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Three-body forces between charged colloidal particles
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Within nonlinear Poisson-Boltzmann theory we calculate the pair and triplet interactions between charged
colloidal spheres, specifically in the nonlinear regime of low salt concentrations and high charges. We find
repulsive pair interactions and attractive triplet interactions. Within a van der Waals-like mean-field theory we
estimate in which parameter regime a gas-liquid coexistence is to be expected.
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[. INTRODUCTION crystals smaller than expected on the basis of the total den-
sity (suggesting gas-solid coexisten¢g], long-lived meta-
Suspensions of charge-stabilized colloidal particles havstable crystallite§6], and gas-liquid coexisten¢&] (albeit a
long been understood in terms of the DL(Derjaguin, Lan-  disputed ong8]). Even though the experimental situation is
dau, Verwey, and Overbegkheory[1]. This theory predicts far from clear, these results did trigger a search for the source
that the effective interactions between a pair of charged colef possible attractive electrostatic interactions between like-
loids immersed in a simple electrolyte consist of the sum ottharged colloids. Several papers review the current state-of-
(i) hard-core repulsions due to the finite diameteof the  affairs comprehensively, see, e.g., Réfs-11].
colloidal spheresdii) van der Waals attractions with a typical By now several mechanisms have been identified and pro-
range of a few nm from the colloidal surface, afid) posed. One can distinguish between approaches aiming at
screened-CoulomigYukawa repulsions with the screening improving the DLVO pair interactions by, e.g., including
length given by the Debye lengiti ! of the electrolyte. The ionic correlations, and those where many-body effects are
relative strengths of these contributions can be varied bgonsidered. It has become clear that ion-ion correlations and
changing the solvent, salt concentration, or temperature. Faorrelated fluctuations can indeed give rise to an attractive
instance, by increasing the salt concentration the electrostatetbomponent in the effective pair interactiofi—-18, and so
screening becomes more efficient (* decreaseshence the can the Coulombic depletion effef19]. It remains to be
van der Waals attractions become relatively more proseen, however, whether these attractions are strong enough
nounced, and this explains reversible vapor-liquid coexistand of sufficiently long range to explain the experimental
ence or irreversible flocculation if the salt concentration islow-salt data. Moreover, in the process of extracting thermo-
high enougH 2]. Conversely, by decreasing the salt concen-dynamic and structural information of a suspension from pair
tration the screened-Coulomb repulsions act on longer disnteractions, one tacitly assumes pairwise additivity. In the
tances k! increasek thereby stabilizing the suspension by low-salt regime of interest, where ! is of the order ofr or
masking the van der Waals attractions, which explains, e.g., @ven larger, it is rather likely that pairwise additivity breaks
first-order fluid-to-crystal transition upon increasing the col-down and that many-body effects become important. These
loidal density and the existence of colloidal crystals at col-many-body effects have been included through so-called vol-
loid volume fractions of only a few percef8]. For these ume terms[20—-24], which are coordinate-independent but
reasons, and many more, the DLVO theory has long beedensity-dependent contributions to the effective Hamiltonian
considered a cornerstone of colloid science. of the colloids. The nontrivial density-dependence of the vol-
During the past few years, however, evidence has beeame term can be traced back to a “smearing” effect, where
accumulating that the DLVO picture breaks down, or at leastparts of the coordinate dependences of the effective pair
needs refinement, in the regime of extremely low-salt conand many-body interactions are “projected” onto effective,
centrations below, say, a few micromoles per liter. For watedensity-dependent one- and two-body terms in the effective
at room-temperature this regime is such tkat' is of the  Hamiltonian. This smearing occurs by, e.g., linearizing the
order of 100 nm or larger, i.e., the electrostatic repulsiong?oisson-Boltzmann equation about the average potential or
should mask the van der Waals attractions completely adhe average ion concentration instead of solving the full non-
cording to the DLVO theory. Nevertheless, some experidinear problem[25]. Given the manifestly attractivicohe-
ments provide evidence for the existence of attractive intersive) contributions to the volume term, at low enough salt,
actions between the colloids in this regime. The experimentalve expect attractive many-body interactions within a full
observations include vapor bubbléwvoids” ) in otherwise  nonlinear theory for the effective colloidal interactions. This
homogeneous suspensioj#d, lattice spacings of colloidal would also be consistent with recent simulation work in
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Refs. [26,27]. In this paper we study the pair and triplet colloids. In a mean-field approach, the density distributions
interactions between charged colloids within the frameworkof the positive and negative iong,.(r), are related taj(r)

of Poisson-Boltzmann theory, i.e., within mean-field theory.through the Boltzmann distributiop..(r)=csexg ¥®(r)]
Given the low-salt conditions of interest, we ignore the vanfor r e G, where ®(r) = Be(r) is the dimensionless elec-
der Waals interactions from the outset, and only considetrostatic potential. The ionic charge distribution is therefore,

Coulombic and hard-core interactions. for r e G, given by
This study was motivated by a pilot study by one of us,
where the pair, triplet, and four-body interactions of infinite, p(r)=p(r)—p_(r)=—2cgsinhd(r). (h)

parallel, highly charged plates were calculated within

Poisson-Boltzmann theof28]. The result was that the pair OutsideG we havep(r)=0 from the hard-core condition.
interactions are purely repulsive, as expected. The triplet inThe two unknown fieldg(r) and®(r) also satisfy the Pois-
teractions, however, were found to be attractive, and suckon equatiorV2®(r)= —4m\gp(r), which yields with Eq.
that the pair interaction between the two outer plates wasgl), the Poisson-Boltzman(PB) equation

canceled exactlywithin the numerical accuragyy the trip-

let interaction. This implies that the middle plate completely V20(r)=«?sinh®(r), reG, 2
shields the outer two plates from each other, i.e., one could

interpret this as an instance of screening by a macroion. Thehere the screening parameter is defined as 2
four-body interaction is found to be repulsive again, in such=8w\gc;. The PB equation is a nonlinear partial differen-
a way that the effective Hamiltonian of a system of fourtial equation ford(r), to be solved with the boundary con-
parallel charged plates is a sum over nearest-neighbor paditions (BC9) that

interactions—this is very different from a sum over all pairs.

