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ON THE COMPUTATION OF THE FREE-SPACE 
DOUBLY-PERIODIC GREEN'S FUNCTION OF THE 
THREE-DIMENSIONAL HELMHOLTZ EQUATION 

A. Moroz t 

Physics and Chemistry of Condensed Matter 

Debye Institute 
Utrecht University 
Postbus 80000, NL-3508 TA Utrecht, The Netherlands 

Abstract-In a recent article [1] the performances of several methods 
used for the computation of the free-space doubly-periodic Green's 
function G0Λ of the three-dimensional (3D) Helmholtz equation were 

investigated. The existence of an alternative method that is superior to 
those discussed in that article is pointed out. The alternative method 
can have accuracy close to machine precision and is more efficient 

(at least 12 times faster for an identical convergence test). It yields 
a fast convergent result for any z, i.e., also for z = 0, where the 
series discussed by Guérin, Enoch, and Tayeb are only conditionally 
convergent. 

t On leave of absence from Institute of Physics, Na Slovance 2, CZ-180 40 Praha 8, Czech 
Republic 
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1. INTRODUCTION 

Let A be a two-dimensional (2D) simple (Bravais) periodic lattice in 
three dimensions (3D) (the condition of a simple lattice can be relaxed 
to an arbitrary periodic lattice [4, 5]). Let A* be the corresponding 
dual (momentum) lattice, i.e., for any rn E A and ks E A* one has 

rn . ks = 2JrN, where N is an integer. Let k?? be the projection of 

wavevector k of an incident monochromatic wave onto A(A*). Let 

12 /1 L 11 

where R = r - r' and R = denote a free-space scattering Green's 
function of the 3D scalar Helmholtz equation at the points r and r' and 
at a = wnhlco, where is angular frequency, nh is the host refractive 

index, and co is the speed of light in vacuum. The free-space periodic 
Green's function GOA is defined as . 

\-1 
where the projection kll is usually called the Bloch momentum. For 

any rs E 11, ks E A*, GOA satisfies the following trivial properties, 
GOA(a, kll, R) = GO A (u, kll, R + rs) = GOA (a, kp + ks, R). 

In a recent article by Gu6rin, Enoch, and Tayeb [1], the 

performances of several methods used for the computation of the 

free-space doubly-periodic Green's function GOA of the 3D scalar 
Helmholtz wave equation (Eq. (12) below) were investigated. It was 
stated that (i) only a few works concern this problem, (ii) for a 

large range of parameters (position in space, wavelength, periods, 
etc.), none of the methods is satisfactory, regarding accuracy and 

computing time criteria. Contrary to these claims, we would like 
to point out that there is a whole thriving industry of numerical 

techniques which efficiently and satisfactorily deal with the issue 
raised in [1] and which are based on a method superior to those 
discussed by Guerin, Enoch, and Tayeb [1]. The alternative method 
is based on the (complete) Ewald summation [2, 3] and yields an 

exponentially convergent representations of GOA and its lattice sums. 
These representations were first derived by Kambe as early as in 1967 

[2, 3]. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 L

ib
ra

ry
 U

tr
ec

ht
] 

at
 0

7:
08

 1
1 

N
ov

em
be

r 
20

15
 



459 

2. KAMBE'S FORMULAS FOR LATTICE SUMS 

The lattice sums of GOA are defined as the expansion coefficients 
of 

into regular spherical waves [3, 6], 

Here 1 > 0 and -1 < m < l are the angular-momentum numbers, 
Go = -cos(aR)j(47rR) denotes the real or principal (singular) part of 
the free-space Green's function Go, jl are the regular spherical Bessel 
functions [7], and ym are the conventional spherical harmonics. The 

very possibility of the expansion (4) follows from the fact that DA is 

regular for R - 0 [6]. Indeed, within a primitive cell of a lattice A, 
Green's functions Go and GOA only differ up to boundary conditions 
and their respective singular parts are identical [6]. Therefore, D 
is regular for R - 0 and as such it can be expanded in terms of the 

regular spherical waves [6]. The lattice sums are conventionally written 
as a sum [3] 11 \ In.\ 100\ 

where D(')(D (2)) involves a sum over A* (all rs =1= 0 of A). D(3) is the 

term which combines Go (R) and the rs = 0 contribution of the direct 
lattice sum, and is only nonzero for l = m = 0 [3]. Explicitly, 
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where prime in E' indicates that the term with rs = 0 is omitted, and 

