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ABSTRACT

As demonstrated for the example of a diamond and zinc blende structure of dielectric
spheres, small inclusions of a low absorbing metal with the volume fraction fm can have a
dramatic effect on a complete photonic band gap (CPBG) between the 2nd-3rd bands. For
example, in the case of silica coated silver spheres, the CPBG opens for fm ≈ 1.1% and
exceeds 5% for fm ≈ 2.5%. Consequently, any dielectric material can be used to fabricate
a photonic crystal with a sizeable and robust CPBG in three dimensions. Absorption in
the CPBG of 5% remains very small (≤ 2.6% for λ ≥ 750 nm). The structure enjoys
almost perfect scaling, enabling one to scale the CPBG from microwaves down to ultraviolet
wavelengths.

INTRODUCTION

Photonic crystals are structures with a periodically modulated dielectric constant [1]. In
analogy to the case of an electron moving in a periodic potential, certain photon frequencies
in a photonic crystal can become forbidden, independent of photon polarization and the di-
rection of propagation - a complete photonic bandgap (CPBG) [1, 2, 3]. In the last decade,
photonic crystals enjoyed a lot of interest in connection with their possibilities to guide light
and to become a platform for the fabrication of photonic integrated circuits [4, 5]. Despite
the research activities of a large number of experimental groups, achievement of a CPBG
below infrared wavelengths for both two- and three-dimensional photonic structures is still
elusive, mainly because the required dielectric contrast δ to open a CPBG is rather high.
Even for the best geometries δ ≈ 5 is required [2, 6]. Already this threshold value of δ
excludes the majority of semiconductors and other compounds and materials, such as (con-
ducting) polymers, from many useful photonic crystal applications. However, the required δ
is even higher. For applications one needs a sufficiently large CPBG to leave a margin for
gap-edge distortions due to omnipresent defects. Let us define the relative gap width gw as
the gap width-to-midgap frequency ratio, 4ω/ωc. Then in order to achieve gw larger than
5%, δ ≥ 9.8 and δ ≥ 12 is required for a diamond [6] and face-centered-cubic (fcc) structure
[7], respectively. This leaves only a couple of materials for photonic crystals applications at
near infrared and optical wavelengths [8]. Surprisingly enough, there is a way to create a
sizeable and robust CPBG with just any dielectric material, be it silica glass or a polymer.
A price to pay is to accept a small volume fraction fm of a low absorbing metal, the actual
amount of which depends on an available material dielectric constant ε. Obviously, small
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Figure 1: Gap width to midgap frequency ratio for a diamond lattice of dielectric spheres as
a function of the dielectric contrast.

metal inclusions do not open a CPBG in every dielectric structure. For example, a simple
face-centered-cubic (fcc) lattice of spheres with a metal core requires fm ≈ 50% to open
a CPBG [9, 10, 11, 12]. For a fcc lattice of metal-coated dielectric spheres the required
metal filling fraction fm is slightly lower but still very high (≈ 40% [12]). Therefore, not
surprisingly, when going further to shorter and shorter wavelengths, one is facing an in-
creasing absorption: at λ ≈ 600 nm the absorption exceeds 10% even within a CPBG [12].
Although such a metallo-dielectric fcc structure could provide a CPBG [9, 10, 11, 12] at
near infrared, the extension to visible is difficult. We show that a zinc-blende and diamond
structures of metallo-dielectric spheres [2, 13] can display much better properties. Photonic
band structures are calculated using the photonic Korringa-Kohn-Rostocker (KKR) method
[7, 14]. The KKR method can be used for scatterers of arbitrary shape [15] but is optimized
for lattices of spheres. In our case convergence of bands was achieved well below 1%.