The question we address in this paper is whether these phe- ®(r)=0, |r|—o; (3
nomena for parallel plates have any resemblance to the
physical reality of charged spheres. 4mhgZ
This article is organized as follows. In Sec. Il we show ni-Vao(r)= > redG,
how the effective pair, triplet, and more-body potentials be- o
tween charged colloids follow from the solution of the .
Poisson-Boltzmann equation. In Sec. 1ll we discuss thavheren; are unit vectors, normal to the surfac#s; of the
implementation of the numerical scheme and the results fogolloids labeled =1, ... N, and pointing into the regiof.

the pair and triplet potentials. In Sec. IV we estimate, on théNote that the last line of Eq(3) is the constant-charge
basis of a simple van der Waals-like theory, whether the atboundary condition. Due to the negative colloidal chardes,
tractive triplet interactions are strong enough to stabilize dS negative inG with a positive gradient a¢G; in the direc-

dense liquid in coexistence with a dilute gas. We conclude irfion of G. The BCs of Eq(3) are such thati) the bulk ion
Sec. V. concentrationsp . (r)—cg far from the colloidal particles,

and (i) the total system is charge neutral. This latter point
follows from the spatial integration gé(r) over G, which

Il. POISSON-BOLTZMANN THEORY with Egs. (1) and(2) and a partial integration yielddZ as
We considerN identical colloidal particles at center-of- required. , _ _
mass coordinates; (i=1,...N) immersed in an un- The potential®(r) is the key to the calculation of the

bounded 1:1 electrolyte solution. The colloids are assumed tgffective interactions of the colloids. Describing the electro-

be spherical, with hard-core diameter, and negatively lyte in the grand-canonical ense_mble, ie., f|X|ng the vo_Iume,

charged, with the total charge Ze distributed homoge- f[he temperaturd, 3and_ the ghemlcal potential of the micro-

neously on the colloidal surface. Heeerepresents the unit 10NS #s=KTInCcA” (with A” the thermal wave lengihwe

(proton charge. The electrolyte, at temperatiiids charac-  ¢an describe the _effectlve interactions as tr_le grand _poten'ual

terized by the dielectric constastof the solventwhich we of the electrolyte in the external field o.f.tmeflxed colloidal

treat as a structureless continuyrand by the bulk salt con- Particles. In terms of(r) and the densitieg..(r), the grand

centrationc, of positive and negative ions, i.e., the total bulk Potential{ is, within mean-field theory, given by the sum of

ion concentration is &, . For later reference we introduce the e €lectrostatic energy and the ideal-gas grand potential,

Bjerrum lengthx g=e?B/ e, with 8=1/kT. It turns out to be V1%~

convenient to divide space into regions inside and outside the

hard core of thg coII.oids. Thg region of space filled by the BO = 1 J dr(Vd)2+ 2 drp,(Inp,A3—1

electrolyte solution, i.e., outside the colloids, is denoted by 8m\glJc a=+ JG

G, and the boundaries of this region, which are the surfaces

of the N cqlloidal pqrticles (=1,...N), are denoted by . —,BMSH'ZJ dre.. ()

dG;. Our first goal is to compute the average electrostatic G

potential, ¢(r)= (r;{r;}), for fixed colloid configurations

{ri}, forreG. Note that we subtracted the grand potential of the uncharged
Due to the presence of théxed) colloidal charges, the system through the last term of E@). This expression for

distribution of microions becomes inhomogeneous near th€) follows directly from the optimization of the mean-field
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grand potential functional with respect fo.(r), see, e.g., for N=4, etc. In this sense the decomposition scheme pre-
Ref.[25]. By substitution ofp. =c.exd ¥®], Eq.(4) can be  sented here is nothing but a scheme of subsequent defini-
further simplified to tions, producing merely an identity. The power of the scheme
lies, however, in its low-order truncation; whereas a real sus-

1 5 ) , pension consists of many colloids, shy=10 or so, one
pQ= SWthGdr[(VCD) +2xk%(® sinh® —cosh® +1)] expects that the decomposition @, of Eq. (6) is accurate

by only includingn-body potentials of orden=2, ... n*,

z N 2 with n* of order unity, i.e., by assuming th&™=0 for
=— 5 > f drd+ o—- j dr (P sinh® n>n*. In fact, in many cases one just restricts attention to
2ma? =1 Jag, BJG n* =2 only, ignoring even 3-body interactions. This assump-
—2 coshb+2). (5)  tion of pairwise additivity is for instance made when describ-

ing the Hamiltonian of noble gases by a sum of Lennard-

Note that{) vanishes in the case of uncharged C0||0idS,J0neS potentials, or the effective Hamiltonian of a colloidal
where ®=0. Once we have calculated#(r) for a given suspension by pairwise DLVO interactions. The focus of this
configuration of colloidal particles by solving the PB prob- article is on the case* =3, the lowest-order correction to
lem represented by the Eq®) and(3), we can evaluate Eq. Pairwise additivity.

(5) to obtainQ). A change of the position of any of the col- We close this section with a reduction in the number of
loidal particles change®(r) and, henceBQ. This change independent parameters by an appropriate scaling to dimen-
of Q) can be related to the effective interactions between théionless variables. We use the hard-sphere dianregerunit

colloids, as we will see now. of length, and define the dimensionless gradient opeftor
~ Forasystem oN colloidal particles, at fixed positions, =V and the dimensionless screening parameteika. In
i=1,... N, we denote the grand potential, given by E),  terms of these, the Poisson-Boltzmann problem can be re-

by Q) from now on. This quantity, which is a function of the written as
coordinates;, can be uniquely decomposed into so-called

effective n-body potential€)(™, with n<N, viz., -, —
VeD(r)=«ksinh®(r), regG, 9
N N

Q=N+ 0@+ D QBXijk) _ _
N ! i<i : i<]<k : ni-Vd(r)=4z, rediG;,

N
+ 2 Q@W(jkh)+- - -, (6) where the_rescale(hnd dimensionlegscolloidal charge is
ik defined asZ=ZAg/o. The rescaled grand potential is de-

where the short-hand notation for the center-of-mass posfined asQy=BQy\g/o, and is given by
tions should be obvious, and where- denotes five-body

potentials and higher. The-body potential is defined in the - Z N 2

n-body system, i.e., in the system with=n. The decompo- Qy=—— E f drq>+—f dr(® sinhd

sition scheme starts by subsequently considering the cases 2m =1 Jog, 87)c
N=1,2,3....Clearly(}, is the self-energy of a single col- — 2 coshb+2), (10

loid, N=1, in the “grand-canonical sea” of electrolyte. It is

an intensive quantity, which does not depend on the center-
of-mass positiorr; of that colloid by translational invari- Where the spatial coordinates are understood to be in units of

ance. The effective pair potentif}(®(r,,)=0)(12) be- . One recognizes that the problem depends on just two
tween two colloids at separatian,=|r,—r,| follows from  independent parameters: the scaled screening lengtiand

