect
lyte in the grand-canonical ensemble, i.e., fixing the volum
the temperatureT, and the chemical potential of the micro
ions ms5kT ln csL

3 ~with L3 the thermal wave length!, we
can describe the effective interactions as the grand pote
of the electrolyte in the external field of theN fixed colloidal
particles. In terms ofF(r ) and the densitiesr6(r ), the grand
potentialV is, within mean-field theory, given by the sum o
the electrostatic energy and the ideal-gas grand poten
viz.,

bV5
1

8plB
E

G
dr ~“F!21 (

a56
E

G
drra~ ln raL321

2bms!12E
G

drcs . ~4!

Note that we subtracted the grand potential of the unchar
system through the last term of Eq.~4!. This expression for
V follows directly from the optimization of the mean-fiel
2-2
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grand potential functional with respect tor6(r ), see, e.g.,
Ref. @25#. By substitution ofr65csexp@7F#, Eq. ~4! can be
further simplified to

bV5
1

8plB
E

G
dr @~“F!212k2~F sinhF2coshF11!#

52
Z

2ps2 (
i 51

N E
]Gi

drF1
k2

8plB
E

G
dr ~F sinhF

22 coshF12!. ~5!

Note that V vanishes in the case of uncharged colloid
where F[0. Once we have calculatedF(r ) for a given
configuration of colloidal particles by solving the PB pro
lem represented by the Eqs.~2! and~3!, we can evaluate Eq
~5! to obtainV. A change of the position of any of the co
loidal particles changesF(r ) and, hence,bV. This change
of V can be related to the effective interactions between
colloids, as we will see now.

For a system ofN colloidal particles, at fixed positionsr i ,
i 51, . . . ,N, we denote the grand potential, given by Eq.~5!,
by VN from now on. This quantity, which is a function of th
coordinatesr i , can be uniquely decomposed into so-call
effectiven-body potentialsV (n), with n<N, viz.,

VN5NV11(
i , j

N

V (2)~ i j !1 (
i , j ,k

N

V (3)~ i jk !

1 (
i , j ,k, l

N

V (4)~ i jkl !1•••, ~6!

where the short-hand notation for the center-of-mass p
tions should be obvious, and where••• denotes five-body
potentials and higher. Then-body potential is defined in the
n-body system, i.e., in the system withN5n. The decompo-
sition scheme starts by subsequently considering the c
N51,2,3, . . . . Clearly V1 is the self-energy of a single co
loid, N51, in the ‘‘grand-canonical sea’’ of electrolyte. It i
an intensive quantity, which does not depend on the cen
of-mass positionr1 of that colloid by translational invari-
ance. The effective pair potentialV (2)(r 12)[V (2)(12) be-
tween two colloids at separationr 125ur12r2u follows from
Eq. ~6!, for the caseN52, as

V (2)~12!5V2~12!22V1 . ~7!

Note thatV (2)(r 12) tends to zero forr 12→` by construction.
The three-body potentialV (3)(r 12,r 13,r 23)5V (3)(123) is
defined in theN53 system as

V (3)~123!5V3~123!2V (2)~12!2V (2)~13!

2V (2)~23!23V1 . ~8!

By construction,V (3)(123) tends to zero whenever~at least!
one of the argumentsr i j →`.

It is straightforward to proceed and define the four-bo
potential by equating the left- and right-hand side of Eq.~6!
01140
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for N54, etc. In this sense the decomposition scheme p
sented here is nothing but a scheme of subsequent de
tions, producing merely an identity. The power of the sche
lies, however, in its low-order truncation; whereas a real s
pension consists of many colloids, sayN51012 or so, one
expects that the decomposition ofVN of Eq. ~6! is accurate
by only includingn-body potentials of ordern52, . . . ,n* ,
with n* of order unity, i.e., by assuming thatV (n)[0 for
n.n* . In fact, in many cases one just restricts attention
n* 52 only, ignoring even 3-body interactions. This assum
tion of pairwise additivity is for instance made when descr
ing the Hamiltonian of noble gases by a sum of Lenna
Jones potentials, or the effective Hamiltonian of a colloid
suspension by pairwise DLVO interactions. The focus of t
article is on the casen* 53, the lowest-order correction to
pairwise additivity.

We close this section with a reduction in the number
independent parameters by an appropriate scaling to dim
sionless variables. We use the hard-sphere diameters as unit
of length, and define the dimensionless gradient operato“̄

5s“ and the dimensionless screening parameterk̄5ks. In
terms of these, the Poisson-Boltzmann problem can be
written as

¹̄2F~r !5k̄2 sinhF~r !, rPG, ~9!

ni•“̄F~r !54Z̄, rP]Gi ,

where the rescaled~and dimensionless! colloidal charge is
defined asZ̄5ZlB /s. The rescaled grand potential is d
fined asV̄N5bVNlB /s, and is given by

V̄N52
Z̄

2p (
i 51

N E
]Gi

drF1
k̄2

8pEG
dr ~F sinhF

22 coshF12!, ~10!