PURELY DIELECTRIC ZINC BLENDE PHOTONIC STRUCTURES

It turned out to be necessary to recalculate the earlier results of Ho, Chan, and Soukoulis
[2] on the photonic band structure of a diamond lattice of nonoverlapping spheres with di-
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Figure 2: Gap to midgap frequency ratio gw of the 2nd-3rd CPBG for a close-packed dia-
mond lattice of dielectric ns = 1.45 (silica) and ns = 2 (ZnS) coated silver spheres of radius
rs = 80 nm in air. gw is plotted as a function of the metal core radial filling fraction rc/rs.
Metal volume fraction is then fm = 0.34 × (rc/rs)

3.

electric constant εs in air, which were not converged (see [6] for more details). According to
Figure 1, for a sphere filling fraction fs varying from 0 till the close-packed case fcp = 0.34,
two CPBGs can occur simultaneously, between the 2nd-3rd bands, and, as in an inverted fcc
case, between the 8th-9th bands [6]. Contrary to previous calculations [2], the lower CPBG
is not the dominant one (for its optimal fs = fcp it does not exceed 2.3% (for εs = 9), only
persists for εs ∈ [5.2, 16.3], and closes already for fs = 32%) [6]. The dominant CPBG is
the upper one. For εs = 12.96, the upper CPBG persists down to fs = 4%. For fs = 17%
and εs = 12.96 it can reach 12%, however, the threshold value of εs for its opening is 7.9,
comparable to that for an inverted fcc lattice [7]. Unlike the case of a simple lattice (one
scatterer per lattice primitive cell) [7], for the case of a diamond lattice of dielectric spheres,
even when using the plane-wave method based MIT ab-initio program [16], one has to take
a much higher number of plane waves than expected to reach a convergence comparable
with the photonic KKR method. To reach convergence of the photonic band structure of a
diamond lattice of dielectric spheres within 1% the number of plane waves Nc has to exceed
32768 (cf. Ref. [2]) and still an extrapolation N → ∞ [17] has to be performed [18]. Rel-
atively smaller differences were found [6] when compared to the results of Simeonov, Bass,
and McGurn for zinc blende structures [13].
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Figure 3: Gap to midgap frequency ratio gw of the 2nd-3rd CPBG for a close-packed metallo-
dielectric zinc blende lattice of spheres in air with identical radii rs. There are a silver core
- silica (ns = 1.45) shell sphere with rc/rs = 0.75 and a homogeneous dielectric sphere in
the unit cell. gw is plotted as a function of the dielectric constant εs of the 2nd sphere for the
cases rs = 80 nm and rs = 300 nm.

ZINC BLENDE PHOTONIC STRUCTURES WITH METALLIC INCLUSIONS

On purely experimental grounds, only the case of metal cores is investigated here. In-
deed, a metal shell around dielectric core is formed by an aggregation of small metallic
nanoparticles. The shell has to be around 20 nm thick before it becomes complete [19]. With
emphasis on photonic structures in the visible and near infrared, the 20 nm shell thickness
then would mean rather high threshold value of the metal filling fraction fm (of the order of
5%). On the other hand, it is much easier to tune the metal filling fraction fm from zero to a
few percent by coating small metal nanoparticles with a dielectric in a controlled way [20].
We have considered the close-packed diamond lattice (both spheres in the primitive cell are
identical metal core-dielectric shell spheres) and its various close-packed zinc-blende defor-
mations (one sphere in the primitive cell is a metal core-dielectric shell sphere and the second
sphere is purely dielectric, both spheres having the same radius).

Photonic band structure calculations revealed two remarkable features of the metallo-
dielectric structure. First, a strong increase of the CPBG between the 2nd and 3rd bands
with fm (see Figure 2). For example, for a close-packed diamond lattice of silver spheres
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Figure 4: Absorptance of light incident normally on a two unit cells (12 planes) thick zinc
blende lattice of spheres in air stacked in the (111) direction. One of the two spheres in
the primitive cell is silica coated silver sphere (ns = 1.45) with rc/rs = 0.75, whereas the
other is a ZnS core-silica shell sphere with rc/rs = 0.60 of the same radius. Dimensionless
frequency is used on the x-axis, where A is the unit cell size, to emphasize the scaling-like
behavior - in all cases, the 2nd-3rd CPBG lies between ≈ 1.7 and 2.2.

coated with a dielectric with refractive index ns = 1.45 (silica) and radius 80 nm, the CPBG
between the 2nd and 3rd bands below 600 nm opens for fm ≈ 1.1% and reaches 5% already
for fm ≈ 2.5% (see Figure 2). When the sphere refractive index ns increases, one comes
closer and closer to the threshold refractive index contrast of ≈ 2.3, for which the CPBG
of the parent diamond structure of non-overlapping dielectric spheres begins to open [6].
Not surprisingly (Figure 2), the respective metal fms to open the 2nd-3rd CPBG and to have
a CPBG of 5% rapidly decrease with increasing sphere refractive index ns. However, quite
counter-intuitively, the 2nd-3rd CPBG begins to narrow after the dielectric constant increases
beyond a certain threshold (see Figures 1, 3).

