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Abstract

We study a simple model for a wire which consists of alternate magnetic and non-magnetic segments. We are interested
in the state of relative orientations of the disc-like magnetic segments. In particular, we investigated the ground state and
the "nite temperature phase diagram of the system, using ground state search, Mean "eld approximation and Monte
Carlo simulations. We "nd a rich variety of orientational transitions. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

When a magnet is of mesoscopic size in one or
two dimensions, as in the case of ultra-thin "lms or
nanowires, magnetic anisotropy plays a more im-
portant role than in bulk samples. Of particular
current interest are the orientational transitions in
magnetic thin "lms and multi-layers [1]. In this
paper we will attempt to show that quasi-one-
dimensional structures can exhibit similar and
equally rich magnetic behaviour.

In short, we will examine a simple classical spin-
model for layered nanowires, which, due to ad-
vances in production techniques, can be manufac-
tured quite readily [2]. We will assume that these
wires may be represented as an in"nite stack of
alternating ferromagnetic and non-magnetic metal-
lic cylinders as shown in Fig. 1, and study the
relative magnetic orientation of the discs.

For an initial exploration of the subject we shall
assume that the exchange interaction in the disc is
much stronger than between the discs and simplify
the model further to that of a chain of classical
magnetic moments of "xed magnitude M. Namely,
we take the ith disc to have a magnetization of Ms

i
,

where M is identical for all discs and independent
of the direction. The direction is given by the classi-
cal unit vector s

i
. To simplify the formulae the

magnetic moment M will be absorbed into the
coe$cients J, K and u to be de"ned below. Name-
ly, we investigate the consequences of the following
simple classical spin Hamiltonian:

H"+
i

(h%9
i
#hA

i
#hD

i
), (1)

where

h%9
i
"!Js

i~1
) s

i
(2)

is the exchange interaction between two neighbour-
ing ferromagnetic discs mediated across the inter-
mediate non-magnetic layer. The physical origin of
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Fig. 1. Geometry of a layered nanowire. The radius of the wire is
denoted by R, the thickness of the ferromagnetic discs by d and
the separation by s.

the exchange interaction in such discs is a much
studied subject and is well understood in the con-
text of metallic multilayer systems [3]. But, as yet,
we are not striving for a realistic description and
therefore regard J as an adjustable parameter, inde-
pendent of the disc separation s.

hA
i
"!K[(sx

i
)2#(sy

i
)2], (3)

represents the shape anisotropy of the ferromagnetic
discs, and "nally hD is the dipolar interaction be-
tween the ferromagnetic discs of the wire, given by

hD
i
"u +

iEj
A

s
i
) s

j
Di!jD3

!3
sz
i
sz
j

Di!jD3B. (4)

Note that the shape anisotropy causes the mag-
netization in the discs, depending on the ratio of the
radius R and the thickness d, to be aligned, prefer-
entially, parallel or perpendicular to their axis. Our
principal interest will focus on the magnetic re-
orientation of such discs due to their mutual inter-
action via h%9

i
and hD

i
.

2. Ground state

Let us begin by investigating states for which all
spins point in the same direction in the x}z plane.
Namely, we take

s
i
3M$e

x
, $e

z
N (5)

for all i. With this restriction the energies of di!erent
con"gurations, can be readily calculated and their
relative stability can be determined analytically.

If the anisotropy favours the magnetic moments
of the individual discs to be aligned parallel to the
chain axis, the ground state will always be the state
where the moments are aligned &head to tail' along
the z-axis. The energy per site, then, is given by

EAx
"!J!K!4uf(3), (6)

where f(x) denotes the Riemann zeta function.
If the shape anisotropy favours the moments of

the individual discs pointing perpendicular to the
disc axis, the system exhibits a richer behaviour.
The axial con"guration, Ax, with the moments
parallel to the wire axis now has an energy of

EAx
"!J!4uf(3). (7)

However, it might be favourable for the system to be
in a state where the moments align perpendicular to
the wire axis and form up or down spin domains of
size ¸, where ¸"1 corresponds to anti-ferromag-
netic and ¸"R to ferromagnetic ordering. A
straightforward calculation of the energies yields

EL"!J A1!
2

¸B!K#up(¸), (8)

where

p(¸)"
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(9)

Note that this takes values of p(1)"!3
2
f(3) and

p(R)"2f(3) in the anti-ferromagnetic and fer-
romagnetic cases, respectively.