Eq. (6), for the caseN=2, as the scaled chargg. Systematically varying these two param-
Q®(12)=0,(12)— 20, 7) eters, each time calculating .the effective pote_ntlﬁlg1
=B0M\g /o from the generalized grand potent@},, we

Note thatQ(®)(r,,) tends to zero for ;,— by construction. ~can conveniently explore the behavior of a whole variety of
The three-body potentiall®(r,,r1a,r29)=Q)(123) is  Possible systems, each characterized by the parameter set

defined in theN=3 system as (\g, o, k, Z). It is important to realize, however, that this
reduction to only two dimensionless parameters only applies
03123 =04(123 - 0212 — 03)(13) to the calculation of the effective interactions; the thermody-

namics of the suspension is determineddsy rather than by
), and hence the rating/o is, in this respect, another in-

By construction)(®)(123) tends to zero whenevéat least ide_gelndent dlmfnsmnlesicgrr;blnatlonz.yitoeothf(t)é)éplcal cok-
one of the arguments;, 2. oidal parameters arexg=1 nm, Z=100- o

It is straightforward to proceed and define the four-body=100 nm, andx~*=~1-1000 nm, such that typically
potential by equating the left- and right-hand side of &). =1-10,x=0.01-10, and g/o=0.01. The combinations of

-02)(23)-30;. (8)
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y whereas the three-body terngand higher vanish. Triple
2r xX X o x 7] forces can therefore not be calculated using linear theory and

§§>§ § ¥ ; 1 the superposition principle. This is not meant to imply that
0 L1 linear theory cannot be used to calculate triple forces in prin-
0 1 3 4 5 6 7 oo ) . ;

=1 ciple: one can, of course, linearize the PB equation of(gq.

and solve the full boundary value problem. The solution,

FIG. 1. Points in the parameter space ¢,Z) investigated in  Satisfying all boundary conditions in Eq9), can deviate
this work. Herex= ko is the dimensionless screening constant from the potential obtained from superposing one-colloid po-

Z=27\g /o the dimensionless colloidal chargeando and\g are tentigls, particularly if the colloidal spheres are Igrge, the
the colloidal diameter and the Bjerrum length, respectively. relative distances between them small, and the size of the

double-layers involved comparable to the colloid dimension.
This in principle should lead to three-body interactions.
'—|owever, the region in parameter space where linearization
s justifiable, but the superposition principle not, seems to be
rather small. In almost all our calculations, we found that if
the condition for the linearization of the problem was full-
lll. THREE-BODY INTERACTIONS filled, i.e., if the potential® on the colloidal surface was
below unity, three-body effects completely disappeared. In
other words, the nonlinearity of the PB problem is essential
which anN-body systemwith N>1) can be approximately et us focus on the numerical methods and results. The strat-
described by a series of 1,2 . ,n*-body systems, witm* egy is to first compute(_ll, for a given set of zz) by

of order unity. The focus of this article is on the case i ing the PB equation in the presence of a single colloid,

=3, i.e., we restrict explicit computations to systems con-, i inserting the resulting solutish(r) into Eq.(10). This
sisting ofN=1,2,3 colloidal particles. Before discussing the ds to be d | ; |
details of our numerical calculations, we wish to stress thaf'€€ds t0 be done only once, for a given seZ). In prin-

many-body potentials are, essentially, a feature of the norciple we could then calculat@,(r 1) for a set of distances
linear character of the Poisson-Boltzmann equation. In théi2 by solving the PB equation in the geometry of two col-
linear PB theory—where conventionally sid=® in Eq. loids, and determine the pair mteractl@{z)(rlz) using Eq.
(2—the linear superposition principle applies, and this(7). Along the same lines the three-body potential would fol-
yields, essentially, vanishing many-body interactions. Thidow from the solution of the PB equation in the geometry of
can be easily seen from the following consideration. In lineathree colloidal particles, together with E¢(B). In practice,

PB theory, the expression in EGLO) for the grand potential however, we find a larger numerical accuracy when the pair

;andfinvestigated in this work are illustrated in Fig. 1.
They are seen to span a large regime of typical colloidal
parameters.

A. General remarks

must be expanded up to second order. This yields interactionsQ(?)(ij) of all three pairs of a triplet are calcu-
— N lated anew, for each triplet under investigation. This implies
= 7 that we carry out, for a given configuration of three colloids,
Qin=—5=2, | drd. (12) ; kol
= three two-body calculations to obtain'<’(ij) for all three

pairs, and one three-body calculation to deternfihg and
f hence Q®). Varying some colloid-colloid distances in the
triplet, each time going through the cycle just described, we
cend up withQ® as a function of the three distances,
r.3, andr,;. The computational effort can be reduced if the

Since the PB equation is now lineab, is approximately
given by a multicentered sum, i.e., a superposition,No
potentialsp;j=(r—r;), i.e.,(DzEJN:l(pj, whereg; is cal-
culated for a single, isolated colloidal particle. As a cons

quence sequence of configurations are chosen such that some of the
- > N pair interactions do not change or if the configurations are
Ojin= ~5- f drc,oJ NQllm + E QI(|2n)(|j ), symmetric so that two or all three pair potentials are identical
Tij=1 by symmetry.
(12 To solve the PB-boundary value problem, E9), we use

. _ _ the finite element methd@9]. An advantage of this numeri-
where the linearized one-body terself-energy ()i, and  cal scheme is that one can locally vary the mesh size of the
the effective pair potentlaﬂ)flﬁ)(lj) are given by grid so as to improve the accuracy of the calculation in high-
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gradient regions, for example, close to the particle surfaces.
The initial task is to mesh the geometry, for which we use the
program “Netgen”[30]. The grid thus generated is very fine
on the colloidal surfaces and becomes smoothly coarser with
increasing distance from the surface. Typically the colloidal
surface is meshed by 7500 grid points, and a typical number
for the total number of grid points is>210° for a relative

