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1. Introduction

The analogy between the propagation of electron waves and classical waves
has led to a revival in the research of the transport of light in disordered
scattering systems [1]. The first indications of the role of interference in mul-
tiple scattering has been indicated in experiments on enhanced backscat-
tering in the late 1980’s [2]. Over the past decade many studies have been
performed to characterize and understand this intricate interplay of scatter-
ing and interference [3]. The improved understanding of the optical systems
stimulated the studies of the propagation of waves in disordered systems in
general and applications in e.g. the field of medical imaging [4].

The ’holy grail’ has been to observe the optical analogue of Anderson
localization in electronic systems [5]. Anderson localization refers to an in-
hibition of the wave propagation in disordered scattering systems due to
interference. Localization is essentially a wave phenomenon and it should
hold for all kinds of waves i.e. electrons, electromagnetic and acoustic waves
[6]. For isotropic scatterers Anderson localization is established if kls ∼ 1,
where k is the wave vector in the medium and ls is the scattering mean free
path, or the average length that the wave propagates in between two elas-
tic collisions. The transition between extended and localized states occurs
when kls < 1. This is known as the Ioffe-Regel criterion for localization [7].
To approach the Ioffe-Regel criterion, ls can be reduced by using scatterers
with a high refractive index, n, and an optimal size where the scattering
cross-section is a maximum.

Experimental difficulties in realizing a random medium where the op-
tical absorption is low enough and the light scattering is efficient enough
to induce localization has been the reason why, for a long time, only mi-
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crowave localization was realized [8]. In this experiment the absorption is
large and, therefore, complicates the interpretation of the results. Recently,
near-infrared localization in GaAs powders was observed [9]. However, the
validity of these measurements has been questioned by the possibility of
absorption [10].

To achieve localization the parameter kls needs to be reduced. The light
wavevector, k, is defined as k = 2πne

λ where λ is the wavelength and ne is the
effective refractive index of the disordered medium. The scattering mean
free path, ls, is given in first approximation by ls ∼ 1

ρσs
, where ρ is the

density of scatterers and σs their scattering cross section. The scattering
cross section depends on the size of the scatterers relative to λ and on the
refractive index contrast between the scatterers (n) and the surrounding
medium (n0), m = n

n0
, being larger for higher values of m.

Contrary to electronic systems, for light it is not possible to reach the
localization transition (kls ≈ 1) just by reducing k. In the Rayleigh scat-
tering limit or when λ À r, where r is the radius of the scatterers, σs is
proportional to λ−4 and therefore kls ∝ λ3. In this limit a reduction of k by
increasing the light wavelength will give rise to an increase of the localiza-
tion parameter. In the opposite limit or the geometric optics limit, λ ¿ r,
the scattering cross section equals 2πr2 and kls ∝ 1

λr2 . Thus reducing λ will
not help either to approach the localization transition. Therefore, localiza-
tion of light will only be possible at an intermediate wavelength window
where the scattering cross section is maximal, that is, when the size of the
scatterers is of the order of the wavelength, λ ∼ r. Even then the refractive
index contrast needs to be high enough to reach the localization transition.

Here we present an overview of our recent measurements on Si [11] and
Ge powders and on a unique form of porous GaP[12, 13]. We will discuss the
method to observe deviations from diffusive transport and the occurrence
of localization. Important are good characterization of the materials by a
systematic study of static and dynamical properties. We will discusss the
role of residual absorption, effective refractive index on internal reflection
and topology of the sample.

2. Disordered semiconductor systems

Much experimental work has been done on powders of TiO2 [14, 15, 16].
TiO2 is the dielectric with the highest refractive index in the visible, n =
2.7, and, although the TiO2 samples were strongly scattering, the lowest
value of the localization parameter was still far from the transition (kls ≈
6). Some semiconductors like Ge, GaAs, Si and GaP have larger refractive
indices than TiO2 and very low absorption for λ > λgap, where λgap is the
wavelength of the semiconductor energy band gap. In table 1 we list, for
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Material n λgap (nm) Reported kls (at λ) Structure Reference

GaAs 3.5 890 < 1 (1.067 µm) powder [9]

GaP 3.2 550 ∼2 (0.633 µm) porous [12]

Ge 4.1 1850 ∼3 (2 µm) powder [24]

Si 3.5 1100 ∼3.5 (6.5 µm) powder [11]

TiO2 2.7 > 300 ∼7 (0.633 µm) powder [15]

TABLE 1. refractive index, n, and wavelength of the energy band gap, λgap, of
several semiconductors. The lowest reported value of the localization parame-
ter, kls, and the structure of the samples are also listed.

these semiconductors, the refractive index n and λgap. Therefore, they are
good candidates to prepare a material where light is localized. We have also
included in table 1 the lowest measured value of kls. Strong localization of
light (kls < 1) was first and solely reported in GaAs powders [9]. However,
an alternative explanation for these measurements was proposed in terms
of classical light diffusion and optical absorption [10]. It was clear that a
thorough characterization of these novel materials was necessary.