Here, vo is the volume of the primitive cell of the direct lattice A, <Pu 
is the polar angle of the vector u in the plane containing A(A*), r is 
the incomplete gamma function [7], the normal projection Kj_g can be 
either real (a propagating wave) or imaginary (an evanescent wave), 

and 61m,1,m, is the Kronecker delta function, which is equal to one for 

(l, m) _ (l', m') and otherwise is zero. The parameter q in Eqs. (6)- 
(8) is the so-called Ewald parameter [3]. Invariance of (Eq. (5)) 
on the value of the Ewald parameter q serves as a check of a correct 
numerical implementation. However, for some values of 77, one can 

enter a numerically instable region: the D}:J and D (2) contributions 
have opposite sign and similar magnitude, which is several orders larger 
than the resultant This instability can easily be remedied by 
choice of some other value of q, or, one can make q depend on u and 
l and prevent numerical instability completely [8, 9]. For moderate 
values of a, Kambe recommended [3] 

A numerical implementation of Eqs. (6)-(8) is facilitated by the 
fact that, assuming standard spherical coordinates, for a lattice A 
embedded in the z = 0 plane the lattice sums are only nonzero if 
l - Iml is even, i.e., 

Therefore, (l-lml)j2, which is the upper limit of a sum over integers in 

Eq. (6) and which also enters factorials and an exponent in Eqs. (6)-(7), 
is always an integer. Obviously, whenever Dlm =1= 0 then (l + Iml)j2 in 

Eqs. (6)-(7) is also an integer. Some other tricks facilitating numerical 

implementation, for instance, use of recurrence relations, are discussed 
in [3]. Corresponding lattice sums and GOA for a complex (non-Bravais) 
lattice (for instance, a diamond lattice) are calculated in [5]. 
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3. DISCUSSION 

The exponentially convergent representation of the lattice sums, given 
in Eqs. (6)-(8), was first derived by Kambe in 1967 [3]. Since then 
it became an integral and indispensable part of numerical programs 
based on the layer Korringa-Kohn-Rostocker (LKKR) method [10-17] 
and low-energy electron-diffraction (LEED) theory [12, 13, 18] which 
describe scattering and diffraction of quantum and classical waves off 

(a finite stack of) 2D lattice(s) in 3D. The LKKR and LEED based 
numerical programs have been successfully tested for various physical 
problems since the early seventies of the last century. The last decade 

they have been incorporated into acoustic, elastic, and electromagnetic 
variants of the LKKR theories [14-17]. Indeed, it is interesting to note 

that, to a large extent, the scalar case also covers the case of vector and 
tensorial waves, provided (such as in the case of acoustic, elastic, and 

electromagnetic waves) each field component ?pj independently obeys 
the scalar Helmholtz equation, 

For several reasons, it has been rather surprising to find out that 
the Kambe's results (6)-(8) were not included in the analysis of Ref. [1]. 
First, given a and kll, an identical set of lattice sums is used in Eq. (4) 
to calculate Eqs. (3)-(4) the Green's function GOA anywhere, i.e., also 
in the lattice (z = 0) plane, as long as r # r'(R # 0). (Note that 
in the lattice plane, i.e., for z = 0, the series in Ref. [1] are only 
conditionally convergent and their convergence properties were only 
investigated in the region lzl > 10-6.) Second, there is no problem to 
calculate GOA close to machine accuracy. Third, compared to variants 
of the spectral domain representation of GOA discussed in [1], Kambe's 

expressions (6)-(8) provide an unparallel speed of convergence for GOA. 
Indeed, after initial calculation of the lattice sums Dh.,.,, up to a cutoff 
value lmax, any further evaluation of GOA for a given a and kjj only 
requires a straightforward evaluation of regular Bessel functions and 

spherical harmonics, and performing the sum in Eq. (4) with the same 
set of the Dl,,r,,'s. Let the respective Tl and Tloooo denote the time 
needed to calculate GOA at a single and at 10.000 points. For fixed 
Q = 27r and kll 

= (crsin(7r/4),0) (the same parameters as in Ref. [1]), 
the convergence times T1 and Tloooo are summarized in Table 1 as 
a function of lmaz. The lattice sums were calculated with 8 digits 
accuracy. The Ewald parameter was taken according to Eq. (10). 
F77 program was compiled without any optimalization and run on a 
standard PC with Pentium II processor. Bessel functions and spherical 
harmonics were calculated using routines from Numerical Recipes [22]. 
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Table 1. Convergence times Tl and Tloooo as a function of lmax for 
fixed or = 27r and k?? 