where the spatial coordinates are understood to be in uni
s. One recognizes that the problem depends on just
independent parameters: the scaled screening lengthk̄21 and
the scaled chargeZ̄. Systematically varying these two param
eters, each time calculating the effective potentialsV̄ (n)

5bV (n)lB /s from the generalized grand potentialV̄N , we
can conveniently explore the behavior of a whole variety
possible systems, each characterized by the paramete
(lB , s, k, Z). It is important to realize, however, that th
reduction to only two dimensionless parameters only app
to the calculation of the effective interactions; the thermod
namics of the suspension is determined bybV rather than by
V̄, and hence the ratiolB /s is, in this respect, another in
dependent dimensionless combination. Note that typical
loidal parameters arelB.1 nm, Z.100–1000, s

.100 nm, andk21.1 –1000 nm, such that typicallyZ̄

.1 –10,k̄.0.01–10, andlB /s.0.01. The combinations o
2-3
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k̄ and Z̄ investigated in this work are illustrated in Fig.
They are seen to span a large regime of typical colloi
parameters.

III. THREE-BODY INTERACTIONS

A. General remarks

The decomposition of Eq.~6!, truncated such thatV (n) is
assumed to vanish forn.n* , is in fact a construction with
which anN-body system~with N@1) can be approximately
described by a series of 1,2, . . . ,n* -body systems, withn*
of order unity. The focus of this article is on the casen*
53, i.e., we restrict explicit computations to systems co
sisting ofN51,2,3 colloidal particles. Before discussing th
details of our numerical calculations, we wish to stress t
many-body potentials are, essentially, a feature of the n
linear character of the Poisson-Boltzmann equation. In
linear PB theory—where conventionally sinhF.F in Eq.
~2!—the linear superposition principle applies, and th
yields, essentially, vanishing many-body interactions. T
can be easily seen from the following consideration. In lin
PB theory, the expression in Eq.~10! for the grand potentia
must be expanded up to second order. This yields

V̄ l in52
Z̄

2p (
i 51

N E
]Gi

drF. ~11!

Since the PB equation is now linear,F is approximately
given by a multicentered sum, i.e., a superposition, ofN
potentialsw j[w(r2r j ), i.e., F.( j 51

N w j , wherew j is cal-
culated for a single, isolated colloidal particle. As a con
quence

V̄ l in52
Z̄

2p (
i , j 51

N E
]Gi

drw j[NV̄1,l in1(
i , j

N

V̄ l in
(2)~ i j !,

~12!

where the linearized one-body term~self-energy! V̄1,l in and
the effective pair potentialV̄ l in

(2)( i j ) are given by

FIG. 1. Points in the parameter space (k̄21,Z̄) investigated in

this work. Herek̄5ks is the dimensionless screening constantk,

Z̄5ZlB /s the dimensionless colloidal chargeZ, ands andlB are
the colloidal diameter and the Bjerrum length, respectively.
01140
l

-

t
n-
e

s
r

-

V̄1,l in52
Z̄

2pE]Gi

drw i ,

V̄ l in
(2)~ i j !52

Z̄

2p S E
]Gi

drw j1E
]Gj

drw i D , ~13!

whereas the three-body terms~and higher! vanish. Triple
forces can therefore not be calculated using linear theory
the superposition principle. This is not meant to imply th
linear theory cannot be used to calculate triple forces in p
ciple: one can, of course, linearize the PB equation of Eq.~9!
and solve the full boundary value problem. The solutio
satisfying all boundary conditions in Eq.~9!, can deviate
from the potential obtained from superposing one-colloid p
tentials, particularly if the colloidal spheres are large, t
relative distances between them small, and the size of
double-layers involved comparable to the colloid dimensi
This in principle should lead to three-body interaction
However, the region in parameter space where lineariza
is justifiable, but the superposition principle not, seems to
rather small. In almost all our calculations, we found tha
the condition for the linearization of the problem was fu
filled, i.e., if the potentialF on the colloidal surface was
below unity, three-body effects completely disappeared.
other words, the nonlinearity of the PB problem is essen
for the appearance of three-body interactions.

After this motivation to study the nonlinear PB problem
let us focus on the numerical methods and results. The s
egy is to first computeV̄1, for a given set of (k̄,Z̄), by
solving the PB equation in the presence of a single collo
and inserting the resulting solutionF(r ) into Eq. ~10!. This
needs to be done only once, for a given set (k̄,Z̄). In prin-
ciple we could then calculateV̄2(r 12) for a set of distances
r 12 by solving the PB equation in the geometry of two co
loids, and determine the pair interactionV̄ (2)(r 12) using Eq.
~7!. Along the same lines the three-body potential would f
low from the solution of the PB equation in the geometry
three colloidal particles, together with Eq.~8!. In practice,
however, we find a larger numerical accuracy when the p
interactionsV̄ (2)( i j ) of all three pairs of a triplet are calcu
lated anew, for each triplet under investigation. This impl
that we carry out, for a given configuration of three colloid
three two-body calculations to obtainV̄ (2)( i j ) for all three
pairs, and one three-body calculation to determineV̄3 and
henceV̄ (3). Varying some colloid-colloid distances in th
triplet, each time going through the cycle just described,
end up withV̄ (3) as a function of the three distancesr 12,
r 13, andr 23. The computational effort can be reduced if th
sequence of configurations are chosen such that some o
pair interactions do not change or if the configurations
symmetric so that two or all three pair potentials are identi
by symmetry.

