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Phase diagram of charge-stabilized colloidal suspensions:
van der Waals instability without attractive forces

Renévan Roij and Marjolein Dijkstra
H. H. Wills Physics Laboratory, Royal Fort, University of Bristol, Bristol BS8 1TL, United Kingdom

Jean-Pierre Hansen
Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom

~Received 6 October 1998!

A careful analysis of the classic Derjaguin-Landau-Verwey-Overbeek theory of the interaction energy in a
suspension of charge-stabilized, spherical colloidal particles~polyions! in the presence of salt shows that in
addition to the usual screened-Coulomb effective pair interaction between polyions, there exists a structure-
independent but state-dependent contribution~the ‘‘volume’’ term!, which has almost invariably been over-
looked. A variational procedure based on the Gibbs-Bogoliubov inequality is used to calculate the contribution
of the polyion pair interactions to the free energy of the suspension. The latter is then combined with the
‘‘volume’’ term to derive the phase diagram of the colloidal suspension. Although the effective pair interaction
between polyions is purely repulsive, it is shown that the volume term may drive a van der Waals–like
instability in highly deionized suspensions~salt concentrations less than 20mM ) for experimentally relevant
choices of the polyion radius and charge. If the latter are sufficiently large, the fluid-fluid phase separation is
preempted by the fluid-solid freezing transition which broadens considerably. Reentrant behavior is predicted
on the solid side of the phase diagram. The predicted phase diagrams may provide an explanation of some
surprising recent experimental results. They also show that the observation of a fluid-fluid phase separation in
a charge-stabilized colloidal dispersion does not necessarily imply the existence of an attractive component in
the effective pair interaction between highly charged polyions.@S1063-651X~99!04002-7#

PACS number~s!: 82.70.Dd, 64.10.1h, 83.20.Di, 64.60.Cn
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I. INTRODUCTION

Phase separation of an initially homogeneous fluid i
dense~or concentrated! and dilute fluid phases is a very com
mon phenomenon in molecular systems. In one-compon
systems, involving a single molecular species, the separa
into liquid and gas phases observed below the critical te
peratureTc is attributed, since van der Waals, to interm
lecular attractions which balance the loss of configuratio
entropy upon condensation. In mixtures of two or more co
ponents, the mechanism for demixing into phases of differ
concentrations of the various species is less clear-cut. In
case of molecules of comparable size, the role of attrac
interactions is again believed to be preeminent@1#, since
purely repulsive interactions do not appear to lead to ph
separation, as long as they are additive. The situation is m
complicated for colloidal suspensions, which are essenti
multicomponent in nature and involve large siz
asymmetries between the individual species. Such sus
sions consist of mesoscopic colloidal particles, a molecu
solvent, and most frequently at least one third compon
such as polymer coils or microscopic ions, which introdu
an intermediate length scale~the radius of gyrationRg for
polymers or the Debye screening lengthlD for ions!. This
third component plays a crucial role, since it induceseffec-
tive interactions between the colloidal particles, which are
largely entropic origin. Effective interactions result qui
naturally from a formal contraction of the initial multicom
ponent system into an effective one-component descrip
involving only the colloidal particles. An important differ
ence with simple molecular systems is that the control
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rameter is not the temperature but the concentration of
third component. It is worth noting that the solvent is n
directly involved in the phase separation mechanism,
plays the role of a passive ‘‘spectator’’ phase.

In the case of sterically stabilized colloidal particles, fr
polymer coils induce a depletion interaction between collo
which is predominantly attractive and of a range of the or
of Rg beyond the colloid particle diameter@2,3#. There is
ample experimental and theoretical evidence@4–6# that the
depletion attraction can induce a liquid-gas separation of
suspension into a high colloid concentration~‘‘liquid’’ !
phase and a dilute~‘‘gas’’ ! phase, at least if the polyme
coils are assumed to be ideal~nonadditive!. This gas-liquid
transition is thus reminiscent of the van der Waals ph
transition in ordinary molecular fluids. Recent results in
cate, however, that additivity of the pair interactions~such as
in an asymmetric binary hard-sphere mixture! tends to drive
the gas-liquid transition metastable with respect to freez
@7#.

In the present paper, we focus on charge-stabilized co
dal suspensions, made up of highly charged, spherical p
ions and microscopic coions and counterions dissolved
water. The microions form electric double layers around
charged surface of the polyions, and it is generally accep
that, at least in the bulk, the effective interactions betwe
electric double layers surrounding different polyions a
purely repulsive. Direct measurements@8#, as well as first-
principles computer simulations@9#, point to the quantitative
validity of the Derjaguin-Landau-Verwey-Overbeek~DLVO!
@10# potential between charge-stabilized colloidal particl
provided an adequate choice is made for the effective cha
2010 ©1999 The American Physical Society
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PRE 59 2011PHASE DIAGRAM OF CHARGE-STABILIZED . . .
of the polyions, which is generally significantly less than t
structural charge related to the number of ionizable surf
radicals. We shall not consider here the case of confi
colloids, where the presence of charged walls has b
shown to induce an attractive component to the effec
interaction between like-charged polyions@11–13#.