accuracy ofQ) of 10 *. For solving the differential equation
on this grid we use the program packageFPACK [29].
Starting from a first guess of the solution one can use a
built-in DIFFPACK procedure to further refine the grid, using
the local information of an error estimation procedure. This
involves the value of the solution over an element, its first
derivative, and the volume of the element. This can be done F|G. 2. Scaled effective three-body interactiof)(®
iteratively. The original grid usually needs several refine-= g3\ ;/o (see textof three colloids, in the collinear geometry
ments before the solution reaches sufficient overall accuracjndicated in the graph, as a function of the separatigrbetween
Having solved®(r) on a grid from the nonlinear PB the central and right-most colloidal particle. The curves are labeled
equation, we compute the grand potential using Ed). by the valuerq,/0; the scaled screening length and charge are,
Alternatively, one can directly calculate forces by integratingrespectivelyx 1= 6.25 andZ=6.75 for all curves. The three-body
the stress tensgwhich can also be written in terms &f(r) ] interaction is seen to be attractive.
over a surface enclosing the particle of interg&t]. This
alternative route offers a convenient way to check not onlycoaxial geometry, and the more so the smaller the distances
the whole implementation, but also the achieved accuracy, by, , andr ;. In order to compare the magnitude @f2) with
comparing the forces betwgen two cqllm_ds obtained from the{hat of the pair interaction® @, we plot in Fig. 3 the ratio
stress-tensor procedure with the derivative of the pair poten- G) 2 . . .
tial calculated from Eq(10). Another check was performed — {1 (123)/2*7(13) as obtained in the coaxial geometry,
by comparing the numerically determined pair interactionS @ function off 53, again for the four different values of
with the DLVO potential, which should be valid in the linear "12- One concludes from Fig. 3 that the three-body potential
regime of lowZ. At low enough colloidal charge, both po- equals a considerable fraction of the_ negative 'of the pair
tentials and forces show virtually no deviation from the pre-Interaction between the two outer particles, ranging from at
dictions of linear theory. However, for a given grid the po- [€ast 40% at large;, andras up to 90% ar;5,r3=o-. This
tential obtained from Eq(10) was more accurate than the Means that the middle coIIo!d gssgntlally shields the two
forces calculated via the stress-tensor procedure. In oth@Uter ones from each other, indicative of strong three-body
words, to calculate the force to the same accuracy as th@teractions in the coaxial geometry. This implies that the
potential one needs grids that must be considerably finefiPIet interactions in the parallel plate geometry, as dis-
thus requiring a much longer computation time. For most ofcussed in the Introduction, have mdeed a direct analog in thg
our calculations, we therefore restricted ourselves to calculadd®0metry of spheres. The screening by the central sphere is

tions of the grand potential only. For each set of parameter80t as perfect as by the central plate, but we deem the phe-

(x1,Z) we optimized the number of refinement steps with "o c o identical.
respect to both the desired accuracy and a reasonable com-
putation time. We also checked for errors due to the finite
size of our system.

B. Numerical results

Consistent with a mathematical prof@2], we find that
the effective pair interactioﬁ(z)(rlz) is purely repulsive for
any of the investigated values af and Z. By contrast, we
find that the triplet potentiad®)(r 15, 13,1 »9) is purely at-
tractive in all cases. Afirst illustration of the purely attractive

nature of the three-body interactions is shown in Fig. 2 for o 2 4 6 8 10 12
coaxial geometries of the three particles, for the parameters 23

1 a :
K 6.25, Z—(3?'75' The symmetry of th.e coaxial geometry FIG. 3. Ratio— Q®)(123)/0(2)(13) of the collinear three-body

is such that2** only depends on the distance, between  ,qentials(shown in Fig. 2 and the negative of the pair interaction
the left and the center sphere and_ the distangebetween Q?(13) of the two outer spherdabeled 1 and 3 as in Fig)2in

the center and the right sphere. Figure 2 showsrfele- 4 case of perfect shielding of the two outer particles by the central
pendence of)®) for four different values ofr;,. We ob-  one, this ratio would take the value unity. The curves are labeled as
serve that the three-body potential is indeed attractive in th Fig. 2.

(=]
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FIG. 4. Scaled effective three-body interactiof)®
=BG\, /o of three colloids in the midplane geometry, as a func-
tion of the distancéh of the central colloid “2” from the axis be-
tween the two outer particles “1" and “3.” Parameters are as in Fig.
2. The curves are labeled by the valug/o.

We also calculate@® in two other geometries. In Figs.
4 and 5 we show results for the so-called “midplane” geom-

etry and the equilateral triangle, respectively, againE(‘)l1

=6.25 andZ=6.75. In the midplane geometry the colloid
labeled “2” is located in the midplane of the two outer col-
loids 1 and 3, shifted a distanbgrom the axis that connects
the two outer ones. This implies that the cdseO is a
coaxial geometry, withr ;,=r,3=2r 3, but by increasing

PHYSICAL REVIEW E 66, 011402 (2002

FIG. 6. The three-body potentials of Figs. 2, 4, and 5, plotted as
a function ofL=r,+r,3+r43. Circle symbols refer to the poten-
tials calculated in the triangle configuration, squares to the poten-
tials from the mid-plane configuration, and diamonds to those ob-
tained in the axial configuration. The curve is a Yukawa function
fitted to the data.

that pairwise additivity is restored when one of the three
particles is far from the other two. This picture is confirmed
by Fig. 5, whereQ®)(r,,) is plotted for the equilateral tri-
angle geometry, with,,=r,3=r 3. This configuration is the
one where all three particles can touch each other. This con-
figuration, withr,= o, gives the strongest, most negative

0®). For increasing sidelength of the triangle the triplet in-

the central sphere is moved away perpendicular to the axi¢eraction decays to zero. Henc@(® represents attractive

Figure 4 showd)® as a function oh, for several separa-
tions r,3 of the two outer spheres. Note that the minimal
value ofh for the curve withr 13/0=1.25 is set by the hard-

sphere constraint, i.e., it corresponds to a 1-2 and 2-3 corl

tact. The figure shows th&(® is negative, and more so for
smallerh andr 3, and hence represents attractive three-bod
interactions. The shielding of the two outer particles by th
central one becomes less efficient for increadmngs ex-
pected, but its effect dies down to zero only for a fairly large
h of the order of a fewo. In other words, one does not

require a strict colinear geometry to obtain a considerable

shielding of the pairwise 13 interaction by colloid 2. At suf-
ficiently largeh we find thatQ(®)—0 for anyr,3, showing

O——T—

7

i 10
T
FIG. 5. Scaled effective three-body interactiof(®

=pBOB\g /o of three colloids in the equilateral triangle geometry,
with r ,=r,3=r,3, as a function of ;,. Parameters are as in Fig. 2.

triplet interactions in the triangular geometry as well.