To solve the PB-boundary value problem, Eq.~9!, we use
the finite element method@29#. An advantage of this numeri
cal scheme is that one can locally vary the mesh size of
grid so as to improve the accuracy of the calculation in hig
2-4
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gradient regions, for example, close to the particle surfa
The initial task is to mesh the geometry, for which we use
program ‘‘Netgen’’@30#. The grid thus generated is very fin
on the colloidal surfaces and becomes smoothly coarser
increasing distance from the surface. Typically the colloi
surface is meshed by 7500 grid points, and a typical num
for the total number of grid points is 23105 for a relative
accuracy ofV̄ of 1024. For solving the differential equation
on this grid we use the program packageDIFFPACK @29#.
Starting from a first guess of the solution one can us
built-in DIFFPACK procedure to further refine the grid, usin
the local information of an error estimation procedure. T
involves the value of the solution over an element, its fi
derivative, and the volume of the element. This can be d
iteratively. The original grid usually needs several refin
ments before the solution reaches sufficient overall accur

Having solvedF(r ) on a grid from the nonlinear PB
equation, we compute the grand potential using Eq.~10!.
Alternatively, one can directly calculate forces by integrati
the stress tensor@which can also be written in terms ofF(r )#
over a surface enclosing the particle of interest@31#. This
alternative route offers a convenient way to check not o
the whole implementation, but also the achieved accuracy
comparing the forces between two colloids obtained from
stress-tensor procedure with the derivative of the pair po
tial calculated from Eq.~10!. Another check was performe
by comparing the numerically determined pair interact
with the DLVO potential, which should be valid in the linea
regime of lowZ. At low enough colloidal charge, both po
tentials and forces show virtually no deviation from the p
dictions of linear theory. However, for a given grid the p
tential obtained from Eq.~10! was more accurate than th
forces calculated via the stress-tensor procedure. In o
words, to calculate the force to the same accuracy as
potential one needs grids that must be considerably fi
thus requiring a much longer computation time. For mos
our calculations, we therefore restricted ourselves to calc
tions of the grand potential only. For each set of parame
(k̄21,Z̄) we optimized the number of refinement steps w
respect to both the desired accuracy and a reasonable
putation time. We also checked for errors due to the fin
size of our system.

B. Numerical results

Consistent with a mathematical proof@32#, we find that
the effective pair interactionV̄ (2)(r 12) is purely repulsive for
any of the investigated values ofk̄ and Z̄. By contrast, we
find that the triplet potentialV̄ (3)(r 12,r 13,r 23) is purely at-
tractive in all cases. A first illustration of the purely attracti
nature of the three-body interactions is shown in Fig. 2
coaxial geometries of the three particles, for the parame
k̄2156.25, Z̄56.75. The symmetry of the coaxial geomet
is such thatV̄ (3) only depends on the distancer 12 between
the left and the center sphere and the distancer 23 between
the center and the right sphere. Figure 2 shows ther 23 de-
pendence ofV̄ (3) for four different values ofr 12. We ob-
serve that the three-body potential is indeed attractive in
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coaxial geometry, and the more so the smaller the distan
r 12 andr 23. In order to compare the magnitude ofV̄ (3) with
that of the pair interactionsV̄ (2), we plot in Fig. 3 the ratio
2V̄ (3)(123)/V̄ (2)(13) as obtained in the coaxial geometr
as a function ofr 23, again for the four different values o
r 12. One concludes from Fig. 3 that the three-body poten
equals a considerable fraction of the negative of the p
interaction between the two outer particles, ranging from
least 40% at larger 12 andr 23 up to 90% atr 12,r 23.s. This
means that the middle colloid essentially shields the t
outer ones from each other, indicative of strong three-bo
interactions in the coaxial geometry. This implies that t
triplet interactions in the parallel plate geometry, as d
cussed in the Introduction, have indeed a direct analog in
geometry of spheres. The screening by the central sphe
not as perfect as by the central plate, but we deem the p
nomenon identical.

FIG. 2. Scaled effective three-body interactionV̄ (3)

5bV (3)lB /s ~see text! of three colloids, in the collinear geometr
indicated in the graph, as a function of the separationr 23 between
the central and right-most colloidal particle. The curves are labe
by the valuer 12/s; the scaled screening length and charge a

respectively,k̄2156.25 andZ̄56.75 for all curves. The three-bod
interaction is seen to be attractive.