According to the classical van der Waals picture, the
sence of attractive interactions between polyions in b
seems to preclude any phase separation into dilute and
centrated~fluid or solid! colloid phases. This picture seem
however, to be contradicted by some experimental res
The relevant experiments are invariably performed at
tremely low salt concentration, of the order of a fewmM ,
such that the influence of attractive van der Waals–Lon
dispersion forces may be safely ruled out. In one experim
the measured lattice spacings in crystalline phases of s
quasideionized suspensions were found to be smaller
expected on the basis of a space-filling structure of
known colloid concentration@14#. A natural explanation of
this observation would be that the dense crystalline phas
not pure, but coexists with a much more dilute gas pha
More evidence of phase coexistence has been provide
the observation of extremely dilute voids~a gas phase! in the
bulk of an apparently homogeneous deionized suspensio~a
liquid @15# or a solid@12#!. In fact, even a fully equilibrated
gas-liquid coexistence has been reported@16#, although this
observation aroused some controversy@17#.

There thus appears to be a contradiction between the
servation of the coexistence of dilute and concentra
phases and the generally accepted view of a purely repu
effective interaction between like-charged polyions. In t
paper we carefully reexamine the traditional DLVO theo
We recover an effective screened-Coulomb~or Yukawa! pair
interaction, as expected, but in addition the total effect
potential energy for any given configuration of the polyio
turns out to contain a structure-independent but st
dependent volume term, the existence of which had alre
been pointed out by Silbert and Grimson@18#. It will be
shown that this volume term contributes significantly to t
free energy of the polyions, and varies sufficiently rapidly
very low salt concentrations to have a very marked effect
the phase diagram. Under experimentally achievable co
tions it leads to complex fluid-fluid-solid phase diagram
when the colloid and salt concentrations are varied. In p
ticular, a van der Waals–like phase separation between d
and concentrated fluid phases is predicted, despite the pu
repulsive nature of the effective pair potential. We belie
that the calculation to be presented provides a plausible
planation of experimental observations. The present w
supplements and corrects a preliminary version publis
elsewhere@19#.

II. THE MODEL

The colloidal dispersion under consideration is assum
to contain~i! Np identical spherical polyions of radiusR and
charge2Ze ~uniformly distributed over the particle surface!;
~ii ! Nc5ZNp identical counterions of charge1e; and ~iii !
Ns fully dissociated pairs of monovalent salt ions of char
6e. The solvent~water! is assumed to be a continuum
dielectric constante ~‘‘primitive model’’ !, and the total vol-
e
d

en
e

-
k
n-

s.
-

n
t,
ch
an
e

is
e.
by

b-
d
ve
s
.

e

e-
dy

t
n
i-

r-
te

ely
e
x-
rk
d

d

ume is denoted byV. All microions are assumed to be poin
particles, which cannot penetrate the interior of the spher
polyions. The total numbers of microscopic cations and
ions in the suspension areN15Nc1Ns and N25Ns . The
corresponding mean~macroscopic! number density will be
denoted byn65N6 /V, the total microion density byn
5n11n2 , and the polyion density bynp5Np /V.

The above model is characterized by the total Ham
tonian

H5Hp1Hm1Hmp , ~1!

whereHp andHm are the Hamiltonians associated with th
polyions and microions, andHmp is the microion-polyion
interaction term. For later reference we write the polyi
Hamiltonian explicitly as a sum of kinetic and potential e
ergy,

Hp5Kp1Vp~$Ri j %!5Kp1(
i , j

Np Fv0~Ri j !1
Z2e2

eRi j
G , ~2!

whereKp is the kinetic energy andVp the pairwise potential
energy consisting of a hard-sphere contributionv0(Ri j ) and
a Coulombic contribution. HereRi j 5uRi2Rj u denotes the
separation between polyioni and j, Ri , j being their position
vectors, respectively.