= (u 

The number of lattice sums increases quadratically with a cutoff value 

lmax in the summation over land m in Eq. (4): for a given lmaz, 
there are (lm,ax + 1) x (lax + 2)/2 independent lattice sums (see the 
constraint (11)) [12]. Therefore, both T1 and Tloooo increase with 
The speed of convergence of the Ewald-Kambe summation shown in 
Table 1 is in line with the so-called bulk case (d-dimensional lattice in a 
d-dimensional space). A single run of an entire photonic KKR program 

[19], which performs many other functions apart from a calculation of 
the lattice sums with 6 digits accuracy, takes on a PC with Pentium II 

processor, m 0.03 s for a 2D photonic crystal in 2D for lmax = 22 [20] 
and : 0.8 s for a 3D photonic crystal in 3D for lmax = 8 [21]. Given 
R and s = OIRI, Gon is calculated with the accuracy of lattice sums, 
provided a suitable value of the cutoff lmax is taken. Since, according 
to Eqs. (9.3.1) and (10.1.1) of [7], one has 

with e being the Euler number, a rapid convergence of series in Eq. (4) 
is ensured after some lo > s. Often the cutoff value 

is large enough [23]. The largest value of IRI (s) for which GOA 
was calculated in Ref. [1] was Rmax 11). Therefore, 
1,,,ax 22 should be large enough to ensure convergence over entire 
scanned region in Ref. [1]. Keeping lmax fixed to its maximal value 

22, the convergence times T1 and Tloooo do not depend on R in the 
scanned region of Ref. [1]. Even with such an unoptimized procedure, 
Kambe's Eqs. (6)-(8) yield, according to Table 1, roughly 12 times 
faster convergence for GOA than the methods in [1] (see Table V there). 
(Unfortunately, in [1] there is no description of a computer on which 
the speed of convergence was tested. A reliable comparison would of 
course require to test the programs on the same computer.) 

For 1D periodicity (e.g., along the x-axis) in 2D, Kambe-like 

expressions for y = 0.03 (a z-like coordinate there), have been found 
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to yield 20 times faster convergence time T1 than the spectral domain 
form of GOA [24]. Only as y (z in the current case) increases 

further, the respective Tl times are expected to converge to the 
same value. This indicates for the current case that an optimized 
program employing the Kambe expressions (6)-(8) can yield even faster 

convergence. Obviously, the speed of convergence in the current case 
can be enhanced by a trivial modification: after storing the values 
of Dim's up to lmaz = 22, the actual number of generated Bessel 
functions and spherical harmonics to be used in Eq. (4) is made 

dependent. However, the main goal of the article was rather to point 
out the existence of Kambe's expressions (6)-(8) (2, 3, 5) than to discuss 

properties of the most optimized program employing these expressions. 

4. CONCLUSION 

We have pointed out the existence of an alternative method for the 
calculation of the free-space periodic Green's function GOA that is 

superior to those discussed by Guerin, Enoch, and Tayeb [1]. The 
alternative method, which is based on Kambe's Eqs. (6)-(8) [2, 3, 

5], can have accuracy close to machine precision and is more efficient 

(at least 12 times faster for the same test as that in Ref. [1]). It 

yields a fast convergent result for any z, i.e., also for z = 0, where the 
series discussed by Guerin, Enoch, and Tayeb [1] are only conditionally 
convergent. Therefore, it deserves full attention of electromagnetic 
waves community. 

A comprehensive review of exponentially convergent lattice sums 
of the free-space periodic Green's functions of the Helmholtz equation 
for all physical situations can be found in [25]. Numerical F77 codes 

implementing Eqs. (6)-(8) can be found in a book by Pendry [12], or, 
can be downloaded from Comp. Phys. Commun. [26, 27]. They are 
also available upon request from the author. 
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