We have prepared samples with different structure, powders and porous
materials, as it is indicated in table 1. In the following we describe the
preparation method for the different samples. The starting material of the
Si samples was commercially available powder of high purity Si particles
(Cerac S-1049) with sizes ranging from a few hundred nanometers to about
40 µm. To reduce the polydispersity in the particle size we suspended the
particles in spectroscopic grade chloroform and we let them sediment for
5 minutes. Only the particles that did not sediment were used in the ex-
periments. Fig. 1(a) is an scanning electron microscopy (SEM) image of
these particles. We can see that the Si particles are rounded and that they
tend to aggregate into clusters. Considering the clusters as single particles,
the average particle radius is r̄ = 690 ± 410 nm. Layers of Si powder with
different thickness were made by putting a few drops of the suspension on
CaF2 substrates and letting the chloroform evaporate [11].

The Ge samples were prepared starting from bulk pieces of Ge that were
gently milled. Sedimentation of the biggest particles was necessary in order
to keep the milling time and intensity as low as possible. A SEM image of
the resulting Ge particles is shown in Fig. 1(b). As may be noticed, the Ge
particles do not form clusters and their shape is different from that of the
Si particles. The average Ge particle size is r̄ = 980±680 nm. The still high
polydispersity of the Si and Ge particles has serious disadvantages, since
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Figure 1. Scanning electron microscope images of disordered semiconductor samples.
(a) Si powder, (b) Ge powder and (c) porous GaP (PA-GaP).

the average scattering cross section becomes lower as the polydispersity
increases. Layers of Ge particles were made in a similar way as for Si, for
which we suspended the particles in spectroscopic grade methanol.

The GaP samples are porous or sponge-like layers of GaP. The porous
structure was formed by anodic etching of n-type single crystalline GaP
wafers [12]. Samples of two types were made: anodically etched GaP (A-
GaP) with a porosity of 35% and photoanodically etched GaP (PA-GaP)
with a porosity of 50%. The PA-GaP samples were prepared by further
etching A-GaP using homogeneous photo-assisted etching [12]. The result-
ing samples are layers of different thickness of porous GaP on bulk GaP
wafers or substrates. Figure 1(c) is a SEM image of PA-GaP sample. The
average pore size in the A-GaP samples is estimated to be r̄ = 92± 30 nm
while for the PA-GaP samples r̄ = 132 ± 30 nm.

Finally, it is necessary to mention that the structure of the samples will
play an important role in its scattering properties. For instance, it has been
demostrated that the values of kls for the inverse structure of air spheres in
high dielectric materials (porous material) is lower that those for the direct
structure of spheres of high dielectric material in air (powder) [17]. Also
the shape of the particles or pores will influence the scattering.
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3. Static characterization

In this section we describe the static measurements. From these measure-
ments important sample parameters as ls, l, La and ne are obtained. The
optical absorption in the medium is characterized by the absorption lenght,
La. The transport mean free path, l, is defined as the distance over which
the direction of propagation of the wave is randomized and vanishes in the
localization regime. The scattering mean free path, ls, constitutes a mea-
sure of the disorder quantified by the localization parameter. Let us briefly
describe the propagation of light in disordered scattering media. In the
weak scattering limit, kls À 1, the propagation of light is well described by
the diffusion equation [18]. The diffusion approximation neglects the inter-
ference of waves propagating along different paths since, on average, this
interference cancels out. The light diffuses in the medium with a diffusion
constant given by

DB =
velB

3
, (1)

where ve is the energy velocity and lB the Boltzmann mean free path, de-
fined as the transport mean free path in the absence of interference. If a
sample is illuminated, the source of diffuse radiation is given by the light
scattered out of the incident or coherent beam. The incident beam decays
as exp(−z/ls) where z is the depth in the sample. The diffuse total trans-
mission, defined as the transmitted light flux normalized by the incident
flux, can be calculated by solving the diffusion equation with the proper
boundary conditions. The boundary conditions are determined by consid-
ering that the diffuse fluxes entering the sample are due to a finite bound-
ary reflectivity [19, 20]. This reflectivity arises from the refractive index
mismatch between the sample and the outside world. The total transmis-
sion will, therefore, depend on the boundary reflectivities by means of the
so-called extrapolation factors τ1 and τ2 where the index 1 refers to the
interface where the incident beam enters the sample and the index 2 to the
opposite interface. The extrapolation factors τ1 and τ2 are given by [20]

τ1 =
2
3

(
1 + R1

1 − R1

)
, (2)

and a similar expression for τ2. Where R1 is the polarization and angular
averaged reflectivity of the boundary. The extrapolation lengths z1 and z2

are defined as the extrapolation factors times the transport mean free path.
Thus, in the weak scattering limit we have z1 = τ1lB and z2 = τ2lB.

In the case of non-absorbing samples, represented by the condition La >
L, where La is the optical absorption length and L is the sample thickness,
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the total transmission is

T =
lB + z1

L + z1 + z2
. (3)

The total transmission decays as the inverse of the sample thickness, simi-
larly to Ohm’s law for the electronic conductance. If significant absorption
is present in the samples, La < L, the total transmission decays exponen-
tially with sample thickness,

T =
2La(lB + z1)

L2
a + (z1 + z2)La + z1z2

exp
(
− L

La

)
. (4)

As the localization transition is approached the diffusion constant is
renormalized by wave interference, which, according to the scaling theory
of localization [21], is given by

D

DB
=

l

lB
= lB

(
1
ξ0

+
1
La

+
1
L

)
, (5)

where the coherence length ξ0 represents the length over which the inter-
ference is important. At the localization transition ξ0 diverges, thus in an
infinite and non-absorbing medium D and l vanish. At the transition the
transport of light is inhibited.