Comparing energies EAx and EL, given in Eqs. (7)
and (8), respectively, leads to the following bound-
aries between phases:

Between Ax and ¸:
K

J
"

2

¸

#

u
J

(2p(R)#p(¸)),

(10)

Between ¸
1

and ¸
2
:
u
J
"2

1/¸
1
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2
p(¸

2
)!p(¸

1
)
, (11)
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Fig. 3. Double logarithmic plot of inverse domain thickness 1/¸
as a function of the strength of the dipolar interaction u. This
suggests a behaviour 1/¸+A(u!u

0
)l where the numerically

obtained value of the o!set is u
0
/J+0.304 and l+1.

Fig. 2. Schematic ground state phase diagram for the full model
Hamiltonian (1) with JO0 under the constraints given in
Eq. (5).

Fig. 4. Ground state phase diagram for J"0.

where ¸
1

and ¸
2

refer to the phase with domains of
length ¸

1
and ¸

2
, respectively. Thus, the ground

state phase diagram is as shown in Fig. 2.
Interestingly, the analogue of the ferromagnetic,

R, phase "eld in Fig. 2 does not exist for non-zero
dipolar coupling u in two dimensions [4]. How-
ever, in 1d, the dipolar sums converge more rapidly
an it is rather straightforward to establish that this

phase "eld has a "nite width. As evidence in Fig. 3,
we show a log}log plot of 1/¸, where ¸ is
the ground state domain size, and the dipolar coup-
ling constant u. Clearly, ¸ reaches in"nity for
"nite u.

In this preliminary study of our model we shall
focus on the AF to Ax transition. Evidently, the
study of this problem is greatly simpli"ed if the
domains with ¸O1 are eliminated as possible
ground states. Clearly, this will be the case if the
exchange interaction J, across the non-magnetic
spacer, is taken to be zero. For the rest of the paper
we shall consider this simpli"ed case only. In this
limit the phase diagram in Fig. 2 reduces to that
shown in Fig. 4 where the boundary between the
phases Ax and ¸"1(AF) is given by

K"5
2
uf(3). (12)

Finally, to complete the discussion of the ground
state, we have solved the magneto-statics problem
for an individual disc, to determine the anisotropy
constant K as a function of aspect ratio R/d, and
in Fig. 5 we display K/u as a function of the
separation s between the discs. Clearly, with
the help of this diagram the ratio K/u can
be adjusted, by changing the disc separation s, to
be near the interesting critical value (K/u)

C
"

5
2
f(3).
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Fig. 5. Ratio of classical shape anisotropy K and dipolar coup-
ling u as a function of the disc separation s for cobalt discs. The
discs radius R is 40 nm and the aspect ratio R/d 4 and 8,
respectively.

3. Mean 5eld approximation

Given the above variety of ground states it is of
interest to investigate how they behave as the tem-
perature is raised. To "nd a mean "eld description
which preserves the important aspects of the prob-
lem, we approximate the full Hamiltonian by a sum
of independent single-site terms

HMs
i
N"+

i

h
i
(MsN)++

i

hMF
i

(s
i
), (13)

where we replace the s
j

for iOj by their expecta-
tion value m

j
"Ss

j
T. Thus, hMF(s

i
) takes the form
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where h
i
is the polar angle of s

i
. Note the quadratic

term K sin2 h
i

arises from the fact that a variable
s
i

is never independent from itself. (i.e., S(s
i
)2T

OSs
i
T2 even if Ss

i
) s

j
T"Ss

i
T )Ss

j
T for all iOj.)

In the case of vanishing exchange interaction
(J"0), which we will assume for the following
treatment, there will be no domain structure, so one
may assume m

j
"m to be site independent in the

ferromagnetic case. Then hMF reduces to

hMF
i

(s
i
)"K sin2 h

i
#2uf(3)[mxsx

i
#mysy

i
!2mzsz

i
].

(15)

In the case of antiferromagnetic ordering there
will be two sublattices: I and II with an opposite
orientation of the magnetic moments, i.e. m

I
"!m

II
.

This can be represented as m
j
"(!1)jm, thus lead-

ing to the following expression for hMF:

hMF
i

(s
i
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i
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2
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i
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!2mzsz

i
]. (16)

With these assumptions the mean "eld partition
function ZMF takes the form ZMF"<

i
z
i
, where

z
i
"P

2p

0

d/P
p

0

sin h dh exp(!bhMF
i

(h, /)) (17)

and

hMF(h, /)"K sin2 h

#(2uf(3)mx#Hx) sin h cos /

#(2uf(3)my#Hy) sin h sin /

#(!4uf(3)mz#Hz) cos h.