Several remarks are in order concerning the model Ham
tonian ~1!. ~a! It contains exclusively short-range exclude
volume and long-range Coulombic interactions. Long-ran
dispersion interactions are omitted. This turns out to be j
tified, since the low salt concentration regime to be cons
ered later gives rise to weakly screened Coulomb inter
tions that completely mask the dispersion interactions. T
strong screening~high salt concentration! regime was explic-
itly considered in Ref.@20#, where it was shown that the va
der Waals–London-Hamaker attraction between the polyi
may indeed lead to a van der Waals phase separation~b!
Stability of the system against classical Coulomb collap
requires, strictly speaking, all ions to have finite hard cor
However, the mean-field density-functional formalis
adopted later on allows microions to be point ions witho
causing any divergences.~c! The total Hamiltonian~1! ad-
mits a proper thermodynamic limit, despite the infinite ran
of the Coulomb interactions, because the colloidal system
globally charge-neutral. This is no longer true when manip
lating each of the three terms separately because the po
and microion components are not separately charge-neu
This difficulty may be overcome by adding compensati
uniform backgrounds of opposite charge density, as is d
in the theory of liquid metals, considered as two-compon
ion-electron fluids@21#. An alternative, but equivalent, pro
cedure which will be adopted implicitly throughout this p
per is to replace the bare Coulomb interactione2/er by a
screened Coulomb interaction

e2

er
→

e2

er
e2lr ~3!

and going to the limitl→0 at the end of the calculation
after the thermodynamic limit has been taken.
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2012 PRE 59van ROIJ, DIJKSTRA, AND HANSEN
At fixed inverse temperatureb51/kBT, the Helmholtz
free energyF of the colloidal suspension may be formal
expressed as

exp@2bF#5TrpTrmexp@2bH#[Trpexp@2bHp
eff#, ~4!

where the traces Trp and Trm denote canonical phase-spa
integrals over the polyion and microion degrees of freedo
The effective polyion HamiltonianHp

eff is defined as

Hp
eff5Hp1F8[Kp1Vp

eff~$Ri%!, ~5!

whereF8 is given by

exp@2bF8#5Trmexp@2b~Hm1Hmp!#. ~6!

Clearly,F8 may be interpreted as the Helmholtz free ene
of an inhomogeneousfluid of microions in theexternalfield
of polyions at fixed positionsRi . Consequently, it depend
parametrically on the polyion positions, and the potential
ergy of the effective one-component system of polyions,
ready introduced in Eq.~5!, is given by

Vp
eff~$Ri%!5Vp~$Ri%!1F8~$Ri%!. ~7!

The above reduction of the initial polyion-microion syste
to an effective one-component polyion system shows that
latter interact via an effective potential energy that cons
of a contributionVp , given by Eq.~2! as a sum of pair
interactions, and the microion-induced contributionF8,
which is state-dependent and not,a priori, pairwise additive.

III. DENSITY-FUNCTIONAL THEORY

A. Formulation

The inhomogeneous distribution of microscopic catio
and anions in the external field of the polyions is charac
ized by equilibrium density profilesr1(r ) andr2(r ), which
are the fundamental quantities in density-functional the
~DFT! @22#. This theoretical framework is based on the e
istence of a free-energy functionalF @r1

(1) ,r2
(1)# of varia-

tional density profilesr6
(1)(r ). The equilibrium profiles

r6(r ) must satisfy the Euler-Lagrange or stationarity con
tion

S dF @r1
~1! ,r2

~1!#

dr6
~1!~r !

D U
r

6
~1!~r !5r6~r !

5m6 , ~8!

where, within the canonical formulation, the Lagrange m
tipliers m6 must be chosen such as to satisfy the normal
tion conditions

E
V
drr6~r !5N6 . ~9!

The corresponding equilibrium value of the Helmholtz fr
energyF8 is then given by

F85F @r1 ,r2#. ~10!

It is customary to split the functionalF into ideal gas, exter-
nal field, Coulomb interaction, and correlation terms@22#,
.

y

-
l-

e
ts

s
r-

y
-

-

-
-

F5Fid1Fext1FCoul1Fcorr. ~11!

The ideal gas contributions can be written down explicitly

Fid5kBT (
a56

E drra
~1!~r !@ ln„ra

~1!~r !La
3
…21#, ~12!

whereLa is the thermal wavelength of microion speciesa
56. The external field contribution may be cast into t
form

Fext5 (
a56

E drra
~1!~r !Ua~r !, ~13!

where the external potentialsUa(r ), due to the polyions, are
multicentered sums

U6~r !5(
j 51

Np

u6~r2Rj ! ~14!

over the polyion-microion pair interactionsu6(r ), given by

u6~r !55 7
Ze2

e

1

r
, r .R

7
Ze2

e

17g6

R
, r ,R.

~15!