On the basis of Figs. 2, 4, and 5, which we consider a
representative subset of all possible geometries of three par-
icles, it is tempting to conclude that the triplet interaction is
attractive for any geometry of three particles. This conclu-
sion is confirmed by Fig. 6, which we deem the most impor-

Xant finding of the present study. In this figure we shalv
€he triplet interactions of Figs. 2, 4, and 5, i.e., nine curves in

total since all variations of the distances are considered, as a
function of the summed distances

L=I’12+I’13+I’23. (14)

The surprising result is that all data collapse onto one master
curve that can be fitted remarkably well by a Yukawa func-
tion,

QG @,
Q¥(L)=-A%¢a T

(15

with a decay parametey and an amplitudeA®). The full
curve in Fig. 6 is the result of such a fit. Figure 6 indicates
that the three-body potential depends, effectively, on the
single distancé, rather than on the three distancgs, r 43,
andr,; separately. At this stage we have no satisfactory ex-
planation for this observation. It implies that, in some sense,
many of the details of the configuration are irrelevant for
Qe

We found this interesting property of three-body poten-
tials for almost all combinations of ! and Z investigated
(for the region in parameter space studied in this work, see
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actions forx 1=0.08. Note that this is an upper bound, in
the sense that the touching triangle geometry is optimal for

strong triplet interactions; other geometries requite®
>0.08 for nonvanishing triplet interactions, consistent with
our numerical findings shown in Fig. 7.

A comparison of Figs. @ and b) also reveals tha (3
is more than ten times larger fd=6.75 than forZ=1.8. If

one further reduceg, three-body potentials will eventually
completely disappear. This is roughly the case when the elec-
trostatic potential® becomes 1 at the colloidal surface,
which is exactly the point where linear theory starts to be-
come applicable. This again shows that three-body effects
are a phenomenon of nonlinear theory.

In the triangle configuratioh satisfiesL =3c, where the
minimal valueL =3¢ obtains in the touching geometry. In
all other configurations the minimum value faris larger
than 3. Therefore, the data for small values bf stem
solely from the triangle configuration. For large values of

« 1 this is inconsequential, but this is relevant when' is
so small that the triplet interaction decays to zero over one
particle radius only. For a significant rangelofve then only
obtain data from the triangle configuration. This is actually

T the case fore 1=0.39 as shown in the inset of Fig(aJ.

L/oc This inset also reveals that the data collapse is not exact. The

. ) deviation is systematic in that the triangle configuration, for
FIG. 7. Three-body potentials as aifsz:tlon bf:LlEHZS fixed L, gives a stronger three-body interaction than the other

* 113, for various values of the parameter *, in (a) for Z=6.75  coqfigurations. However, we feel that this detail should not

and in(b) for Z=1.8. The inset figure shows a blowup of the results conceal the fact that the data collapse is remarkably accurate

of the (Z=6.75, x '=0.39) calculation ir(@). The symbols refer ¢, tq larger values ok 1. Though unexplained, this prop-
to three-body potentials in different configuratiofisangle, mid- o is of invaluable use in practical terms. For instance, a
plane, and axial configurations, same symbols as in @&, the 00 hody interaction that depends lornly can be easily
solid lines are fits of the data to the potential in ELf). used in simulations. It is also helpful if one wishes to esti-

Fig. 1). Figure 7 shows a few examples. For each pair ofnate the strength of three-body forces in a given system, as

parameterszflf), we first calculated the three-body inter- only calculations in, e.g:, the triangle gepmgtr)/_rfed to be
action in all three configurations depicted and discusse@€rformed[recall that with the parametrizatiorZ(x) we
above, i.e., the collinear, the midplane, and the triangle gell€a the problem as generally as possibfer these reasons

— ; 3)
ometry. The resulting)®) was then plotted as a function of we present the fit paramete® and y, based on Eq(15),

L, and fitted to the potential given in EGLS): the fits are in Table I. Weilso give the prefactapé?) for the calculated

- . 2 .
also shown in Fig. 7 as the full curves. The data collapse oR&!f potentials2(®) (not shown herk fitted to
a master curve is seen to hold, essentially, for all parameters expl — «r]
— — X — - K
(k" 1,Z). Figure 7 reveals that the three-body forces are at- Q@ =A@ ——=, (16)
tractive for all parameters investigated, with increasing r

strength for mcLeialsmg values af = In the limit of very |nisially we also introduced the screening constant as a fit
small values ofk™ =, on the other hand, three-body effects parameter forQ@ but we found it—to a very good

disappear. A simple estimate for the minimal* required  approximation—equal ta in all cases. The fits are of good
for nonvanishing triplet interactions can be given by considquality, not only for long, but also for short distances.
ering three touching colloids in the equilateral triangle

geometry—this is the S|tqat|on where W.e expect, ".c eX|sftentCI Notes on the interaction range and on four-body interactions
the strongest three-body interactions. Given that triplet inter- o
actions are due to an overlap of three double layers, each If the range of Q) is sufficiently large, then even fairly
extending to a distance of order ! from the colloidal sur- weak three-body interactions are thermodynamically rel-
face, one can argue that triplet interactions exist wkeh  evant, since they lower the total interaction energy of a col-
> ¢, whereé is the (smalles} distance from the center-of- loidal configuration. Here we briefly discuss some simple
mass position of the three colloids to the three colloidal surideas to illustrate the effect qualitatively. Let us consider the
faces. Elementary geometry vieldéo=1//3—1/2=0.08, energy per colloidy, due to the effective interactions with
and hence we expect the crossover to vanishing triplet intelether colloids. Due to the separation of the effective interac-

o
-
o
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TABLE |. Parameters for three-body and two-body potentials in EtfS. and (16) for various values of?’l,Z).
?—1
7 0.39 0.5 0.78 1 1.56 3.13 6.25
9.00 A® 1.3x 1%
(yo) ™t 0.80
A 3.5x 10"
6.75 A®) 9.7x 10" 3.7x 10 2.7x10 3.0x 10 3.4x 10
(yo) ™t 0.80 1.6 3.0 5.0 8.5
A 4.0x 10 1.6x 10 1.2x10 1.3x 10" 1.5x 10
4.50 A® 5.3x 10"
(yo) ™t 0.80
A 2.7x 10"
3.38 A® 5.3x 10" 3.5x 10"
(yo) ™t 0.75 1.0
A®) 1.9x 10" 1.3x 10"
2.25 A®) 2.5x 10"
(yo)™t 0.65
A@ 1.1x 10"
1.80 A® 9.0x10° 6.0 10° 4.1x 10° 3.2x10° 2.9x10° 2.2x10°
(yo)~t 0.70 1.0 15 2.6 3.7 45
AP 6.5x 10° 5.1x 10° 3.5x10° 2.9x10° 2.9x10° 3.0x10°
1.35 A® 1.6x10° 1.7x10° 9.7x10°* 8.7x10°1
(yo) ™t 1.4 1.6 2.9 4.5
A 2.2x 10 2.0x10° 1.8x10° 1.8x10°
0.900 A® 1.2x10°1 2.6x10°1 1.8x10°t 1.4x10°1
(yo)~t 1.7 1.7 2.9 4.1
A 1.0x 10° 9.3x10°1 8.4x10°! 8.0x1071!
0.675 A® 3.8x10°2 5.7x10°? 2.6x10°2 1.4x10°2
(yo) ™t 1.9 2.6 6.5 7.5
A 3.7x10° 5.4x10°* 5.0x10°! 4.6x10°* 45x10° 1t
0.450 A® 2.0x10°3
(yo) ™t 9.5
A 2.5x10°* 6.5x10°* 2.0x10°*
0.338 A® 5.2x107*
(yo)™* 6
A@ 1.35x10°* 1.1x10°1

