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Entropic Wetting and Many-Body Induced Layering in a Model Colloid-Polymer Mixture
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We develop an efficient simulation scheme to study a model suspension of equally sized colloidal
hard spheres and nonadsorbing ideal polymer coils, both in bulk and adsorbed against a planar hard
wall. The many-body character of the polymer-mediated effective interactions between the colloids
yields a bulk phase diagram and adsorption phenomena that differ substantially from those found for
pairwise simple fluids; e.g., we find an anomalously large bulk liquid regime and, far from the bulk
triple point, three layering transitions in the partial wetting regime prior to a transition to complete
wetting by colloidal liquid.
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porates all many-body interactions. Employing this Here the integral is over the total volume V of the
Mixtures of nonadsorbing polymer coils and sterically
stabilized colloidal spheres in a suspending medium are
not only industrially important but also of profound
fundamental interest. The reason is that such mixtures
can be regarded as one-component systems of colloids
with polymer-induced effective interactions whose
strength and range can be tuned independently by vary-
ing the polymer fugacity zp and the size ratio q � Rp=Rc,
respectively. Here Rp is the polymer radius of gyration
and Rc the colloidal hard-core radius. For q * 0:25, the
bulk phase diagram of a colloid-polymer mixture exhib-
its, at sufficiently high zp, a two-phase region where a
colloid-dilute (‘‘gas’’) and a colloid-dense (‘‘liquid’’)
phase coexist [1–4]. This is similar to the gas-liquid
coexistence in simple fluids with zp playing the role of
inverse temperature. However, there are profound differ-
ences from simple fluids. For instance, the cohesion that
stabilizes the colloidal liquid phase is not provided by
dispersion forces, but by depletion forces generated by the
gain of free volume (entropy) for the polymers upon
colloidal crowding [5,6]. Another difference from simple
fluids is that the pairwise additivity of the effective in-
teractions breaks down qualitatively in this q regime, i.e.,
three-body and more-body interactions are no longer
small perturbations to the pairwise interactions. A recent
density functional study predicts that a model colloid-
polymer mixture in this many-body regime features
fascinating hard-wall adsorption phenomena that differ
dramatically from those of simple liquids [7], e.g., the
system exhibits several distinct layering transitions upon
approach of gas saturation far from the gas-liquid-crystal
triple point while the hard wall-gas interface remains
partially wet. Simulation studies of these surface phe-
nomena are nonexistent as they require the effective
many-body interactions explicitly—most studies thus
far involve the approximation of pairwise additivity
[4,8]. In this Letter, we develop a novel Monte Carlo
(MC) scheme for a model colloid-polymer mixture, based
on the exact effective colloid Hamiltonian; i.e., it incor-
0031-9007=02=89(20)=208303(4)$20.00
scheme, we are able to study not only the full phase
diagram and the structure of the bulk, but also wetting
and layering phenomena near a hard wall for arbitrary
values of q. Results are presented for q � 1.

The essential ingredient of colloid-polymer interac-
tions is the depletion of polymers in a shell of order Rp
about an impenetrable colloidal surface, caused by the
reduction of the number of polymer configurations (i.e.,
the entropy) in the shell. Asakura and Oosawa (AO)
realized that this depletion effect should lead to an effec-
tive attraction between two colloids if their depletion
layers overlap, i.e., if their surface-surface distance is
smaller than about 2Rp [5]. The simplest model that
catches the essence of polymer-induced depletion inter-
actions between colloidal hard spheres is due to Vrij [6]
(although it is called the AO model). Vrij described
the polymers as noninteracting interpenetrating spheres
as regards their mutual interactions, while the colloid-
polymer pair interaction is hard-sphere-like such that
their distance of closest approach is Rcp � Rc � Rp. In
this Letter, we study this simple model in yet arbitrary
external potentials Uc�r� and Up�r� for the colloids and
the polymers, respectively. It proves most convenient to
treat the polymers grand canonically, at fixed fugacity zp.
This ensemble is such that the statistical weight
exp��	H� of Nc colloids, with coordinates Ri, i � 1;
. . . ; Nc, is given in terms of the effective Hamiltonian
H �

PNc
i<j uc�Rij� �

PNc
i�1Uc�Ri� �	�fRig; zp; 	� [4,9].