These polyion-microion pair interactions are thus pur
Coulombic beyond the polyion core radiusR, and chosen to
be constant inside the core region. Within anexactdensity
functionalF, the most relevant choice for the constantsg6

would be the hard-core limitg6→`, ensuring that the mi-
croions are excluded from the polyion cores. Howev
within the framework of theapproximatefunctional adopted
below, which allows an analytic solution of the stationar
conditions~8!, the excluded volume condition will be satis
fied for finite values ofg1 andg2 to be determined later on
The choice ofu6(r ) for r ,R is reminiscent of ion-electron
‘‘pseudopotentials’’ widely used in the theory of metals@21#.
A polyion-microion pseudopotential has also been used
first-principles simulation of charge-stabilized colloids@9#,
but for different technical reasons.

The mean-field contribution to the microion-microio
Coulomb interaction term in the free-energy functional is
the familiar Hartree form

FCoul5
e2

2eE drE dr 8@r1
~1!~r !2r2

~1!~r !#

3
1

ur2r 8u
@r1

~1!~r 8!2r2
~1!~r 8!#. ~16!

To conclude the specification of the functionalF, the follow-
ing two approximations are made:~a! The correlation contri-
bution to the interaction term is neglected, i.e.,

Fcorr50. ~17!

This mean-field approximation corresponds to a multic
tered Poisson-Boltzmann theory for the density profi
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r6(r ) which can only be handled numerically.~b! In order
to obtain an analytically tractable theory, the ideal gas c
tributions ~12! are expanded to quadratic order in the loc
inhomogeneities,

Dr6
~1!~r !5r6

~1!~r !2n6 . ~18!

In view of the constraints~9!, this leads to the following
approximate expression for the ideal gas contribution to
functional:

Fid. (
a56

S F id~V,T,na!1
kBT

2na
E dr „Dra

~1!~r !…2D ,

~19!

where F id(V,T,na)5VkBTna@ ln(naLa
3)21# is the homoge-

neous ideal gas contribution from ionic speciesa56.

B. Diagonalization

The free-energy functional to be used in this paper is n
defined by Eqs.~11!, ~13!, ~16!, ~17!, and ~19!; it is qua-
dratic in the density profilesr6

(1)(r ). This suggests diagona
izing the functionalF by changing from the variational field
r6

(1)(r ) to their linear combinations

r~1!~r !5r1
~1!~r !2r2

~1!~r !,
~20!

s~1!~r !5
n2r1

~1!~r !1n1r2
~1!~r !

n11n2
.

Clearly,r (1)(r ) is the local microion charge density in uni
of e. In the limit of high salt concentration~such thatn1

.n2),s (1)(r ) reduces to one-half of the local total microio
number density. At lower salt concentrations, however,
physical meaning ofs (1)(r ) is less obvious; it vanishes i
ns50. The quadratic functionalF is diagonal in the new
fields defined in Eq.~20!, and can be written as

F @r~1!,s~1!#5F id~V,T,n1!1F id~V,T,n2!

1Fel@r~1!#1Fhc@s~1!#, ~21!

where the ‘‘electrostatic’’ functional is of the form

Fel@r~1!#5
kBT

2~n11n2!
E dr @r~1!~r !2 r̄ #2

1E drr~1!~r !U~r !

1
e2

2eE drE dr 8
r~1!~r !r~1!~r 8!

ur2r 8u
, ~22!

while the ‘‘hard-core’’ functional reads

Fhc@s~1!#5
kBT

2 S 1

n1
1

1

n2
D E dr @s~1!~r !2s̄#2

1E drs~1!~r !W~r !. ~23!
-
l

e

w

e

In Eqs. ~22! and ~23!, r̄ and s̄ are the macroscopic spatia
averages of the variational fields

r̄5n12n25Znp , ~24!

s̄5
2n1n2

n11n2
5

2n1n2

n
, ~25!

while U(r ) andW(r ) are the following linear combination
of the external fields~14!:

U~r !5
n1U1~r !2n2U2~r !

n
[(

j 51

Np

u~r2Rj !,

~26!

W~r !5U1~r !1U2~r ![(
j 51

Np

w~r2Rj !.

This multicentered character ofU(r ) and W(r ) follows di-
rectly from Eq. ~14!, and the functional form ofu(r ) and
w(r ) from the appropriate linear combinations of Eq.~15!,
which yields with Eq.~26!

u~r !55 2
Ze2

e

1

r
, r .R

2
Ze2

e

12g

R
, r ,R,

~27!

w~r !5H 0, r .R

w0 , r ,R,
~28!

where the yet undetermined parametersg andw0 are given
by g5(n1g12n2g2)/n andw05Ze2(g11g2)/eR. Note
that both external fieldsU(r ) andW(r ) are constant within
the cores of the colloidal particles.U(r ) is Coulombic out-
side the cores, whileW(r ) vanishes there. Thanks to th
diagonalization of the quadratic free-energy functionalF,
the Euler-Lagrange equations~8! reduce to a set of two un
coupled equations forr(r ) ands(r ), or equivalently for the
local deviations

Dr~r !5r~r !2 r̄, ~29!