For the diamond lattice of pure metallic spheres, only the CPBG between the 2nd-3rd
bands opens and it can be huge. For silver spheres, depending on the sphere radius rs, it
can stretch from 60% (rs = 80 nm) till 75% (rs ≥ 300 nm) [6, 11]. This is consistent
with a previous estimate of gw ≥ 60% for the case of an ideal metal (εs = −∞) [21]. A
combination of the two limiting cases, i.e., purely dielectric (Figure 1) and purely metallic
spheres, yields an indication of why only the lower CPBG (between the 2nd-3rd bands)
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Figure 5: An example of scaling of the 2nd-3rd CPBG midgap wavelength for a close-
packed diamond lattice of coated silver spheres in air with the sphere radius. Spheres are
either ns = 1.45 (silica) coated silver spheres with fixed rc/rs = 0.6, or, ns = 2 (ZnS)
coated silver spheres with fixed rc/rs = 0.4.

opens in the intermediate case of metallic inclusions for ns ≤ 2.3 and why the CPBG begins
to contract after the dielectric constant increases beyond a certain threshold (Figure 3). The
same reasoning also indicates why an order of magnitude higher metal volume fraction is
required to open a CPBG in the case of a simple fcc structure [9, 10, 11]: in the purely
dielectric case, an fcc lattice of spheres in air does not have any CPBG, irrespective of the
sphere dielectric constant [7, 17]. Most crucially (see Figure 4), absorption within a CPBG
of 5% can be kept below 2.6% for λ ≥ 750 nm. (Absorption was calculated using the layer
KKR method [22].) This should be tolerable in most practical applications.

A second remarkable feature of the metallo-dielectric structure is a surprising scaling-
like behavior (see Figure 5), which is intrinsic only to ideal dispersionless structures. This
scaling-like property is very useful from a practical point of view. It means that once a CPBG
is found, with some midgap wavelength λc, the CPBG can be centered at any other wave-
length by a simple scaling of all the sizes of a structure. Since metals are highly dispersive,
the almost precise scaling behavior of the photonic structures is far from obvious, especially
for a CPBG below 2 µm. It is true that a typical metal filling fraction fm which is considered
here is ≤ 5%, i.e., rather small. Yet, as a counterargument, even with such a small metallic
content, the effect on photonic band gaps turns out to be very strong (see Figure 2). For
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sphere radii rs > 300 nm the CPBG lies above 2 µm where the limit of perfect metal is
approached. Here, the scaling becomes more and more precise, since it makes rather little
difference if metal ε = −200 or ε = −∞.

CONCLUSIONS

For the example of a zinc blende structure of dielectric spheres it has been demonstrated
that small inclusions of a low absorbing metal with volume fraction fm can have a dramatic
effect on a CPBG between the 2nd-3rd bands. Surprisingly, the inclusions have the biggest
effect for ε ∈ [2, 12], which is a typical dielectric constant at near-infrared and in the visible
for many semiconductors and polymers. For example, in the case of silica spheres, the 2nd-
3rd CPBG opens for fm ≈ 1.1% of silver and exceeds 5% for fm ≈ 2.5%. Absorption in the
2nd-3rd CPBG of 5% remains very small (≤ 2.6% for λ ≥ 750 nm). The structure enjoys
scaling-like behavior, enabling one to scale the 2nd-3rd CPBG from microwaves down to
ultraviolet wavelengths. Our results imply that just any dielectric material can be used to
fabricate a photonic crystal with a sizeable and robust CPBG in three dimensions. These
findings (i) open a door for many other semiconductor and polymer materials to be used as
genuine photonic crystal building blocks and (ii) significantly increase the possibilities for
experimentalists to realize a CPBG in the visible. Moreover, due to a high sensitivity of a
CPBG on fm, one has the freedom to engineer gw from zero to more than 60%.
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