tions into pair-, triplet-, and more-body contributions, we canif the range of the interactions increases. The main problem
write u=u,+ug+ - - -, with u, the contribution tas from the

k-body interaction€2. In a van der Waals-like mean-field

picture [33], one estimates that,=n,w,/k!, with w, the
typical strength of2™ andn, the number ok tuplets in the
range of0(). At total densityp and rangg&—which we take

the same here for alk for simplicity, and this is supported by
our data—this yields,=p&® and nz=(p£&°)?, and hence

is that it depends on sixcombinations of coordinates—
recall thatQ®) depends on three coordinates, and that its
study was only feasible practically because of the empirical
observation that the dependence onrglicould be reduced
to a singleL dependence. For these computational reasons
we restricted attention to only two classes of configurations,

and to a very limited set ofi;‘ 1. The first class of con-

U3/Up=(w3/w,)pé® is obtained for the ratio of three-body figuration is the collinear one, where the four colloids are
to two-body interaction energy. At great interaction rangesperfectly aligned on a single axis, and the second one is the
even small three-body interactions can be of importance t@etraeder configuration, where the four colloids form the cor-
the overall interaction energy. Our data show thaf w, is,

typically, of order unity, and thag=« 1. Hence, the triplet

interactions should be considered relevant wher 3

=nk % is of order unity, wherey=(7/6)po? is the colloi-

dal packing fraction.

ners of a symmetric tetraeder. On the basis of the four-body
interactions of parallel platd28], discussed in the introduc-
tion, we expected(* to represent repulsive interactions. To
our surprise, however, we find the* is attractive for all
configurations of four spheres that we considered here. We

Another point of interest is the next order term, the four-have, moreover, some evidence thét) can also be repre-
body interactior2(*), which of course also becomes relevantsented realistically as a function of the summed distances
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0.6
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C
_FIG. 8. Scaled effective four-body interactié*) of four col- ~ FIG. 9. Critical packing fractiony , and critical “temperature”
loids, in the colinear and tetraedral geometry, plotted as a functiom, as a function of the relative strengtof the triplet interactions,
of |_(4):2i4<jrij ) see text.
involved, i.e., QM ({r;}))=Q®(LM®), with LO=3F_r; . 4n—37?
The data onto which this reduction is based is rather limited, f(HS)=p| In - 1+ﬁ . (18
-7

however. As an example, we sh&®* as a function ot )

in Fig. 8, for x '=6.25 andZ=1.8. The typical magnitude The coefficientsa andb are the integrated strengths of the
of the four-body attractions is found to be much weaker tharhaijr and triplet interactions in units &, viz.,

any of the corresponding three-body attractions. Note, how-

ever, that a direct comparison of the numerical valu€6? 1

and Q™ should be carried out with care: the contact value a= gf drpQ3)(r) (19
for the triplet interactions takes place lat)=L =30, and 0

for the four-body interactions &t*)=6¢, so it should come 1

as no surprise that the four-body potential has a lower nu- b= — _f drlzf drz8Q3)(r 5,1 19). (20)
merical value. A better comparison would be based on the 6v3

integrated strengthe®; and w,, discussed above. We did not

pursue this here for technical reasons. Note thata andb are dimensionless, and that their signs are
chosen such that both are positive here. The standard van der
IV. GAS-LIQUID COEXISTENCE? Waals-like theories for simple fluids, where the pair-

interactions are attractive beyond the hard-sphere radius and

In the final section of this paper we wish to roughly esti-where the triplet interactions are assumed to be nonexistent,
mate whether or not the cohesive energy hidden in the tripleire recovered by taking<0 andb=0 in Eq. (17). The
interactions can possibly drive gas-liquid coexistence. We d@resent description can also be seen as an extension to the
this using the simplest possible extension of the van dejgeas put forward by Sear if83], where attractive triplet
Waals theory for gas-liquid coexistence; more elaborate defprces were considered without any long-range pair forces,
scriptions are straightforward to formulate but not considereq e \wherea=0 andb>0. The point here is that the cohe-
here. We take the hard-sphere ﬂl.“d, with diameteand sive energy is in the Cubiahree_body term, while the gqua-
number densityp, as the reference fluid, and consider theqratic (two-body) term is a positive(repulsive addition to
pairwise repulsions and the triplet attractions calculated ifhe hard-sphere free energy.
this paper as weak perturbations—this is a strong assumption The existence of a critical point can be inferred from Eq.
that can be relaxed at the expense of more involved calculq-g) by solving for the conditions”=0 andf” =0, where a
tions. Within a mean-field picture, where the pair correlationsprime denotes a derivative with respectfoThese two con-
of the hard-sphere fluid are assumed to be unity ferr, the  gitions, which can easily be solved numerically, imply two
Helmholtz free energ¥ of the effective one-component sys- constraints on the three parametexsa, andb. In order to
tem in a bulk volumeV can be written, in dimensionless make the connection with the original van der Waals theory
form f=Fuvo/VKT, as the sum of hard-sphere, pair, and trip- 35 transparent as possible, we defin@lisensionlesstem-

let contributions, viz., perature variable ais=1/a, and a parameter=b/a that de-
hs 5 5 notes the relative strength of triplet interactions. In Fig. 9 we
f=f"9+an’~by?, (17)  plot the critical packing fractiom, and the critical tempera-

turet. as a function ot. With increasing, i.e., with increas-
wherev = (7/6)a? is the volume of a colloidal sphere, and ing strength and/or range of the triplet attractions compared
wheren=pu, is the packing fraction. Her"S is the hard-  to the pairwise repulsions, we see thatincreases andy,
sphere free energy, for which we take the Carnahan-Starlindecreases. The question now is, in which regime should we
form position the parameters and b, and hence andc, for the
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charged colloids of interest? If we take the pair potential of
the Yukawa form of Eq.16), which turned out to be an
accurate representation, thés 1/a follows directly from
Eq. (19),

Ag  K2EXP(K)
(_Me_KTexp) (21
o 12AP)(1+ k)

In typical colloidal systems.g/o ranges between 16 and
103 (A\g=0.7 nm for water,o typically between 100 and
1000 nm), so that using the values fax® from our fits