Ds~r !5s~r !2s̄. ~30!

We study these two uncoupled equations separately belo

C. Minimization of Fhc

The ‘‘hard-core’’ part of the functional~21! satisfies the
stationarity condition

S dFhc@s~1!#

ds~1!~r !
D U

s~1!~r !5s~r !

5ms , ~31!

which is easily solved with the result

Ds~r !5S n1n2

nkBT D @ms2W~r !#. ~32!
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The Lagrange multiplierms follows from the normalization
condition and reads

ms5hw0 , ~33!

where we defined the colloid packing fraction

h5
4pR3

3
np . ~34!

The constantw0 will now be adjusted to satisfy the hard-co
condition of zero density within the core and constant o
side. It follows from Eqs.~25! and ~32! that

s~r !5s̄F11
1

2kBTS hw02(
j 51

Np

w~r2Rj !D G , ~35!

which reduces to a multicentered sum of Heaviside s
functionsQ(x),

s~r !5
s̄

12h (
j 51

Np

Q~ ur2Rj u2R!, ~36!

provided we set

bw05
2

12h
. ~37!

The resulting hard-core contributionFhc8 to the colloid free
energy follows from evaluation ofFhc@s# and reads

Fhc8 5kBT
Vn1n2

n S 22
1

2
bw0~12h! Dhw0

5kBT
Vhs̄

12h
. ~38!

Note that the equilibrium profile given in Eq.~36! does
not, strictly speaking, satisfy the hard-core condition, in
sense that the spherically symmetric profile centered ab
polyion i gives rise to a nonvanishing density within the co
of another polyionj Þ i . This problem is inherently con
nected to the expansion of the functional to quadratic or
in the profiles: the resulting stationarity equations give a
ear relation between the profile and the multicentered ex
nal field, which is unphysical for hard-core interactions. T
specific choice forw0 given in Eq.~37! is, in that sense, the
best one within a quadratic functional or a lineariz
Poisson-Boltzmann theory. A similar problem will be e
countered in the minimization ofFel .

D. Minimization of Fel

The Euler-Lagrange equation associated with the elec
static part~22! of the functionalF reduces to
-

p

e
ut

r
-
r-

o-

mr5S dFel@r~1!#

dr~1!~r !
D U

r~1!~r !5r~r !

5
kBT

n
Dr~r !1Ū1DU~r !1

e2

e E dr 8
r̄1Dr~r 8!

ur2r 8u
,

~39!

where Ū denotes the volume average ofU(r )5Ū
1DU(r ), and wheremr is a Lagrange multiplier. Care mus
be exercised in handling Eq.~39! in the thermodynamic
limit, since bothŪ and the Coulomb integral involve diver
gent volume integrals of the Coulomb potential. The tw
divergences cancel, but a proper evaluation of the remain
finite constant is most easily achieved by the use of
screened Coulomb potential~3! and the subsequent limiting
procedurel→0. Substitution of the screened for the ba
Coulomb potential transforms Eq.~39! into

mr5
kBT

n
Dr~r !1U ~l!~r !

1
e2

e E dr 8
exp~2lur2r 8u!

ur2r 8u
@ r̄1Dr~r 8!#, ~40!

where

U ~l!~r !5(
j 51

Np

u~l!~r2Rj ! ~41!

is a multicentered sum over the modified polyion-microi
pseudopotential

u~l!~r !55 2
Ze2

e

exp~2lr !

r
, r .R

2
Ze2

e

exp~2lR!

R
~12g!, r ,R.

~42!

We now introduce the Fourier transform

f k5E
V
dr f ~r !exp~ ik•r ! ~43!

of an arbitrary functionf (r ) defined in a finite volume with
periodic boundary conditions. Fourier transforming Eq.~40!
yields

bmr~2p!3d~k!5
1

n
Drk1bUk

~l!

1
4p l

~k21l2!
@~2p!3r̄d~k!1Drk#,

~44!

wherel 5be2/e is the Bjerrum length, and with the Diracd

d~k!5
1

~2p!3 EV
dr exp~ ik•r !. ~45!
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Now mr is determined by the normalization~9!, which in-
volves thek50 Fourier component

Drk5050. ~46!

If we use that (2p)3d(k50)5V, Eq. ~46! implies

bmr5
1

V
bUk50

~l! 1
4p l r̄

l2
. ~47!

The explicit solution of the stationarity condition~44! now
reads

Drk52n
k21l2

k21kl
2

bUk
~l!1

~2p!3d~k!