FIG. 3. Ratio2V̄ (3)(123)/V̄ (2)(13) of the collinear three-body
potentials~shown in Fig. 2! and the negative of the pair interactio

V̄ (2)(13) of the two outer spheres~labeled 1 and 3 as in Fig. 2!. In
the case of perfect shielding of the two outer particles by the cen
one, this ratio would take the value unity. The curves are labele
in Fig. 2.
2-5
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We also calculatedV̄ (3) in two other geometries. In Figs
4 and 5 we show results for the so-called ‘‘midplane’’ geo
etry and the equilateral triangle, respectively, again fork̄21

56.25 andZ̄56.75. In the midplane geometry the collo
labeled ‘‘2’’ is located in the midplane of the two outer co
loids 1 and 3, shifted a distanceh from the axis that connect
the two outer ones. This implies that the caseh50 is a
coaxial geometry, withr 125r 2352r 13, but by increasingh
the central sphere is moved away perpendicular to the a
Figure 4 showsV̄ (3) as a function ofh, for several separa
tions r 13 of the two outer spheres. Note that the minim
value ofh for the curve withr 13/s51.25 is set by the hard
sphere constraint, i.e., it corresponds to a 1-2 and 2-3 c
tact. The figure shows thatV̄ (3) is negative, and more so fo
smallerh andr 13, and hence represents attractive three-bo
interactions. The shielding of the two outer particles by
central one becomes less efficient for increasingh, as ex-
pected, but its effect dies down to zero only for a fairly lar
h of the order of a fews. In other words, one does no
require a strict colinear geometry to obtain a considera
shielding of the pairwise 13 interaction by colloid 2. At su
ficiently largeh we find thatV̄ (3)→0 for any r 13, showing

FIG. 4. Scaled effective three-body interactionV̄ (3)

5bV (3)lB /s of three colloids in the midplane geometry, as a fun
tion of the distanceh of the central colloid ‘‘2’’ from the axis be-
tween the two outer particles ‘‘1’’ and ‘‘3.’’ Parameters are as in F
2. The curves are labeled by the valuer 13/s.

FIG. 5. Scaled effective three-body interactionV̄ (3)

5bV (3)lB /s of three colloids in the equilateral triangle geomet
with r 125r 235r 13, as a function ofr 12. Parameters are as in Fig. 2
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that pairwise additivity is restored when one of the thr
particles is far from the other two. This picture is confirm
by Fig. 5, whereV̄ (3)(r 12) is plotted for the equilateral tri-
angle geometry, withr 125r 235r 13. This configuration is the
one where all three particles can touch each other. This c
figuration, with r 125s, gives the strongest, most negativ
V̄ (3). For increasing sidelength of the triangle the triplet i
teraction decays to zero. Hence,V̄ (3) represents attractive
triplet interactions in the triangular geometry as well.

On the basis of Figs. 2, 4, and 5, which we conside
representative subset of all possible geometries of three
ticles, it is tempting to conclude that the triplet interaction
attractive for any geometry of three particles. This conc
sion is confirmed by Fig. 6, which we deem the most imp
tant finding of the present study. In this figure we showall
the triplet interactions of Figs. 2, 4, and 5, i.e., nine curves
total since all variations of the distances are considered,
function of the summed distances

L5r 121r 131r 23. ~14!

The surprising result is that all data collapse onto one ma
curve that can be fitted remarkably well by a Yukawa fun
tion,

V̄ (3)~L !52A(3)s
e2gL

L
, ~15!

with a decay parameterg and an amplitudeA(3). The full
curve in Fig. 6 is the result of such a fit. Figure 6 indicat
that the three-body potential depends, effectively, on
single distanceL, rather than on the three distancesr 12, r 13,
and r 23 separately. At this stage we have no satisfactory
planation for this observation. It implies that, in some sen
many of the details of the configuration are irrelevant
V̄ (3).

We found this interesting property of three-body pote
tials for almost all combinations ofk̄21 and Z̄ investigated
~for the region in parameter space studied in this work,

-

.

FIG. 6. The three-body potentials of Figs. 2, 4, and 5, plotted
a function ofL5r 121r 231r 13. Circle symbols refer to the poten
tials calculated in the triangle configuration, squares to the po
tials from the mid-plane configuration, and diamonds to those
tained in the axial configuration. The curve is a Yukawa functi
fitted to the data.
2-6
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THREE-BODY FORCES BETWEEN CHARGED COLLOIDAL . . . PHYSICAL REVIEW E 66, 011402 ~2002!
Fig. 1!. Figure 7 shows a few examples. For each pair
parameters (k̄21,Z̄), we first calculated the three-body inte
action in all three configurations depicted and discus
above, i.e., the collinear, the midplane, and the triangle
ometry. The resultingV̄ (3) was then plotted as a function o
L, and fitted to the potential given in Eq.~15!; the fits are
also shown in Fig. 7 as the full curves. The data collapse
a master curve is seen to hold, essentially, for all parame
(k̄21,Z̄). Figure 7 reveals that the three-body forces are
tractive for all parameters investigated, with increas
strength for increasing values ofk̄21. In the limit of very
small values ofk̄21, on the other hand, three-body effec
disappear. A simple estimate for the minimalk̄21 required
for nonvanishing triplet interactions can be given by cons
ering three touching colloids in the equilateral triang
geometry—this is the situation where we expect, if existe
the strongest three-body interactions. Given that triplet in
actions are due to an overlap of three double layers, e
extending to a distance of orderk21 from the colloidal sur-
face, one can argue that triplet interactions exist whenk21