In a non-absorbing medium in the strong localization regime (kls < 1)
the total transmission is

T ∝ exp
(
− L

Lloc

)
, (6)

and the wave is spatially localized on length scales given by the localization
length, Lloc. Notice that the equal dependence of the transmission on the
sample thickness in the case of classical light diffusion in an absorbing
medium (Eq. 4) and in the case of strong localization in a non-absorbing
medium (Eq. 6) greatly complicates the analysis of these measurements.
However, optical absorption is not necessarily a disadvantage. The role
of absorption in the localization process has been never experimentally
investigated and this can not be done in electronic systems since the number
of electrons is conserved.

In the following we describe the static measurements that we have per-
formed on disordered semiconductors materials. The simplest experiment
consists in measuring the decay of intensity of the coherent beam sent
through the samples. The transmitted fraction of the coherent beam, Tcoh,
is given by the expression

Tcoh = exp(−L/ls). (7)
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Sample ls (µm) at λ = 740 nm ne kls

A-GaP 0.4 ± 0.1 ∼ 2.0 6.8

PA-GaP 0.25 ± 0.05 1.5 ± 0.2 3.2

TABLE 2. Scattering mean free path, ls, effective re-
fractive index, ne, and localization parameter, kls, of
A-GaP and PA-GaP samples.

To measure Tcoh one can place a detector at a long distance behind the sam-
ple and in the direction of the incident beam. By doing this the detected
diffuse transmission is negligible compared to the coherent transmitted
fraction. Unfortunately due to the exponential decay of Tcoh these mea-
surements can only be done for thin samples and an intense light source is
needed. To avoid semiconductor band gap absorption the wavelength must
be greater than λgap. For the GaP samples we used as radiation source
a mode-locked Ti:Sapphire laser (Spectra Physics Tsunami) at a central
wavelength of 740 nm. The values of ls in the GaP samples at λ = 740
nm obtained from the measurement of Tcoh are summarized in table 2. The
scattering mean free path is shorter in PA-GaP due to its higher porosity.

The band gap of Ge is at λ = 1.85 µm, therefore we used as radiation
source a Free Electron Laser (FELIX, Rijnhuizen, The Netherlands), which
could be easily tuned in the near and mid-infrared (from 4.5 to 200 µm)
1. We measured Tcoh at λ = 5, 6.5, 7 and 8 µm. In the inset of Fig. 2 we
plot the measurements at λ = 8 µm as function of the sample thickness
and a fit to Eq. 7, from which we obtain ls = 3.8± 0.2 µm. Figure 2 shows
the wavelength dependance of ls. As expected ls increases as λ becomes
larger. This is due to the reduction of the scattering cross section when the
wavelength becomes significantly larger than the scatterers size.

To obtain the localization parameter, k = 2πne
λ ls, we still need to know

the effective refractive index of the samples, ne. By measuring the angular
dependence of the diffuse transmission it is possible to obtain this important
parameter. This is because the angular distribution of the transmitted light
is affected by the refractive index mismatch between the sample and the
exterior, but not by l or ls. Defining θi as the angle at which the diffuse
light is incident on the interior side of the sample boundary with respect to
the sample surface normal, and θe as the angle at which the light exits the
sample (θi and θe are related by Snell’s law), the transmission probability

1The experiments at FELIX where done in collaboration with C.W. Rella and L.D.
Noordam from the FOM-Institute for Atomic and Molecular Physics (AMOLF, The
Netherlands).
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Figure 2. Wavelength dependence of the scattering mean free path, ls, in Ge powder
samples. Inset: measurements of the transmitted fraction of the coherent beam in the Ge
samples as function of the sample thickness, L, for λ = 8 µm. The solid line is an fit to
Tcoh = exp(−L/ls) , with and scattering mean free path ls = 3.8 ± 0.2 µm.

at an angle θe, P (θe), is given by [22]

P (θe)
cos θe

∝ (τ2 + cos θi)(1 − R2(θi)) (8)

where R2(θi) is the Fresnel reflection coefficient at an incidence angle θi

on interface 2. As R2(θi) and τ2 are functions of the refractive index con-
trast between the sample and the outside medium, it is possible to obtain
ne from the measurements P (θe). The measurements of P (θe) are done
by rotating a detector around the sample. In Fig. 3 we plot as squares
P (θe)/ cos(θe) as a function of cos(θe) for a 10 µm thick PA-GaP sample.
By placing a polarizer between the sample and the detector we also mea-
sured the s and p-polarization components (triangles and circles in Fig. 3).
The three measurements are fitted to Eq. 8 with the appropriate Fresnel
reflection coefficients and with ne as single free fitting parameter obtaining
ne = 1.5± 0.2. For the A-GaP samples it is not possible to obtain ne from
the measurements of P (θe) because these samples have a thin low-porosity
overlayer of 0.1-0.2 µm. As P (θe) is determined by the sample interface
characteristics, for A-GaP samples these measurements are affected by the
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Figure 3. Transmission probability of a PA-GaP as a function of cos(θe), where θe is the
transmission angle with respect to the sample surface normal. The triangles and circles
are the measurements for s and p-polarization detection while the squares correspond
to unpolarized detection. The solid lines represent fits to classical diffusion theory from
which the effective refractive index of the samples, ne = 1.5 ± 0.2, is obtained.