V
n

l2

kl
2

bUk50
~l! ,

~48!

where we defined the Debye screening parameterk5lD
21

given by

k254p ln ~49!

and its modified counterpartkl
25k21l2. Clearly, kl re-

duces tok when the limitl→0 is taken at the end of th
calculation. It is essential to substitute the solution~48! into
the Coulombic part of the functional to calculate the con
bution to the equilibrium free energy before taking thel
→0 limit ~cf. the following section and Appendix A!. How-
ever, the form of the charge-density profile in that limit c
be directly obtained by Fourier transforming the soluti
~48! at l50. This can be seen if one realizes that the mu
centered character ofU (l)(r ), given in Eq.~41!, leads to

Uk
~l!5uk

~l!(
j 51

Np

exp~ ik•Rj !, ~50!

with uk
(l) the Fourier transform ofu(l)(r ) defined in Eq.

~42!,

buk
~l!524p lZ

exp~2lR!

k21l2

3Fg cos~kR!1~12g!
sin~kR!

kR
1~lR!

sin~kR!

kR

1~lR!2~12g!
sin~kR!2kRcos~kR!

~kR!3 G . ~51!

It is thus easily checked that for any wave vectork,

lim
l→0

~k21l2!buk
~l!524p lZFg cos~kR!1~12g!

sin~kR!

kR G .
~52!

The inverse Fourier transformation of Eq.~48! leads, upon
inserting Eqs.~50! and ~52! in the limit l→0, to the equi-
librium profile r(r )5 r̄1Dr(r ) of the form

r~r !5(
j 51

Np

r0~r2Rj !, ~53!
-

-

with the spherically symmetric ‘‘orbitals’’

r0~r !5
Z

~2p!3E dk exp~2 ik•r !
k2

k21k2

3Fg cos~kR!1~12g!
sin~kR!

kR G

55
Z.k2

4p

exp~2kr !

r
, r .R

Z,k2

4p

sinh~kr !

r
, r ,R.

~54!

The effective chargesZ. andZ, are defined by

Z.5ZS g cosh~kR!1~12g!
sinh~kR!

kR D ,

~55!

Z,5ZS exp~2kR!

kR D @12g~kR11!#.

For anyg,k, andR, these profiles satisfy the normalizatio
*drr0(r )5Z. To complete the specification ofr0(r ), a
choice must be made for the yet undetermined parametg
in the pseudopotential~27!. According to Eqs.~54! and~55!
the polyion-microion excluded volume condition is satisfi
provided that

g5
1

11kR
. ~56!

Substitution of Eq.~56! into Eq. ~55! leads then directly to
the DLVO value of the effective polyion valence@10#,

Z.5ZS exp~kR!

11kR D . ~57!

The final expression for the microion-charge distribution,
double layer, around a polyion is thus

r0~r !5H 0, r ,R

Zk2

4p

exp~kR!

11kR

exp~2kr !

r
, r .R.

~58!

The coion and counterion density profilesr6(r ) are obtained
from Eq. ~20! by taking the appropriate linear combinatio
of s(r ) andr(r ).

We finally note that even the choice forg given in Eq.
~56! and the resulting profile of Eqs.~53! and ~58! do not
take a truly proper account of the hard-core conditions. T
reason is the same as encountered above for the equilib
profiles of the hard-core functionalFhc: the profile around
polyion i actually penetrates the core of any other polyi
j Þ i . This shortcoming is, as already discussed, due to
linear relation between the inhomogeneity of the profile a
the external potential of the polyions in the stationarity co
dition. Thus, although the key result summarized by E
~53! and ~58! is in itself not new ~see, e.g.,@9,10#!, the
present derivation shows that it is, in fact, the best char
density profile within the framework of linearized Poisso
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Boltzmann theory ~corresponding to the quadratic fre
energy functional!. Other choices of the pseudopotent
parameterg are possible. In particular,g50 leads back to
the effective polyion valenceZ.5Zsinh(kR)/kR advocated
by Sogami and Ise@23#. Clearly, however, this choice lead
to microion orbitals that penetrate ‘‘their own’’ polyio
cores, and is for that reason less favorable than the DL
choice of Eq.~56!.

IV. EFFECTIVE POLYION INTERACTION ENERGY

The microion-induced contributionF8 to the effective
polyion interaction energy is obtained by substituting the
lutions s(r ) andr(r ) of the Euler-Lagrange equations in
the free-energy functional. This has already been achie
for the hard-core part, resulting in Eq.~38!. As already
stressed earlier, the explicit calculation of the minimumFel8
of Fel is somewhat trickier, due to nontrivial cancellatio
between Coulomb divergences. This requires a detour via
auxiliary screened Coulomb potential~3!, followed by the
limit l→0 onceFel8 has been evaluated for any finite valu
of l. The different steps of this procedure are detailed
Appendix A.