.j, wherej is the ~smallest! distance from the center-of
mass position of the three colloids to the three colloidal s
faces. Elementary geometry yieldsj/s51/A321/2.0.08,
and hence we expect the crossover to vanishing triplet in

FIG. 7. Three-body potentials as a function ofL5r 121r 23

1r 13, for various values of the parameterk̄21, in ~a! for Z̄56.75

and in~b! for Z̄51.8. The inset figure shows a blowup of the resu

of the (Z̄56.75, k̄2150.39) calculation in~a!. The symbols refer
to three-body potentials in different configurations@triangle, mid-
plane, and axial configurations, same symbols as in Fig.~3!#, the
solid lines are fits of the data to the potential in Eq.~15!.
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actions fork̄21.0.08. Note that this is an upper bound,
the sense that the touching triangle geometry is optimal
strong triplet interactions; other geometries requirek̄21

.0.08 for nonvanishing triplet interactions, consistent w
our numerical findings shown in Fig. 7.

A comparison of Figs. 7~a! and 7~b! also reveals thatV̄ (3)

is more than ten times larger forZ̄56.75 than forZ̄51.8. If
one further reducesZ̄, three-body potentials will eventually
completely disappear. This is roughly the case when the e
trostatic potentialF becomes 1 at the colloidal surfac
which is exactly the point where linear theory starts to b
come applicable. This again shows that three-body effe
are a phenomenon of nonlinear theory.

In the triangle configurationL satisfiesL>3s, where the
minimal valueL53s obtains in the touching geometry. I
all other configurations the minimum value forL is larger
than 3s. Therefore, the data for small values ofL stem
solely from the triangle configuration. For large values
k̄21 this is inconsequential, but this is relevant whenk̄21 is
so small that the triplet interaction decays to zero over o
particle radius only. For a significant range ofL we then only
obtain data from the triangle configuration. This is actua
the case fork̄2150.39 as shown in the inset of Fig. 7~a!.
This inset also reveals that the data collapse is not exact.
deviation is systematic in that the triangle configuration,
fixed L, gives a stronger three-body interaction than the ot
configurations. However, we feel that this detail should n
conceal the fact that the data collapse is remarkably accu
for the larger values ofk̄21. Though unexplained, this prop
erty is of invaluable use in practical terms. For instance
three-body interaction that depends onL only can be easily
used in simulations. It is also helpful if one wishes to es
mate the strength of three-body forces in a given system
only calculations in, e.g., the triangle geometry need to
performed @recall that with the parametrization (Z̄,k̄) we
treat the problem as generally as possible#. For these reason
we present the fit parametersA(3) andg, based on Eq.~15!,
in Table I. We also give the prefactorsA(2) for the calculated
pair potentialsV̄ (2) ~not shown here!, fitted to

V̄ (2)~r !5A(2)s
exp@2kr #

r
. ~16!

Initially we also introduced the screening constant as a
parameter forV̄ (2), but we found it—to a very good
approximation—equal tok in all cases. The fits are of goo
quality, not only for long, but also for short distances.

C. Notes on the interaction range and on four-body interactions

If the range ofV̄ (3) is sufficiently large, then even fairly
weak three-body interactions are thermodynamically r
evant, since they lower the total interaction energy of a c
loidal configuration. Here we briefly discuss some simp
ideas to illustrate the effect qualitatively. Let us consider
energy per colloid,u, due to the effective interactions wit
other colloids. Due to the separation of the effective inter
2-7
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TABLE I. Parameters for three-body and two-body potentials in Eqs.~15! and ~16! for various values of (k̄21,Z̄).

k̄21

Z̄ 0.39 0.5 0.78 1 1.56 3.13 6.25

9.00 A(3) 1.33102

(gs)21 0.80
A(2) 3.53101

6.75 A(3) 9.73101 3.73101 2.73101 3.03101 3.43101

(gs)21 0.80 1.6 3.0 5.0 8.5
A(2) 4.03101 1.63101 1.23101 1.33101 1.53101

4.50 A(3) 5.33101

(gs)21 0.80
A(2) 2.73101

3.38 A(3) 5.33101 3.53101

(gs)21 0.75 1.0
A(2) 1.93101 1.33101

2.25 A(3) 2.53101

(gs)21 0.65
A(2) 1.13101

1.80 A(3) 9.03100 6.03100 4.13100 3.23100 2.93100 2.23100

(gs)21 0.70 1.0 1.5 2.6 3.7 4.5
A(2) 6.53100 5.13100 3.53100 2.93100 2.93100 3.03100