thin overlayer, making it impossible to infer from them a bulk property
as ne. Photo-assisted etching of the A-GaP to form PA-GaP removes the
overlayer. However, we can estimate ne knowing their porosity (35%). A
good estimate of ne is given by the Maxwell-Garnett effective refractive
index [23], which in the case of A-GaP gives ne ∼ 2.0. In table 2 the mea-
sured value of ne for PA-GaP and the estimated one for A-GaP are listed,
together with the localization parameter. PA-GaP is very close to the lo-
calization transition, kls = 3.2, being the strongest scattering material of
visible light to date.

By weighing the Ge powder samples we have estimated a material vol-
ume fraction of ∼ 40. The corresponding value of the Maxwell-Garnett
effective refractive index is ne ∼ 1.6. The localization parameter as a func-
tion of λ for the Ge samples is plotted in Fig. 4. The relatively high value
of the localization parameter, regarding the high refractive index of Ge,
and the nearly constant value of the localization parameter with λ can be
understood in terms of the high polydispersity in the Ge particle size. As it
is discussed in Ref.[11], due to the polydispersity the resonances in σs are
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Figure 4. Wavelength dependence of the localization parameter in the Ge powder
samples.

smoothed out and the average scattering cross section becomes in general
larger than in a monodisperse system. Therefore to achieve localization in
the Ge powder samples the polydispersity needs to be further reduced by,
for instance, selective sedimentation.

The transport mean free path can be obtained from the total transmis-
sion measurements. The samples were mounted at the input of a BaSO4

coated integrating sphere. The integrating sphere collected the diffuse trans-
mitted light that was detected with a detector placed at the output port. To
obtain an absolute value of the total transmission the measurements were
normalized by the incident intensity. In all the samples (GaP, Ge and Si)
the incoming beam was incident on the air-sample interface and the trans-
mitted light exited the sample through the sample-substrate interface. For
simplicity, in the determination of τ2 we have not considered the reflections
at the interface substrate-air. These reflections give rise to a larger value of
τ2. However, the total transmission through thick samples (L À l) is almost
insensitive to the value of τ2, as is clear from Eq. 3, and an underestimate
of τ2 will not affect the values of l. The inverse of the total transmission of
the GaP samples, at λ = 740 nm, versus the sample thickness is plotted in
Fig. 5. The circles are the measurement of A-GaP, while the squares corre-
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Figure 5. Inverse of the total transmission versus the sample thickeness, L, for PA-GaP
(squares) and A-GaP (circles) samples. The solid lines are fits using the diffusion theory.

spond to PA-GaP. The linear dependence of T−1 on L is a clear signature
that absorption is negligible, that is La > 110 µm in the A-GaP samples
and La > 60 µm in the PA-GaP samples. With the values of ne (table 2)
and Eq. 2 the extrapolation factor τ1 can be calculated, being τ1 = 5.14 for
A-GaP and τ1 = 2.42 for PA-GaP. The solid lines in Fig. 5 are fits using Eq.
3. From the slope of these lines and with τ1 we obtain l = 0.65±0.03 µm for
A-GaP and l = 0.32 ± 0.04 µm for PA-GaP. These values of l are slightly
larger than ls, which means that the scatterers are not fully isotropic.

We have also measured the total transmission of the Ge samples in
the mid-infrared using the free electron laser [24], but lets here discuss the
measurements on the Si samples. For the Si powder samples a tungsten
halogen lamp was used as a light source and the total transmission spectra
were measured with a Fourier transform infrared spectrometer (BioRad
FTS-60A). The spectrum of a 57.8 µm thick sample is shown in the inset
of Fig. 6. In Fig. 6 we plot the total transmission of the Si samples as a
function of their thickness, L, for λ = 1.4 µm (circles) and 2.5 µm (squares).
From the Si volume fraction ( ∼ 40 %), ne is estimated to be ∼ 1.5 and the
extrapolation factors of the interfaces sample-air, τ1, and sample-substrate,
τ2, are ∼ 2.4 and ∼ 0.78 respectively. The solid lines in Fig. 6 represent
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Figure 6. Total transmission through Si powders as a function of the sample thickness,
L, for λ = 1.4 µm and λ = 2.5 µm. The solid lines are fits using classical diffusion theory.
The inset shows the total transmission spectrum of a L = 57.8 µm sample.

fits to the measurements using classical diffusion theory (Eqs. 3 and 4). At
λ = 2.5 µm we find l = 0.83± 0.09 µm and La > 60 µm, while at λ = 1.4
µm, l = 0.56 ± 0.05 µm and La = 8.8 ± 0.1 µm.