Gathering results from Eqs.~7!, ~21!, ~38!, and~A11!, we
arrive at the final result for the potential energy in the effe
tive one-component Hamiltonian,

Vp
eff~$Ri%!5F01(

i , j

Np

veff~Ri j !, ~59!

where veff(R) is the usual DLVO effective pair potentia
between polyions,

veff~r !5H `, r ,2R

Z.
2 e2

e

exp~2kr !

r
, r .2R,

~60!

and whereF0 is a state-dependent term. This so-called v
ume term isstructure-independent, i.e., it does not depend o
the coordinates$Ri% of the polyions, and is given explicitly
by

F0~V,T,np ,ns!5F id~V,T,n1!1F id~V,T,n2!

2
Z2e2

2eR

NpkR

11kR

1kBT
hs̄

12h
V2

1

2

4pe2

ek2
~Znp!2V,

~61!

where s̄,h, andk are defined in Eqs.~25!, ~34!, and ~49!.
The last two terms on the right-hand side of Eq.~61! were
erroneously omitted in our earlier analysis@19#. The impor-
tance of these terms, and more particularly of the latter
well illustrated by the significant quantitative differences b
tween the phase diagrams to be discussed later and t
obtained in Ref.@19#.

The existence of a volume term in the total polyion inte
action energy is a consequence of the reduction~mapping! of
l

O

-

ed

he

n

-

-

is
-
ose

-

the initial multicomponent system~polyions and microions!
into an effective one-component system of ‘‘dressed’’ po
ions. The third term on the right-hand side of Eq.~61! may
be interpreted as the ‘‘self-energy’’ of theNp electric double
layers associated with the individual polyions, or as the
ergy due to the potential well in which the colloidal particl
reside because of the surrounding oppositely charged di
bution of microions. The fourth term accounts for addition
excluded volume for the microions due to the hard core
the polyions; it vanishes for polyion radiusR50 since then
h50. It also vanishes in the salt-free case, i.e., when o
polyions and counterions are left. The physical interpretat
of the last terms of Eq.~61! is less transparent, however.
resembles, but is in generalnot identical to, the negative o
the polyion-polyion mean-field contribution,Fp

mf , to the to-
tal Helmholtz free energy, which with Eq.~60! can be evalu-
ated as

Fp
mf5

V

2
np

2E
r .2R

dr veff~r !

5
1

2

4pe2

ek2
~Znp!2VS 112kR

~11kR!2D . ~62!

The difference betweenFp
mf and the last term of Eq.~61! is,

apart from the minus sign, the bracketed factor in Eq.~62!.
This factor is unity only for point polyions,R50. We there-
fore suggest that the final term of Eq.~61! is a reminder of
the fact that the free energy of a purely Coulombic system
only due to correlations and fluctuations, and does not c
tain mean-field contributions because of the char
neutrality condition. Since such a constraint does not h
for hard-core contributions, the cancellation ofFp

mf and the
final term of Eq.~61! is not perfect for finite radiusR of the
polyion, due to the coupling of the Coulomb and hard-co
contributions. Remarks along these lines have also b
made by Warren in the appendix of Ref.@24#.

In any given thermodynamic state, the volume term w
have no influence on the equilibriumstructureof the poly-
ions which is entirely determined by the effective pair pote
tial ~60!. F0 does, however, contribute to all equilibrium
thermodynamicproperties of the system, including the pol
ion free energy, and is hence expected to have an influe
on the phase diagram of the colloidal suspension. This
be examined in the next two sections.

V. FREE ENERGY OF THE COLLOIDAL SUSPENSION

Given the effective polyion interaction energy~59!, the
next task is to calculate the total free energy of the susp
sion, for fixed temperatureT and volumeV, as a function of
the polyion and salt concentrations, or equivalently as
function of the colloid packing fractionh and the salt con-
centrationns .

Substituting Eq.~59! into expression~4! for the total free
energy we find that the latter naturally splits into three term

F5F01Fp
~id!1Fp

~exc! , ~63!

whereF0 is given explicitly by Eq.~61!, Fp
~id! is the trivial

ideal free energy of a system of noninteracting polyions, a
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Fp
~exc! is the excess part of the free energy of polyions int

acting via the effective pair potential~60!,

Fp
~exc!52kBT lnXE dRNp

VNp
expS 2b(

i , j

Np

veff~Ri j !D C.
~64!