Here 	 is the inverse temperature, uc the colloid-colloid
hard-sphere potential, Rij � jRi �Rjj, and 	 the grand
potential of the polymers in the external potential Up and
in the static configuration fRig of the colloidal spheres.
Because of the ideal character of the polymer-polymer
interactions, one obtains for the present model the exact
result 		 � �zpVf, with the so-called free volume

Vf �
Z
dr exp��	Up�r��

YNc
i�1

�1� f�jr�Rij��: (1)
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suspension, and f�r� is the colloid-polymer Mayer func-
tion, which for the present model equals �1 for 0< r <
Rcp, and 0 otherwise. Nonvanishing contributions to Vf
stem from those positions r that are outside any of the Nc
depletion shells. The shape of the free volume is, in
general, highly irregular and nonconnected, and, hence,
an accurate evaluation of Vf, e.g., by a finite element
method, is computationally extremely demanding. In or-
der to increase the numerical accuracy and computational
speed, we expand the product in Eq. (1), and separate the
O�fk� terms with k � 0; 1; 2 (for which analytic expres-
sions are possible for some Up) from those with k � 3,

Vf � V�0� �
XNc
i�1

V�1��Ri� �
XNc
i<j

V�2��Ri;Rj� � V�3��
f ; (2)

with the accumulation of the k � 3 terms,

V�3��
f �

X
k�3

" XNc
i1<<ik

V�k��Ri1 ; . . . ;Rik�

#
: (3)

Here V�0� �
R
dr exp��	Up�r��, and, for k � 1,

V�k� �
Z
dr exp��	Up�r��

Yk
m�1

f�jr�Rim j�: (4)

Equation (2) is the decomposition of Vf, and, hence, of
the polymer-induced colloidal interactions 	, into k-body
contributions. In a translational invariant bulk system,
where Up � 0, the k � 2 terms of Eq. (2) are easily
obtained analytically, with V�0� � V, V�1� � �v1, with
v1 � �4�=3�R3

cp the volume excluded to a polymer by a
single colloid, and V�2��Ri;Rj� � v1�1� 3x=4� x3=16�,
with x � Rij=Rcp < 2, the lens-shaped overlap volume of
two spheres of radius Rcp at separation Rij. Note that
these k � 0; 1 terms are irrelevant offsets that do not
affect the thermodynamics and structure of the bulk
suspension [9], and that �zp	

�1V�2��Rij� � ud�Rij� is
the well-known depletion potential of the AO model
[1,6]. The pairwise additivity approximation is recovered
when V�3��

f is set to zero. Here we go beyond this approxi-
mation by a numerical evaluation of V�3��

f ; the k � 2
terms are treated analytically. For the present model,
an efficient scheme can be constructed by introducing
n � n�r� � �

PNc
i�1 f�jr�Rij�, the number of simulta-

neously overlapping depletion layers in r. Noting that the
product of the k Mayer functions in Eq. (4) is only non-
vanishing [and equals ��1�k] for n!=k!�n� k�! terms of
the summation over i1; . . . ; ik in Eq. (3), one performs the
k summation of Eq. (4) to obtain

V�3��
f � �

1

2

Z
n�3

dr exp��	Up�r���n�r� � 1��n�r� � 2�;

(5)

where the integration is only over those regions where
n�r� � 3. Note that Eq. (5) holds strictly for the present
Mayer function, whereas Eqs. (1)–(4) hold for any f
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provided the polymer-polymer interaction is ideal. One
could, now, envisage a numerical calculation of V�3��

f ,
and, hence, of H, by a finite element method, whereby
the total volume V is covered by M cells centered at grid
points rm form � 1; . . . ;M. The computational speed can
be greatly improved if one realizes that the standard
Metropolis algorithm for MC simulation is based on an
acceptance probability min�1; exp��	�H��, with �H the
change of H due to a proposed configuration change. This
implies that only the corresponding change �V�3��

f is
required, and not V�3��

f itself. For MC moves involving
only a single colloid, for example R1 ! R0

1, the only
contributions to �Vf, and, hence, to �V�3��

f , occur inside
the two spheres of radius Rcp centered about R1 and R0

1.
We mesh these two spheres by typically M ’ 2:5� 105

gridpoints each, which we considered the optimal balance
between accuracy and computational speed. We then cal-
culate n�rm� for all rm, and estimate �V�3��

f using Eq. (5).
If V�k� cannot be determined analytically for k � 2; 1
because of a nontrivial Up�r�, one can derive expressions

similar to Eq. (5) for V�2��
f or V�1��

f .
On the basis of our MC scheme, we first performed bulk

free energy calculations of the q � 1 AO model using
thermodynamic integration at a fixed colloid packing
fraction � � �4�=3�R3

cNc=V, such that the polymer fu-
gacity is switched on from 0 to the zp of interest [9]. The
resulting bulk phase diagram, constructed from common
tangent constructions at fixed dimensionless fugacity
� � �4�=3�R3