The wavelength dependence of La is plotted in Fig. 7. The strong ab-
sorption at λ < 2.0 µm is due to strain in the Si lattice structure, which
creates band gap tails that increase considerably the absorption at sub-band
gap energies with respect to the strain-free material. We have confirmed the
presence of strain by means of X-ray diffraction.

The dots in Fig. 8 represent the transport mean free path in the Si pow-
der samples as a function of the wavelength. In collaboration with C.M.
Soukoulis and K. Busch we have calculated the transport mean free path
in the Si samples using the Energy Density Coherent Potential Approxi-
mation (EDCPA) [23, 25]. For the calculation we considered spherical and
isotropic (l = ls) scatterers. The dotted line in Fig. 8 is the calculated l
of a monodisperse system of Si spheres with a volume fraction of 40% and
a sphere radius equal to r̄. The solid line in the same figure represents
the averaged l over the particle size polydispersity. The resonances in l are
smoothed out due to the polydispersity and in general l becomes larger. A
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Figure 7. Absorption length, La, in Si powders as a function of the wavelength, λ.

good qualitative agreement is found between experiments and theory. The
small quantitative difference can be attributed to the non-spherical shape
of the Si particles and the ambiguous definition of the r̄ due to the particle
clustering. Assuming that the scatterers are isotropic and that ne = 1.5
(Maxwell Garnett refractive index of the samples), we find a nearly con-
stant value of kls ∼ 3.5 in the studied wavelength range. As discussed for
Ge, a reduction in the polydispersity of the Si particles will give rise to a
lower value of the localization parameter.

We have also done enhanced backscattering (EBS) measurements on the
GaP samples [13]. With these measurements we can check the consistency
of the total transmission measurements and look for localization effects.
We have measured the EBS of A-GaP and PA-GaP using the off-centered
rotation technique [26]. The EBS measurements at λ = 685 nm are shown
in Fig. 9. From the width of the cones the values of the transport mean free
path can be inferred. For A-GaP (narrow cone) we find l = 0.58±0.05 µm,
while for PA-GaP (wide cone) l = 0.23± 0.03 µm, thus in good agreement
with the total transmission measurements. The scattering efficiency can be
reduced by decreasing the refractive index contrast in the samples. This
can be achieved by filling the air voids in the samples with a non-absorbing
liquid. In Fig. 10 the EBS of a PA-GaP sample filled with 1-dodecanol
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Figure 8. Transport mean free path of light, l, in the Si powder samples versus the
wavelength, λ. The dotted line is l, calculated using the energy density coherent potential
approximation, of a system of 40% by volume of Si spheres with a size equal to the
average Si particle size. The solid line is the calculated l considering the polydispersity
of the particles.

(n ∼ 1.44 and no absorption at λ = 685 nm) together with the EBS of the
same non-filled sample are shown. The cone of the non-filled sample is a
factor 2.1± 0.1 broader than the filled one, corresponding to an increase of
the transport mean free path. Of special interest is the rounding of the cone
top, 4ΘR, as is shown in the inset of Fig. 10. Within the classical diffusion
approximation this rounding can be due to two factors: absorption and the
finite size of the samples. The expression relating the rounding with the
absorption length and the sample thickness can be derived to be [13]

4ΘR =
1

kLa
coth

(
Le

La

)
, (9)

where Le = L + z1 + z2 is the effective sample thickness. In the absence of
absorption, L ¿ La, Eq. 9 reduces to

4ΘR =
1

kLe
. (10)

To investigate the mechanisms of the cone rounding, we measured the EBS
for various sample thicknesses. The cone rounding of A-GaP, PA-GaP and
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Figure 9. Enhanced backscattering of A-GaP and PA-GaP.

PA-GaP filled with 1-dodecanol are shown in Fig. 11 as open squares, open
circles and filled triangles respectively as a function of (kLe)−1. Clearly,
the cone rounding of A-GaP and filled PA-GaP follow Eq. 10. Absorption
plays no role for these two types of samples and the rounding can be fully
described in terms of the finite sample size. In contrast, the cone rounding
of PA-GaP does not tend to zero for thick samples. If the measurements
are fitted with Eq. 9 we find La = 33 ± 2 µm. This contradicts the to-
tal transmission measurements from which we concluded that La > 60
µm. Moreover, if absorption is responsible for the rounding of the cone of
PA-GaP, an extra rounding in the cone of the filled samples should also be
apparent, which clearly is not the case. The extra rounding is only observed
in the strongest scattering material which is the closest to the localization
transition. It is expected that interference effects due to the proximity of
the localization transition change the EBS cone shape. This change should
be more significant in the cone cusp, since only at Θ close to 0 long paths
contribute to the EBS. In particular it has been demonstrated that due to
localization the cone cusp becomes rounded [27], similarly to our observa-
tion in PA-GaP.

Finally, we should mention that by filling the samples with non-absorbing
liquids it is possible to verify if an exponentially decreasing total transmis-
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Figure 10. Enhanced backscattering of a PA-GaP sample with the air voids filled with
1-dodecanol and the same sample with non-filled pores. The inset is the a magnification
of the cone top of the filled sample where the rounding of the cusp, 4ΘR, is visible.

sion with L is due to strong localization (Eq. 6) or if absorption needs to
be considered. We have realized this experiment in Ge samples close to the
band gap as is shown in Ref. [28].