1.35 A(3) 1.63100 1.73100 9.731021 8.731021

(gs)21 1.4 1.6 2.9 4.5
A(2) 2.23100 2.03100 1.83100 1.83100

0.900 A(3) 1.231021 2.631021 1.831021 1.431021

(gs)21 1.7 1.7 2.9 4.1
A(2) 1.03100 9.331021 8.431021 8.031021

0.675 A(3) 3.831022 5.731022 2.631022 1.431022

(gs)21 1.9 2.6 6.5 7.5
A(2) 3.73100 5.431021 5.031021 4.631021 4.531021

0.450 A(3) 2.031023

(gs)21 9.5
A(2) 2.531021 6.531021 2.031021

0.338 A(3) 5.231024

(gs)21 6
A(2) 1.3531021 1.131021
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tions into pair-, triplet-, and more-body contributions, we c
write u5u21u31•••, with uk the contribution tou from the
k-body interactionsV (k). In a van der Waals-like mean-fiel
picture @33#, one estimates thatuk.nkvk /k!, with vk the
typical strength ofV (k) andnk the number ofk tuplets in the
range ofV (k). At total densityr and rangej—which we take
the same here for allk for simplicity, and this is supported b
our data—this yieldsn25rj3 and n35(rj3)2, and hence
u3 /u25(v3 /v2)rj3 is obtained for the ratio of three-bod
to two-body interaction energy. At great interaction rang
even small three-body interactions can be of importance
the overall interaction energy. Our data show thatv3 /v2 is,
typically, of order unity, and thatj.k21. Hence, the triplet
interactions should be considered relevant whenrk23

.hk̄23 is of order unity, whereh5(p/6)rs3 is the colloi-
dal packing fraction.

Another point of interest is the next order term, the fo
body interactionV (4), which of course also becomes releva
01140
s
to

-
t

if the range of the interactions increases. The main prob
is that it depends on six~combinations of! coordinates—
recall thatV (3) depends on three coordinates, and that
study was only feasible practically because of the empir
observation that the dependence on allr i j could be reduced
to a singleL dependence. For these computational reas
we restricted attention to only two classes of configuratio
and to a very limited set of (Z̄,k̄21). The first class of con-
figuration is the collinear one, where the four colloids a
perfectly aligned on a single axis, and the second one is
tetraeder configuration, where the four colloids form the c
ners of a symmetric tetraeder. On the basis of the four-b
interactions of parallel plates@28#, discussed in the introduc
tion, we expectedV (4) to represent repulsive interactions. T
our surprise, however, we find thatV (4) is attractive for all
configurations of four spheres that we considered here.
have, moreover, some evidence thatV (4) can also be repre
sented realistically as a function of the summed distan
2-8
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THREE-BODY FORCES BETWEEN CHARGED COLLOIDAL . . . PHYSICAL REVIEW E 66, 011402 ~2002!
involved, i.e.,V (4)($r i j %)5V (4)(L (4)), with L (4)5( i , j
4 r i j .

The data onto which this reduction is based is rather limit
however. As an example, we showV̄ (4) as a function ofL (4)

in Fig. 8, for k̄2156.25 andZ̄51.8. The typical magnitude
of the four-body attractions is found to be much weaker th
any of the corresponding three-body attractions. Note, h
ever, that a direct comparison of the numerical value ofV (3)

and V (4) should be carried out with care: the contact va
for the triplet interactions takes place atL (3)5L53s, and
for the four-body interactions atL (4)56s, so it should come
as no surprise that the four-body potential has a lower
merical value. A better comparison would be based on
integrated strengthsv3 andv4, discussed above. We did no
pursue this here for technical reasons.

IV. GAS-LIQUID COEXISTENCE?

In the final section of this paper we wish to roughly es
mate whether or not the cohesive energy hidden in the tri
interactions can possibly drive gas-liquid coexistence. We
this using the simplest possible extension of the van
Waals theory for gas-liquid coexistence; more elaborate
scriptions are straightforward to formulate but not conside
here. We take the hard-sphere fluid, with diameters and
number densityr, as the reference fluid, and consider t
pairwise repulsions and the triplet attractions calculated
this paper as weak perturbations—this is a strong assump
that can be relaxed at the expense of more involved calc
tions. Within a mean-field picture, where the pair correlatio
of the hard-sphere fluid are assumed to be unity forr .s, the
Helmholtz free energyF of the effective one-component sy
tem in a bulk volumeV can be written, in dimensionles
form f 5Fv0 /VkT, as the sum of hard-sphere, pair, and tr
let contributions, viz.,

f 5 f (HS)1ah22bh3, ~17!

wherev05(p/6)s3 is the volume of a colloidal sphere, an
whereh5rv0 is the packing fraction. Heref (HS) is the hard-
sphere free energy, for which we take the Carnahan-Star
form

FIG. 8. Scaled effective four-body interactionV̄ (4) of four col-
loids, in the colinear and tetraedral geometry, plotted as a func
of L (4)5( i , j

4 r i j .
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f (HS)5hS ln h211
4h23h2

~12h!2 D . ~18!

The coefficientsa and b are the integrated strengths of th
pair and triplet interactions in units ofkT, viz.,

a5
1

2v0
E drbV (2)~r ! ~19!

b52
1

6v0
2E dr12E dr13bV (3)~r12,r13!. ~20!