pzp, exhibits gas, liquid, and crystalline
phases, with a gas-liquid critical point at �c ’ 0:70 and
a gas-liquid-crystal triple point at�t ’ 6:0. Note that� is
the polymer packing fraction in the reservoir at fugacity
zp, and that the ratio �t=�c ’ 9 is remarkably high com-
pared to the corresponding (inverse) temperature ratio in
simple fluids. Figure 1 shows the phase boundaries in the
��� representation. The full curve denotes that part of
the saturated gas branch that is relevant for our wetting
and layering study (to which the symbols and the line
thickness refer), and the symbols (�) of the inset denote
gas-liquid and fluid-solid binodals at full scale. The
dashed curves are the phase boundaries as predicted by
the ‘‘free volume theory’’ of Ref. [10], where Vf is ac-
counted for within first-order perturbation theory by its
average in a pure hard-sphere system. At full scale, see
inset of Fig. 1, this approximation turns out to be remark-
ably accurate. However, on the expanded scale of the gas
branch, the deviations are appreciable, e.g., a factor of
about 2 in � at � � 0:9. Comparing the present ‘‘exact’’
phase diagram for q � 1 with the one based solely on
pairwise AO interactions, for which the triple and critical
point values of � are �0:8 and �0:5, respectively [4],
shows that the main effect of the many-body interactions
is to enhance the � regime of stable gas-liquid coexis-
tence considerably at the expense of that of the gas-solid
coexistence. Finally, we remark that, although we did not
simulate the polymers explicitly, we obtained the three
208303-2
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FIG. 1. Bulk and surface phase diagram of the AO model
(size ratio q � 1) as a function of the colloid packing fraction
� and the polymer reservoir packing fraction �. The main
figure is a blowup of the saturated bulk gas branch, separated
into a regime of complete wetting (thick curve, �), and partial
wetting by colloidal liquid (thin curve) at a hard planar wall.
The first (�), second (�), and third ( � ) layering transitions
are off bulk coexistence. The inset shows the gas-liquid and
fluid-solid bulk coexistence (�) of this work to full scale. The
dashed curves denote the bulk binodals of the ‘‘free volume
theory’’ [10].
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partial structure factors and radial distributions from
measuring colloid-colloid, colloid-hole, and hole-hole
correlations (not shown here).

Next, we consider the AO model with q � 1 in contact
with a planar hard wall at z � 0, i.e., such that Up�z� �
Uc�z� � 0 for z > Rc�� Rp� and 1 for z < Rc, with z the
distance of a particle from the wall. One then finds from
Eq. (4) for k � 1 that the effective, polymer-induced
wall-colloid potential �zp	�1V�1��z� is attractive if z <
Rp � Rcp, with a strength similar to that of the bulk
colloid-colloid depletion potential ud�Rij� [8]. On the
basis of the attractive one-body potential, one expects
preferential colloid adsorption by the hard wall. More-
over, given the large� interval ��c;�t� with a stable gas-
liquid binodal, one might expect, by analogy with simple
fluids, a wetting transition at some � � �w in this inter-
val [11]. However, unlike the case of simple fluids, the pair
interaction �zp	

�1V�2��Ri;Rj� is now a nontrivial func-
tion of Ri and Rj for two colloids close to the wall, with a
strength that is reduced considerably compared to its
translationally invariant bulk form ud�Rij� [8]. This re-
duction, which is caused by overlap of the pairwise
‘‘lens’’ with the wall, tempers the tendency to form a
dense liquid layer at contact, and thus competes with
the attractive one-body potential. The effect of the
k-body interactions with k � 3 on the adsorption is less
clear. Here we investigate the adsorption with a grand
canonical version of our MC scheme, which includes all
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many-body effects. We measured the equilibrium colloid
density profile ��z� at fixed � in a rectangular box of
volume A� L. Here A is the area of the hard wall, along
which we apply periodic boundary conditions, and
L � 100Rc the box length perpendicular to the wall
such that 0< z< L. We use the technique of Ref. [12]
to impose a flat average profile ��z� � � for L� 4Rc �
z � L, where the bulk packing fraction � is fixed by the
chemical potential. For all state points considered, the
density profile is found to be constant in 20Rc < z < L,
i.e., we mimic a semi-infinite bulk gas in contact with a
hard wall.