4. Dynamic characterization

In this section we describe an interferometric technique for measuring time-
resolved light transmission by random scattering media [29]. In this tech-
nique an incident ultrashort laser pulse is interfered with light transmitted
by the medium. Since diffusely scattered light is incoherent an interferogram
is obtained only if the scattered light is limited to a single (or just a few)
coherence area, or speckle spot, at a time. Properties of light transport are
then determined by repeating the measurement for many different configu-
rations of scatterers and taking the appropriate average. This way one can
measure the diffusion coefficient D, and with it the energy velocity ve [16].
Due to the high dynamic range of the technique the decay rate 1/td ∝ D/L2

of the tail of the diffusely transmitted pulse can be accurately determined.
We use this to search for deviations that are expected to occur when the
localization threshold is reached and D becomes thickness-dependent. For
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Figure 11. Cone roundings, 4ΘR , of A-GaP (open squares), PA-GaP (open circles),
and PA-GaP filled with 1-dodecanol (filled triangles) as a function of the inverse of the
effective sample thickness. The solid straight line is the theoretical prediction assuming a
negligible absorption, Eq. 10 , using no adjustable parameters. PA-GaP shows an extra
rounding for thick samples. The measurements are fitted to Eq. 9 with La = 33 ± 2 µm.
This absorption length is not consistent with the total transmission measurements.

example, near the mobility edge one expects to find 1/td ∝ 1/L3 [30]. Fur-
thermore, we will show that with our technique statistical information can
be obtained on the fluctuations in the phases and amplitudes of multiply
scattered light. This kind of dynamical information was hitherto unavail-
able for light, and makes possible a more detailed dynamical study of light
propagation in strongly scattering media. Results are presented for samples
of A-GaP.

In these experiments we used bandwidth-limited ultrashort pulses (∼100
fs) from a Ti:Sapphire laser (Spectra Physics Tsunami) at 740 nm, with a
repetition rate of 82 MHz. The spectral bandwidth of the pulses is about
1% of the central frequency, so that the mean free paths can be considered
constants over this range. A double-pulsed signal is obtained with a fixed
Mach-Zehnder interferometer in which the reference arm is empty and the
sample arm contains the scattering sample. The sample beam and reference
beam which emerge from the interferometer are carefully overlapped. This
produces a pair of pulses: an undisturbed pulse followed by a pulse scattered
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by the sample into the forward direction. The pulse separation ∆L is the
difference in the optical path lengths of the two arms of the interferometer.
This beam is sent into an FTIR spectrometer (Biorad FTS-60A). The FTIR
uses a scanning Michelson interferometer to obtain the field autocorrelation
function of the pulse pair by scanning the time delay τ between two copies
of the pair. The intensity is sampled by a PMT at a rate of 5 kHz. By this
way samples are acquired every 0.27 fs in τ . The measured signal contains
interference fringes whenever τ is such that two pulses overlap. This occurs
if τ = 0 or if τ = ±∆L/c, with c the speed of light. Around τ = 0 the
sample pulse overlaps with its own copy and so does the reference pulse.
Apart from a constant background, the measured function is then the sum
of the field autocorrelations of the two pulses. Around τ = ±∆L/c one
copy of the sample pulse overlaps with one copy of the reference pulse.
This produces the cross correlation function of the incident field Ein and
the scattered field Escat:

C(τ) =
1

4T

∫ 4T/2

−4T/2
E∗

in(t)Escat(t − τ)dt, (11)

which contains both amplitude and phase information on the pulse trans-
port through the sample. 4T is the repetition time of the laser, which is
much longer than the pulse width.

The sample was placed between two identical lenses of 60 mm focal
length, which are in confocal position. The first lens is used to focus the
beam onto the sample in a small spot. The second lens collects the scattered
light into a parallel beam which is then sent through an aperture. By moving
the sample close to the common focal point the illuminated area can be
reduced to about 10 µm. This increases the angular size of the speckles
such that a single speckle spot can be selected in the scattered beam with
the aperture. Different configurations of scatterers are produced by moving
the sample in the plane perpendicular to the beam by a distance larger than
the illuminated spot. Typically, 60 configurations were measured. For each
configuration 50 scans were averaged to reduce noise. The power incident
upon the sample was ∼0.1 W. Identical results were obtained when the
incident power was halved, so nonlinear effects were absent.

In Fig. 12 the measured interferograms of a number of different speckles
are shown. Each of these signals represents the temporal profile of the field
transmitted in a different speckle spot, convoluted with the incident field.
The signals are filled with fringes resulting from the rapid oscillations of the
electromagnetic field. It is clear that the signal of each speckle is completely
different because it consists of a unique sum of fields that have propagated
along different paths, each of which has its own random amplitude and
phase.
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Figure 12. Interferograms from a number of different speckles measured on a sample of
A-GaP of L =15 µm thickness.