(Table ) for Z=6.75 we find temperatures betwedn

=102 for k=0.39 andt=10 " for x=6.25. Note that for FIG. 10. Parameters investigated in this work, withsymbols
the calculation of a temperature our scaled quantities are n@ér parameters such that-1 andt<t., andO for c<1 (see text
sufficient, but that specific values for the rakig/o are now  The filled diamonds correspond to systems for whichl, butt
required. >t, assuminghg/o=10"2. The curve is an estimate for the line
Comparing these typical temperatutewith the numeri-  c¢=1, above which a gas-liquid coexistence is to be expected on the
cal values fort; in Fig. 9, one observes tha&t. (or even basis of the van der Waals—like theory.
t<t.) in the regimec>1, say. In other words, in the regime
c>1, a typical suspension is predicted to be subcriticalthat our location of this line is highly approximate. Perhaps
which implies that the triplet attractions are strong enough tahe most important result in this respect is that thisre
drive a typical suspension into gas-liquid equilibrium at high yemarcation line in the}—lf) plane. Given that the triplet
enoughz. The next question isiherefori which valuesof jnteractions for any combination of Debye length?, col-
we find from our calculations a®(® andQ®. The answer Ioidal chargez, Bjerrum length\ , and colloidal diametes
to this question is greatly simplified due to the dataﬁollaps%an be characterized bg—l andZ, this should be appreci-
of the triplet interactions onto a master curve. Sife€)  ated as a substantial result.
only depends oh =r,+ 13+, it follows that its equipo- We did not analyze whether or not the critical point and
tential surface for fixed';,=r (i.e., particle 1 and 2 are the gas-liquid coexistence are stable with respect to the
fixed) is an ellipsoid with long axid—r and short axis freezing transition. The results of R¢B3] suggest that the
JLZ=2Lr, and focal points on the positions of particles 1range of stability of the liquid phasé.e., the ratio of the
and 2. The surface ar&{r,L) of this ellipsoid follows from  critical temperature and the triple-point temperafigigrinks
elementary geometry, and can be used to simplify(E@.as  considerably when the cohesion energy is provided by triplet
instead of pair interactions. Because of the additional pres-
ence of pairwise repulsion in the present case, we expect the
liquid phase to be stable in an even smaller pocket of the
phase diagram than is the case in R&3]. As a conse-
guence, the triplet attractions are most likely to drive a gas-
Using the fitted form of Eq(15) one easily evaluateds nu-  solid instead of a gas-liquid coexistence. The key point is,
merically. Of course the evaluation afis also straightfor- however, that a dilute suspension of highly charged colloids
ward, e.g., from the fit of Eq(16), and hence is deduced s predicted to coexist, at low enough salt concentrations,
from the calculations of the pair and triplet interactions. Inwith a much denser phase, either a liquid or a crystal.

Fig. 10 we show all parameter combinations ¢,Z) that

we considered in this study once again, cf. Fig. 1, but here
we distinguish between points with<<1 (indicated byQO)

and points withc>1 (indicated byXx and diamond sym- We have presented numerical calculations of the pair and
bols). The full curve in Fig. 10 is an estimate to the line triplet potential of charged colloidal particles in an electro-
=1, which we propose to be a reasonable demarcation béyte solution within Poisson-Boltzmann theory. The pair in-
tween the subcritical and supercritical regimes—at least otteraction is found to be repulsive in all cases, consistent with
the basis of the van der Waals theory discussed here. In ordée traditional DLVO theory. By contrast, the triplet potential
to check again if the systems in tlee>1 region have a is attractive in all geometries considered, and thus provides
temperature<t. we have calculated the temperatures for allsome (effective cohesion to the suspension. The physical
state points using the values in Table | in E2{l) (assuming mechanism is, essentially, that the presence of a colloidal
\g/o=102) and compared them tt at that specificc.  particle in between two others largely shields the dikeet
Indeed, except for three poinBlled diamonds in Fig. 1)  pulsive pair interaction between the latter two. In other
this condition is always fullfilled. The graph reveals, quite words, the triplet interaction describes, to the lowest order,
reasonably, that high colloidal charges and low-salt condithe screening by the macroions.

tions facilitate gas-liquid coexistence. We stress, however, Our results are consistent with the results of Rgf§,27),

b — wdr47-rr2JmdLS(r,L),BQB)(L). 22
2r

6v5) o

V. CONCLUDING REMARKS
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where the equilateral triangle configuration of charged colpotentials yields a density-dependent negative contribution
loids was found to generate an attractive triplet force thato that pair interaction: in some sense the attractive three-
represents a substantial correction to the repulsive paibody potential is “projected” into the space of pair-
forces. However, our results seem to be inconsistent witlpotentials. If the triplet attraction is strong enough such a
those of Ref[34], where a free-energy functional is mini- projection may even cause density-dependent effective pair
mized with respect to the counterion density profileere  attractions, which one then easily interprets as “like-charge
are no coionswith the Car-Parinello scheme. Even though attraction.”

the colloidal charge and diameter studied in R&#4] are While in Ref.[36] the screening length of the microions,
similar to the regime of our study, there is no evidence for,~1 was relatively small  1=0.2), we have found here

triplet forces, neither attractive nor repulsive, in RE34].  that the strength of the three-body potentials increases with
Important differences between the present study and that %creasing;’l (andf). The triplet potential is found to be

Ref.[34] are the periodic box and the cubic grid of R¥4] ; 0l
compared to our single box and adaptive grid. Other differ—partICUIarIy strong ific~ is of the order or larger than the

. . . 1 .
ences include the absence of added salt in |34, and the ~ colloidal diametero, L&.. ko<1 orx “>1. For a typical
inclusion of a correlation terrtat the OCP levelin the func- colloidal diameter ofr=100 nm this corresponds, for water
tional of Ref.[34]. Given the low microion density we argue, &t '00M temperature as a solvent, to extremely low salt con-
based on Ref[35], that the inclusion of some correlations Centrations of the order of a fewM, i.e., the regime where
should not make a quantitative difference. The absence Jecent experiments have revealed evidence, albeit sometimes
added salt, i.e., the absence of a fixed Debye length could, o('l_;pr_ltrovers,lal, for like-charge attractions and gas-llqu!d equi-
the other hand, be an important source of the different conllPrium. Our study strongly suggests that many-body interac-
clusions, since this may induce sofumwanted system size tions are the source of these alleged obs_ervauons. .
dependence to the distribution of the ions and hence to the A Very important result of our study is that the triplet
screening. We leave this as an unsettled issue here. interaction turns out to be a function of the summed distance