Evidently, the theory is self-consistent if mx is given
by

mx"
1

z
0
P

2p

0

d/P
p

0

sin2 h cos / dh exp(!bhMF) (18)

and corresponding relations apply to my and mz.
To quantify the orientational distribution of the

spins it is worthwhile to consider in addition to the
averages mx, my and mz the expectation values

S(sx)2T"
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Fig. 6. Mean "eld results for K"u for J"0. Fig. 8. Mean "eld results for K"2u for J"0.

Fig. 7. Mean "eld results for K"5u for J"0.

S(sz)2T"
1
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0
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2p
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0

sin h cos2 h dh exp(!bh
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). (21)

A very similar mean "eld theory was found to be
useful in connection with layered magnetic struc-
tures by Jensen and Bennemann [5], Taylor and
GyoK r!y [6] and more recently by Hucht and
Usadel [7].

In general evaluating these expressions for
mz, S(sz)2T and S(sx)2T"S(sy)2T at di!erent ratios
of the dipolar interaction u and the anisotropy
K reveal the expected set of phase transitions: in
Fig. 6 we describe an axial ferromagnetic state
becoming a paramagnet and Fig. 7 corresponds to
the demise of the (transverse) antiferromagnetic
state, where z

i
is di!erent on the two sublattices,

namely z
I
and z

II
.

However, a much richer structure is observed
with parameters close to the ground state phase
boundary in Fig. 4. As shown in Fig. 8 below the
mean "eld transition temperature ¹MF

#
, the prefer-

red spin #uctuations change from the z-direction to
the x}y plane.

Note that contrary to the above mean "eld re-
sults the exact solution of our model corresponds
to no magnetic long-range order [8]. All the same,

as the well-known example of the one-dimensional
Ising model [9], recalled in the appendix, illus-
trates, the ¹MF

#
does have a physical signi"cance

even in one-dimensional problems, where long-
range order is forbidden by the Mermin}Wagner
theorem [10]. It is that near ¹MF

#
the thermal #uc-

tuations of the magnetization slow down dramati-
cally. Thus, while disregarding our results for the
average magnetization mx, my and mz we can take
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Fig. 10. Results from Monte Carlo simulation at K"10u.

Fig. 9. Results from Monte Carlo simulation at K"u.

Fig. 11. Results from Monte Carlo simulation at K"3u.

the predictions for S(sx)2T, S(sy)2T and S(sz)2T
seriously.

To lend support to the above argument, we have
performed a number of Monte Carlo calculations
for our model with J"0. We performed simula-
tions of 1000 spins using Glauber dynamics with
periodic boundary conditions. A typical simulation
consists of 1000}10 000 Monte Carlo steps per spin.
During the simulations we measured S(sx)2T,
S(sy)2T, and S(sz)2T. Figs. 9}11 show these ensemble

averages as a function of the temperature for
K"u, 3u, and 10u, respectively. Evidently, the
simulations tell the same story as the mean "eld
theory. Consequently, we do not expect the real
system to exhibit spontaneous magnetization, but
the spatial distribution of the magnetic #uctuation
should show the general reorientational features we
have found.

4. Conclusion

In summary, we have found a rich ground state
structure for layered nanowires, that lies in the
experimentally accessible region (R+30}40 nm,
s, d+5}10 nm for Cu/Co layers). Furthermore, we
predict a temperature-dependent reorientation of
the magnetic #uctuations that should manifest
themself in the measurements of the axial and
transverse susceptibilities of the wire.

Appendix

To underline the relevance of a mean "eld ap-
proach even in the case of an one-dimensional
system we recall the results for the one-dimensional
Ising model [9]

H"!J +
i

s
i
s
i`1

.

142 M. Eisenbach et al. / Journal of Magnetism and Magnetic Materials 208 (2000) 137}143



Fig. 12. Exact and mean "eld results for the one-dimensional Ising chain. (a) The exact (full line) and mean "eld (dotted line)
susceptibilities. Note that even as the exact result exhibits no phase transition at finite temperature, a qualitative change in the
behaviour, reminescent of the mean "eld phase transition, can be seen near ¹MF

C
. (b) The exact speci"c heat also shows a peak at

a temperature near the mean "eld critical temperature.

The exact solutions for the susceptibility and
speci"c heat are

s"b
1#tanh bJ

1!tanh bJ

and

C
H
"(bJ sech bJ)2.

In Fig. 12 we plot these and compare them to the
corresponding mean "eld results. Evidently, the
non-existence of a phase transition does not ex-
clude a meaningful description of the change in the
qualitative behaviour near the mean "eld critical
temperature ¹MF

C
.
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