The most important dynamical parameter describing propagation of
light in random media is the diffusion coefficient D. The most direct way
to measure it is a time resolved measurement in which a short laser pulse
is incident upon the sample and one measures the time dependence of the
transmitted intensity using a fast detector. This can then be compared to
the prediction of diffusion theory to obtain D. Solving the diffusion equation
with the proper boundary conditions for a slab of scattering material of
thickness L one gets for the total transmission T [31]

T (t) =
−2πDe−Dt/L2

a

(L + z1 + z2)2

∞∑
n=1

n sin(πn l+z1
L+z1+z2

) cos(πn L−l+z1
L+z1+z2

) ×

exp(− π2n2Dt
(L+z1+z2)2

). (12)

Here, z1 and z2 are the extrapolation lengths on the incident and trans-
mitting side of the slab, respectively. In interferometric measurements a fast
detector is not needed because time is measured by the optical retardation
of the interferometer. The time dependence of the transmitted intensity is
obtained by squaring the measured cross correlations, and averaging over
all speckles. The fringes average out because their phases are random. To
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Figure 13. The diffusely transmitted pulse obtained by summing the squares of the
interferograms of 60 different speckles of a sample of A-GaP of 15 µm thickness. The
narrow pulse centered around the time origin is the incident pulse. The dashed line is
Eq. 12 with D = 21 m2/s and La = ∞. Inset: same data on a linear scale.

remove the remaining fringes the function is Fourier filtered. The result is
shown in Fig. 13. The wiggles in the transmitted pulse form are due to
the limited number of speckles (sixty). The time origin is found by mov-
ing the sample out of the beam and measuring the arrival time of the (now
undistorted) pulse, which is also shown in Fig. 13. The semilog-plot demon-
strates the high dynamic range of the measurement: An exponential decay
over more than 3 orders of magnitude of the intensity is observed. This can
be compared to Eq. 12 , which at long times predicts a single exponential
decay with a rate 1/td given by

1
td

=
D

L2
a

+
π2D

(L + z1 + z2)2
. (13)

By plotting the decay rate against 1/L2 the validity of the diffusion
equation is verified, and the values of La and D can be found. This is done
in Fig. 14, where the expected linear relation is indeed found. From the
slope we find D = 21 m2/s. The intercept is zero within the experimental
error, setting a lower limit on the diffuse absorption length: La > 30 µm.
This means that the samples do not suffer from absorption (which was also
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Figure 14. Decay rate of the tail of the transmitted pulse versus the inverse of the
thickness squared. The solid line is a linear fit to Eq. 13.

clear from the total transmission measurements). Using only the value of D
in Eq. 12 the form of the transmitted pulse is described very well, see Fig.
13. Using Eq. 1 and the value of l from the total transmission measurements
an energy velocity of 0.32c is found, where c is the speed of light in vacuum.

An alternative way to obtain D is from dynamical speckle measure-
ments. Using a tunable single frequency laser one can measure the in-
tensity autocorrelation function within a single speckle spot, CI(4ω) =
〈δI(ω)δI(ω + 4ω)〉, where δI(ω) ≡ I(ω) − 〈I(ω)〉. This function is re-
lated to the Fourier transform of the time dependence of the transmitted
pulse [31]. The autocorrelation function of the scattered field CE(4ω) =
〈E(ω)E∗(ω+4ω)〉 is similarly, and even more directly, related to the trans-
mitted pulse shape. These functions can also be obtained from the inter-
ferometric data, as we shall see below.

Now we examine the phases and amplitudes contained in the data. The
complex Fourier transform of the interferogram of a speckle, Eq. 11, gives
C(ω) ∼ E∗

in(ω)Escat(ω). If this is divided by the Fourier transform of a ref-
erence interferogram measured without the sample, C0(ω), the field trans-
mission coefficient tab(ω) is obtained:
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C(ω)
C0(ω)

=
Escat(ω)
Ein(ω)

≡ tab(ω) (14)

The subscripts indicate that the field transmission is measured for incident
mode a and transmitted mode b. This means, for example, that the total
transmission for incident mode a is obtained by summing over all trans-
mitted speckles, Ta =

∑
b |tab|2. The field transmission contains real and

imaginary parts. The modulus of tab(ω) is plotted in Fig. 15 for a particular
speckle of the 15 µm A-GaP sample. Also the phase φab contains fluctua-
tions. These are superposed on a linear increase with frequency, given by
ωt, where t is the average traversal time of the waves. In Fig. 15, we there-
fore plotted the frequency derivative of the phase, dφab/dω. This quantity
can be interpreted as the travel time of a wave of frequency ω through
the sample. Indeed, in a homogeneous sample this phase derivative is equal
to the inverse of the group velocity [32]. In a scattering sample, however,
there are large fluctuations around a well-defined average, which is propor-
tional to the inverse of the energy velocity. The average value of the phase
derivative in this sample is equal to 2.32 ps and corresponds to the average
traversal time tav = (L + z1 + z2)2/6D. For this sample we find D = 23
m2/s, which agrees well with the value found from the decay of the tail of
the transmitted intensity. It is also a clear from Fig. 15 that the amplitude
and phase are strongly correlated: large positive and negative values of the
phase derivative coincide with the zeroes or near-zeroes of the amplitude.
This indicates that, as one crosses over from one speckle to a neighboring
speckle in the frequency domain, a phase jump is encountered.