We argued that the triplet attractions can be interpreted ifr =127 13 25 between the three particles only. This em-
terms of screening by macroioriand the counterions that pirical observation, for which we do not have a satisfactory

come with the macroionsSuch a macroion screening effect explanation, is .impo_rtant as it greatly s!mplifies the represen-
has recently been observed in an experiment where the radiition of the triplet interactions, e.g., in terms of a limited
distribution function(RDF) of a two-dimensional colloidal NUmber of fit parameters. In Table | we present the fit param-
system was measured at several colloid densiB6& The  eters based on Eq15) for all parameter sets( *,Z) that
RDFs thus obtained were inverted to give the effectivewe considered in this study. They may be useful for simula-
colloid-colloid pair potentials. At relatively low densities the tion purposes, e.g., to study the possibility of gas-ligtad
measured pair potentials were found to be of purely repulsiv@as-solid equilibrium beyond the van der Waals-like mean-
Yukawa form. By contrast, at higher densities substantial defield theory presented in the final section of this paper.
viations from the Yukawa potential were observed at dis-
tances comparable to the mean colloid-colloid distabce
=p~ Y2 This suggests that the interaction of two colloids at
a distancer>D is simply blocked by a third macroion, We gratefully acknowledge fruitful discussions with Ru-
which is located, on average, Bt and thus somewhere in dolf Klein and Alfons van Blaaderen, and the financial sup-
between the two interacting colloids under considerationport from the DFG through SFB 513. This work is part of the
The present study demonstrates that this blocking is veryesearch program of the “Stichting voor Fundamenteel
effective indeed, see Fig. 3. Having in mind that the three-Onderzoek der Materi¢FOM),” which is financially sup-
body potentials calculated in the present work are negative, fported by the “Nederlandse Organisatie voor Wetenschap-
is clear that an inversion procedure that only allows for paimpelijk OnderzoeKNWO).”

ACKNOWLEDGMENTS

[1] B. Derjaguin and L. Landau, Acta Physicochim. URB§633 [6] A.E. Larsen and D.G. Grier, Natufeondon 385, 230(1997.
(194; E. J. W. Verwey and J. Th. G. Overbedlyeory of the [7] B.V.R. Tata, M. Rajalakshmi, and A.K. Arora, Phys. Rev. Lett.

Stability of Lyotropic ColloidgElsevier, Amsterdam, 1948 69, 3778(1992.
[2] 3.M. Victor and J.P. Hansen, Trans. Faraday S®t. 43 [8] T. Palberg and M. Widh, Phys. Rev. Lett72, 786 (1994).
(1985. [9] L. Belloni, J. Phys.: Condens. Matt&@, R549(2000.

[3] W.B. Russel, D.A. Saville, and W.R. Schowalt&olloidal [10] M. Dijkstra, Curr. Opin. Colloid Interface Sc, 372(2002).
Dispersions(Cambridge University Press, Cambridge, 1089 [11] J.P. Hansen and H. lgen, Annu. Rev. Phys. Cherbl, 209

[4] K. Ito, H. Yoshida, and N. Ise, Scien@83 66 (1994; B.V.R. (2000.
Tata, E. Yamahara, P.V. Rajamani, and N. Ise, Phys. Rev. Let{.12] M.J. Stevens and M.O. Robbins, Europhys. Let2 81
78, 2660(1997). (1990.

[5] N. Ise, T. Obuko, M. Sugimura, K. Ito, and H.J. Nolte, J. [13] O. Spalla and L. Belloni, Phys. Rev. Le#4, 2515(1995.
Chem. Phys78, 536 (1983; N. Ise and M.V. Smalley, Phys. [14] J. Ray and G.S. Manning, Langmuif, 2450(1994).
Rev. B50, 16 722(1994). [15] B.Y. Ha and A.J. Liu, Phys. Rev. Letr9, 1289(1997.

011402-11



RUSSet al. PHYSICAL REVIEW E 66, 011402 (2002

[16] R. Podgornik and V.A. Parsegian, Phys. Rev. L8, 1560 [26] H. Lowen and E. Allahyarov, J. Phys.: Condens. Mattér

(1998. 4147(1998.
[17] Y. Levin, M.C. Barbosa, and M.N. Tamashiro, Europhys. Lett.[27] J.Z. Wu, D. Bratko, H.W. Blanch, and J.M. Prausnitz, J. Chem.
41, 123(1998; Y. Levin, Physica A265 432(1999; A. Diehl, Phys.113 3360(2000.
M.C. Barbosa, and Y. Levin, Europhys. Le®3, 86 (2001). [28] R. van Roij(unpublishegl
[18] R.R. Netz and H. Orland, Europhys. Let5, 726 (1999. [29] H.P. Langtangen, Computational Partial Differential
[19] E. Allahyarov, I. D’Amico, and H. Laven, Phys. Rev. Let81, Equations (Springer, Berlin, 1999 Numerical Obijects,
1334(1998. http://www.nobjects.com/
[20] B. Beresford-Smith, D.Y.C. Chan, and D.J. Mitchell, J. Colloid [30] Joachim Schieerl, http://www.sfb013.uni-linz.ac. at/ joachim/
Interface Scil05 215(1985; D.Y.C. Chan, Phys. Rev. B3, netgen/
061806(2001). [31] H.H. von Grinberg and E.C. Mbamala, J. Phys.: Condens.
[21] R. van Roij and J.P. Hansen, Phys. Rev. Le®.3082(1997); Matter 13, 4801(2001.

R. van Roij, M. Dijkstra, and J.P. Hansen, Phys. Re\w6%  [32] J.C. Neu, Phys. Rev. Let82, 1072(1999.
2010 (1999; R. van Roij and R. Evans, J. Phys.: Condens.[33] R.P. Sear, Phys. Rev. &, 651 (2000.
Matter 11, 10 047(1999; R. van Roij,ibid. 12, A263 (2000. [34] R. Tehver, F. Ancilotto, F. Toigo, J. Koplik, and J.R. Banavar,

[22] P.B. Warren, J. Chem. Phy$12, 4683(2000. Phys. Rev. B59, R1335(1999.

[23] M.J. Grimson and M. Silbert, Mol. Phyg4, 397 (1991). [35] H. Lowen, J.P. Hansen, and P.A. Madden, J. Chem. P38s.

[24] H. Graf and H. Laven, Phys. Rev. 57, 5744(1998. 3275(1993.

[25] H.H. von Grinberg, R. van Roij, and G. Klein, Europhys. Lett. [36] M. Brunner, C. Bechinger, W. Strepp, V. Lobaskin, and H.H.
55, 580(2001). von Grinberg(unpublisheg

011402-12