Note thata andb are dimensionless, and that their signs a
chosen such that both are positive here. The standard van
Waals-like theories for simple fluids, where the pa
interactions are attractive beyond the hard-sphere radius
where the triplet interactions are assumed to be nonexis
are recovered by takinga,0 and b50 in Eq. ~17!. The
present description can also be seen as an extension t
ideas put forward by Sear in@33#, where attractive triplet
forces were considered without any long-range pair forc
i.e., wherea50 andb.0. The point here is that the cohe
sive energy is in the cubic~three-body! term, while the qua-
dratic ~two-body! term is a positive~repulsive! addition to
the hard-sphere free energy.

The existence of a critical point can be inferred from E
~17! by solving for the conditionsf 950 andf-50, where a
prime denotes a derivative with respect toh. These two con-
ditions, which can easily be solved numerically, imply tw
constraints on the three parametersh, a, andb. In order to
make the connection with the original van der Waals the
as transparent as possible, we define a~dimensionless! tem-
perature variable ast51/a, and a parameterc5b/a that de-
notes the relative strength of triplet interactions. In Fig. 9
plot the critical packing fractionhc and the critical tempera
ture tc as a function ofc. With increasingc, i.e., with increas-
ing strength and/or range of the triplet attractions compa
to the pairwise repulsions, we see thattc increases andhc
decreases. The question now is, in which regime should
position the parametersa and b, and hencet and c, for the

n
FIG. 9. Critical packing fraction,hc , and critical ‘‘temperature’’

tc as a function of the relative strengthc of the triplet interactions,
see text.
2-9
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RUSSet al. PHYSICAL REVIEW E 66, 011402 ~2002!
charged colloids of interest? If we take the pair potential
the Yukawa form of Eq.~16!, which turned out to be an
accurate representation, thent51/a follows directly from
Eq. ~19!,

t5
lB

s

k̄2exp~ k̄ !

12A(2)~11k̄ !
. ~21!

In typical colloidal systemslB /s ranges between 1022 and
1023 (lB50.7 nm for water,s typically between 100 and
1000 nm!, so that using the values forA(2) from our fits
~Table I! for Z̄56.75 we find temperatures betweent
51028 for k̄50.39 andt51023 for k̄56.25. Note that for
the calculation of a temperature our scaled quantities are
sufficient, but that specific values for the ratiolB /s are now
required.

Comparing these typical temperaturest with the numeri-
cal values fortc in Fig. 9, one observes thatt,tc ~or even
t!tc) in the regimec.1, say. In other words, in the regim
c.1, a typical suspension is predicted to be subcritic
which implies that the triplet attractions are strong enough
drive a typical suspension into gas-liquid equilibrium at hi
enoughh. The next question is, therefore, which values oc

we find from our calculations ofV̄ (2) andV̄ (3). The answer
to this question is greatly simplified due to the data colla
of the triplet interactions onto a master curve. SinceV̄ (3)

only depends onL5r 121r 131r 23 it follows that its equipo-
tential surface for fixedr 125r ~i.e., particle 1 and 2 are
fixed! is an ellipsoid with long axisL2r and short axis
AL222Lr , and focal points on the positions of particles
and 2. The surface areaS(r ,L) of this ellipsoid follows from
elementary geometry, and can be used to simplify Eq.~20! as

b52
1

6v0
2Es

`

dr4pr 2E
2r

`

dLS~r ,L !bV (3)~L !. ~22!

Using the fitted form of Eq.~15! one easily evaluatesb nu-
merically. Of course the evaluation ofa is also straightfor-
ward, e.g., from the fit of Eq.~16!, and hencec is deduced
from the calculations of the pair and triplet interactions.
Fig. 10 we show all parameter combinations (k̄21,Z̄) that
we considered in this study once again, cf. Fig. 1, but h
we distinguish between points withc,1 ~indicated bys)
and points withc.1 ~indicated by3 and diamond sym-
bols!. The full curve in Fig. 10 is an estimate to the linec
51, which we propose to be a reasonable demarcation
tween the subcritical and supercritical regimes—at least
the basis of the van der Waals theory discussed here. In o
to check again if the systems in thec.1 region have a
temperaturet,tc we have calculated the temperatures for
state points using the values in Table I in Eq.~21! ~assuming
lB /s51022) and compared them totc at that specificc.
Indeed, except for three points~filled diamonds in Fig. 10!,
this condition is always fullfilled. The graph reveals, qu
reasonably, that high colloidal charges and low-salt con
tions facilitate gas-liquid coexistence. We stress, howe
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that our location of this line is highly approximate. Perha
the most important result in this respect is that thereis a
demarcation line in the (k̄21,Z̄) plane. Given that the triple
interactions for any combination of Debye lengthk21, col-
loidal chargeZ, Bjerrum lengthlB , and colloidal diameters
can be characterized byk̄21 and Z̄, this should be appreci
ated as a substantial result.

We did not analyze whether or not the critical point a
the gas-liquid coexistence are stable with respect to
freezing transition. The results of Ref.@33# suggest that the
range of stability of the liquid phase~i.e., the ratio of the
critical temperature and the triple-point temperature! shrinks
considerably when the cohesion energy is provided by trip
instead of pair interactions. Because of the additional pr
ence of pairwise repulsion in the present case, we expec
liquid phase to be stable in an even smaller pocket of
phase diagram than is the case in Ref.@33#. As a conse-
quence, the triplet attractions are most likely to drive a g
solid instead of a gas-liquid coexistence. The key point
however, that a dilute suspension of highly charged collo
is predicted to coexist, at low enough salt concentratio
with a much denser phase, either a liquid or a crystal.