The complex field transmission coefficient tab(ω) in Fig. 15 can be au-
tocorrelated and averaged together with data from the other speckles. The
result is proportional to the field autocorrelation function CE(4ω). Simi-
larly, the intensity autocorrelation function CI(4ω) can be found by auto-
correlating |tab(ω)|2. The results are shown in Fig. 16. The data should be
compared with the theoretical results [33]

CE(4ω) = Re(
q(L + z1 + z2)

sinh(q(L + z1 + z2))
), (15)

CI(4ω) =
∣∣∣∣ q(L + z1 + z2)
sinh(q(L + z1 + z2))

∣∣∣∣
2

, (16)

where q =
√

24ω/D. The agreement is excellent at low frequency shifts,
but deviations appear at larger shifts due to the limited number of speckles.
From the fits, the value D = 21 m2/s is found, as before. It should be noted
that Eq. 16 is only the highest order term in the intensity correlations. Other
terms contain the long range fluctuations and the universal conductance
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Figure 15. Modulus (dashed line, left scale) and phase derivative (full line, right scale)
of tab measured on a sample of A-GaP of L = 15 µm.
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Figure 16. Field (squares) and intensity (circles) correlation functions measured on the
sample of Fig. 15. The lines are Eqs. 15 and 16 with D = 21 m2/s.
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fluctuations which have an amplitude of 1/g and 1/g2, respectively, where
g is the dimensionless conductance. In this experiment g is estimated to be
on the order of 100, so that the extra terms are expected to be small.

Using the ensemble of data from all measured speckles over the whole
frequency content of the laser pulse the distributions of the amplitude and
phase can be studied. The complex field measured in a speckle is the sum
of random contributions from partial waves traversing every possible path
through the sample. This sum therefore represents a random walk in the
complex plane. By the central limit theorem the real (r) and imaginary (i)
parts of the measured field, and thus of tab, must then have a Gaussian
distribution:

P (r, i) =
1

2πσ2
exp(−r2 + i2

2σ2
) (17)

The measured distributions are shown in Fig. 17. To remove the instru-
mental response the real and imaginary parts of tab have been normalized
by the ensemble average of the modulus |tab| = (r2 + i2)1/2. The Gaussian
distribution provides a very good fit. There was no correlation between r
and i: 〈ri〉 = 0. The parameter σ was found to be 0.793, close to the ex-
pected value of

√
2/π. The phase φab is seen to be evenly distributed over

2π, as expected.
In Fig. 18 the distribution of φ′ = dφab/dω is shown. The data for

different sample thicknesses collapse onto a single distribution after nor-
malizing φ′ to its ensemble average 〈φ′〉. Recently, this distribution was
also measured for transmission of microwaves through random waveguides
[34]. The microwave data were found to be described well by the theoretical
distribution

P (φ′) =
1
2

Q

(Q + (φ′/ 〈φ′〉 − 1)2)3/2
. (18)

Here Q is a function of L/La which equals 0.4 in the limit La → ∞ and is
smaller otherwise [35]. This distribution is seen to describe the experimental
distribution very well for all sample thicknesses. From the fit we find Q =
0.43 ± 0.05, as expected for nonabsorbing samples.

We have shown that ultrashort pulse interferometry greatly increases
the amount of dynamical information that one can obtain on the prop-
agation of light in strongly scattering samples. Deviations from diffusion
theory are expected to show up in the measured quantities as the localiza-
tion threshold is approached. In the present samples of anodically etched
GaP all the data can still be described completely with diffusion theory.
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Figure 17. Probability distribution function of the real (triangles) and imaginary
(squares) parts of the field transmission coefficient tab and of its phase modulo 2π (cir-
cles). The full line is a Gaussian fit.

5. Conclusion

In conclusion, disordered semiconductor samples based on powders of Si,
Ge, GaAs, and macroporous GaP display many effects that are associated
with strongly multiple scattering of light. A combination of careful static
and dynamic measurements on a range of sample thicknesses is necessary to
fully characterize the optical transport. All the semiconductor samples we
studied have kls values that are in the range of strong localization effects,
assuming that the precise location of the transition is determined by kls of
order 1. The exact position of the localization transition and the behavior
at the transition is still pendent and may depend on other sample charac-
teristics such as powder size distribution and topology, residual absorption,
boundary reflection associated with the effective refractive index of the
sample and finite sample size effects. The scaling behavior of dynamical
quantities associated with the diffusion constant and the energy velocity in
systems near localization may differ considerably from the static properties
such as the kls product. For example, recent theoretical work indicated that
the mean free path near localization is position dependent and gradually
changes from the smallest value in the bulk to larger values near the edges
of the sample [27]. Further study on e.g. monodisperse powders and other
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Figure 18. Probability distribution of the phase derivative for sample thickness L =5
(triangles), 10 (circles), and 18 (squares) µm. The full line is Eq. 18 with Q = 0.4.

topologically well-defined samples is necessary to uncover the localization
behavior in these strongly scattering systems.
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