In Fig. 2, we show the profiles ��z� in the vicinity of
the hard wall, for � � 0:90 [2(a)] and � � 1:12 [2(b)],
at several �< �sat, the saturated gas density. The
insets show the corresponding dimensionless adsorption
� �

R
L
0 dz���z� � ��=Rc. The formation of a thick liquid

film and the logarithmic increase of � as �! �sat in
Fig. 2(a) are strongly indicative of complete wetting at
� � 0:90. From the slope of the inset in 2(a), one obtains
the correlation length # � �1:16� 0:02�Rc of the wetting
phase [11], which agrees well with # � �1:20� 0:08�Rc
as determined from the asymptotic decay of the radial
distribution function of the bulk coexisting liquid at the
value of�. Evidence for complete wetting was also found
for � � 1:00 and 1.05. By contrast, the finite � for
�! �sat and the finite liquid film thickness in Fig. 2(b)
imply partial wetting at � � 1:12. Indeed partial wetting
was observed for all � � 1:10 that we considered. This
implies that the wetting transition occurs at �w with
1:05<�w < 1:10. Despite considerable effort, we did
not find any evidence for a prewetting transition, i.e., a
transition from a thin to a thick liquid film, which by
analogy with simple liquids is to be expected in the
complete wetting regime � � �w if the wetting transi-
tion is first order [11]. Surprisingly, however, we did find
off-coexistence jumps $� in � in three separate regimes
� > �w, i.e., in the partial wetting regime. The inset of
Fig. 2(b) shows such a jump, which we associate, follow-
ing Ref. [7], with a layering transition (even though the
adsorption is not strictly localized in a well-defined
layer). From the profiles in Fig. 2(b), one checks that
$� is due to a condensation in a regime 4Rc � z �
12Rc. This ‘‘third’’ layering transition, indicated by �
in Fig. 1, was also found at � � 1:10, although slightly
further off coexistence and with a smaller $�. At yet
smaller �, we did not detect any discontinuity in the
adsorption, consistent with a low-� critical point for a
line of layering transitions. We found similar adsorption
discontinuities associated with the second (� � 1:15;
1:20) and first (� � 1:24; 1:25) layering transition, as
indicated by � and �, respectively. The jump in the first
is due to adsorption in 1:5Rc � z � 6Rc, and that in the
second in 3Rc � z � 8Rc. Note that all three layering
transitions take place just below saturation, are entropy
driven, occur only for�w <�� �t, extend over a rather
small regime of�, and seem to end in their own (surface)
208303-3



0 2 4 6 8 10 12 14
z/Rc

0

0.1

0.2

0.3

0.4

0.5

η(
z) −8 −7 −6 −5 −4 −3

ε
0

1

2

3

Γ

(a)

0 2 4 6 8 10 12 14
z/Rc

0

0.1

0.2

0.3

0.4

0.5

η(
z) 0.0046 0.0058

η

0

1

2

Γ

(b)

FIG. 2. Colloid density profiles ��z�, for several fugacities (asymptotic bulk densities �), near a hard wall at z � 0. The reservoir
polymer packing fraction is� � 0:90 (a), and� � 1:12 (b). Upon approach of gas saturation, the adsorption � appears to diverge as
�%, with % � ln��sat � �� in (a), i.e., complete wetting. � remains finite at �sat (dashed vertical line) in (b), i.e., partial wetting.
The jump of � prior to saturation is associated with the distinct change in the density profiles and reflects the third layering
transition.
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critical point. Currently, we have no detailed understand-
ing of the mechanism behind these layering transitions,
which take place in the partial wetting regime far from
the triple point, and not, as in simple fluids at strongly
adsorbing substrates, in the complete wetting regime
close to the triple point [13]. It is tempting to speculate,
however, that the competition between the one- and two-
body interaction (and perhaps that between two- and
three-body terms, etc.) should be important. Since our
results are in qualitative agreement with recent density
functional predictions for the AO model [7], this suggests
that the wetting and layering are robust phenomena in this
model of colloid-polymer mixtures. Hopefully, this
stimulates experimental investigations.

A few final words on the system sizes used in this work.
In all cases we fixed L � 100Rc, and varied the area
A such that the typical relative adsorption jumps
$�=� ’ 0:3 can be resolved numerically with confidence.
This implies that $�=�, with $� the statistical error in �
at the jump, is substantially smaller than 0.3; it turns out
that $�=� � 0:05 is (just) sufficient. Consequently, one
requires on average at least 400 colloids in the grand
canonical bulk. Given that � & 5:10�3 here, one requires
A * �60� 60�R2

c. Hence, the total number of colloids in
the system exceeds 103, since � ’ 1. If one had wished to
study wetting and layering of the two-component colloid-
polymer mixture directly (instead of using the present
effective one-component colloid description), one would
have needed 105 polymers (most of them filling the bulk).
This shows that our approach, based on effective (many-
body) interactions, is much more efficient.

In conclusion, we have shown with an efficient (and
extendable) numerical scheme that entropic many-body
effects change dramatically the adsorption phenomena
208303-4
for colloid-polymer mixtures from those for simple (pair-
wise) fluids.
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