V. CONCLUDING REMARKS

We have presented numerical calculations of the pair
triplet potential of charged colloidal particles in an electr
lyte solution within Poisson-Boltzmann theory. The pair i
teraction is found to be repulsive in all cases, consistent w
the traditional DLVO theory. By contrast, the triplet potenti
is attractive in all geometries considered, and thus provi
some ~effective! cohesion to the suspension. The physic
mechanism is, essentially, that the presence of a collo
particle in between two others largely shields the direct~re-
pulsive! pair interaction between the latter two. In oth
words, the triplet interaction describes, to the lowest ord
the screening by the macroions.

Our results are consistent with the results of Refs.@26,27#,

FIG. 10. Parameters investigated in this work, with3 symbols
for parameters such thatc.1 andt,tc , ands for c,1 ~see text!.
The filled diamonds correspond to systems for whichc.1, but t
.tc assuminglB /s51022. The curve is an estimate for the lin
c51, above which a gas-liquid coexistence is to be expected on
basis of the van der Waals–like theory.
2-10
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THREE-BODY FORCES BETWEEN CHARGED COLLOIDAL . . . PHYSICAL REVIEW E 66, 011402 ~2002!
where the equilateral triangle configuration of charged c
loids was found to generate an attractive triplet force t
represents a substantial correction to the repulsive
forces. However, our results seem to be inconsistent w
those of Ref.@34#, where a free-energy functional is min
mized with respect to the counterion density profile~there
are no coions! with the Car-Parinello scheme. Even thou
the colloidal charge and diameter studied in Ref.@34# are
similar to the regime of our study, there is no evidence
triplet forces, neither attractive nor repulsive, in Ref.@34#.
Important differences between the present study and tha
Ref. @34# are the periodic box and the cubic grid of Ref.@34#
compared to our single box and adaptive grid. Other diff
ences include the absence of added salt in Ref.@34#, and the
inclusion of a correlation term~at the OCP level! in the func-
tional of Ref.@34#. Given the low microion density we argue
based on Ref.@35#, that the inclusion of some correlation
should not make a quantitative difference. The absenc
added salt, i.e., the absence of a fixed Debye length could
the other hand, be an important source of the different c
clusions, since this may induce some~unwanted! system size
dependence to the distribution of the ions and hence to
screening. We leave this as an unsettled issue here.

We argued that the triplet attractions can be interprete
terms of screening by macroions~and the counterions tha
come with the macroions!. Such a macroion screening effe
has recently been observed in an experiment where the r
distribution function~RDF! of a two-dimensional colloida
system was measured at several colloid densities@36#. The
RDFs thus obtained were inverted to give the effect
colloid-colloid pair potentials. At relatively low densities th
measured pair potentials were found to be of purely repuls
Yukawa form. By contrast, at higher densities substantial
viations from the Yukawa potential were observed at d
tances comparable to the mean colloid-colloid distanceD
5r21/2. This suggests that the interaction of two colloids
a distancer .D is simply blocked by a third macroion
which is located, on average, atD and thus somewhere i
between the two interacting colloids under considerati
The present study demonstrates that this blocking is v
effective indeed, see Fig. 3. Having in mind that the thr
body potentials calculated in the present work are negativ
is clear that an inversion procedure that only allows for p
e
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potentials yields a density-dependent negative contribu
to that pair interaction: in some sense the attractive thr
body potential is ‘‘projected’’ into the space of pai
potentials. If the triplet attraction is strong enough such
projection may even cause density-dependent effective
attractions, which one then easily interprets as ‘‘like-cha
attraction.’’

While in Ref. @36# the screening length of the microion
k̄21, was relatively small (k̄2150.2), we have found here
that the strength of the three-body potentials increases
increasingk̄21 ~and Z̄). The triplet potential is found to be
particularly strong ifk21 is of the order or larger than th
colloidal diameters, i.e., ks,1 or k̄21.1. For a typical
colloidal diameter ofs.100 nm this corresponds, for wate
at room temperature as a solvent, to extremely low salt c
centrations of the order of a fewmM, i.e., the regime where
recent experiments have revealed evidence, albeit somet
controversial, for like-charge attractions and gas-liquid eq
librium. Our study strongly suggests that many-body inter
tions are the source of these alleged observations.

A very important result of our study is that the triple
interaction turns out to be a function of the summed dista
L5r 121r 131r 23 between the three particles only. This em
pirical observation, for which we do not have a satisfacto
explanation, is important as it greatly simplifies the repres
tation of the triplet interactions, e.g., in terms of a limite
number of fit parameters. In Table I we present the fit para
eters based on Eq.~15! for all parameter sets (k̄21,Z̄) that
we considered in this study. They may be useful for simu
tion purposes, e.g., to study the possibility of gas-liquid~or
gas-solid! equilibrium beyond the van der Waals-like mea
field theory presented in the final section of this paper.
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