This excess free energy may be calculated variationally,
ing the Gibbs-Bogoliubov inequality

Fp
~exc!<F ref

~exc!1^DV& ref , ~65!

whereF ref
~exc! is the excess free energy of a reference sys

under the same thermodynamic conditions but with pair
tentialsv ref(Ri j ). The second term on the right-hand side
Eq. ~65! is the ensemble average over the reference sys
denoted̂ •••& ref , of the potential-energy difference

DV5(
i , j

Np

@veff~Ri j !2v ref~Ri j !#. ~66!

The right-hand side of Eq.~65! may be minimized with re-
spect to one or several variational parameters character
the reference pair potentialv ref(r ). This minimum, then, is
the best estimate for the required quantityFp

~exc! .
To calculate the variational free energy of the fluid pha

a hard-sphere~HS! reference system was adopted, and
right-hand side of Eq.~65! was minimized with respect to th
reference hard-sphere diameterd, or equivalently the refer-
ence packing fractionh ref5(p/6)npd3. The very accurate
Carnahan-Starling equation of state was used forF ref

~exc! ,
while ^DV& ref was estimated using the Verlet-Weis improv
ment of the Percus-Yevick pair distribution function of th
reference HS fluid@25#. The resulting upper bound estimat
of the excess free energy of the Yukawa system,f Y

~exc!

5bFp
~exc!/Np , have been tested against ‘‘exact’’ Mon

Carlo evaluations of this quantity. In these Monte Ca
simulations ofNp5256 polyions we employ thermodynam
integration: for a given thermodynamic state point we gra
ally switch on the full pair interactionveff(r ) starting from
the hard-core fluid@26#. Typical results are reported in Fig
1: the variational estimates are seen to lie very close to
‘‘exact’’ results, as will be discussed in more detail below

The excess free energy in the solid phase was calcul
using an Einstein solid as a reference system. In this case
variational parameter is the single Einstein phonon freque
vE which determines all thermodynamic properties of t
reference system, as well as the mean-square displaceme
the particles around their lattice sites. The variational cal
lations were carried out for fcc and bcc lattices. Under
thermodynamic conditions which were explored, the free
ergy of the fcc lattice turned out to be slightly lower than th
of the bcc crystal, but the differences are extremely sm
The accuracy of the variational estimates was chec
against MC calculations of the free energy based on
Frenkel-Ladd integration scheme@27#, and against the pre
dictions of a more realistic phonon model, described in A
pendix B. The latter reproduce the MC data remarkably w
while the variational free energies turn out to be once m
-
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surprisingly accurate in view of the great simplicity of th
calculation, as illustrated in Fig. 1.

As expected, the variational free energies~full curves! of
both the fluid and the solid phase are slightly above th
simulated values~symbols!. The differences are small, how
ever. The phonon model gives extremely accurate free e
gies in the solid phase, as follows from a comparison w
the simulations in Fig. 1. Unfortunately, the model sho
unphysical characteristics in the low-density regime, wher
predicts pathologically low free energies for the solid pha
For that reason we merely used it as a test for the accurac
the variational calculations, which prove to be reliable
deed. Consequently, the variationalFp

~exc! was used through-
out in the construction of the phase diagrams to be repo
in the following section. We are thus in a position to com

FIG. 1. Excess Helmholtz free energyf Y
(exc) ~see text! of a one-

component system with pairwise hard-core-Yukawa interacti
~60! for chargeZ57300 and diameterD5652 nm, as a function of
packing fractionh, for salt concentrations~a! ns51 mM and ~b!
ns52 mM . The variational calculations~full curves! are in all
cases above the results from ‘‘exact’’ Monte Carlo simulation. T
harmonic phonon calculations for the solid free energy~dashed
curve! reproduce the simulations perfectly, except at low densit
where its prediction off Y

(exc) is pathologically low. The inset in~a!
shows the fluid free energy in more detail.
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pute the total free energy~63! of the colloidal suspension
systematically and efficiently for any set of thermodynam
conditions, as well as all relevant thermodynamic deri
tives.

VI. PHASE DIAGRAMS

The phase diagram of a system of particles interacting
a screened Coulomb~Yukawa! potential of the form~60!
~with R50) is well known, thanks to the extensive simul
tion work of Robbinset al. @28#. As expected from the
purely repulsive nature of the pair potential, the phase d
gram exhibits a single high-temperature fluid phase, wit
freezing line towards a low-temperature crystal phase, wh
is of fcc structure for largek, and of bcc symmetry at sma
k, with a bcc-fcc-fluid triple point aroundknp

21/3.4.9.
These calculations do not take into account the st
dependence of the effective pair potential~60!, embodied in
the variations ofk andZ. with polyion and salt concentra
tion. Neither do they include the state-dependent volu
term ~61!. In this section we show that these factors hav
profound influence on the topology of the phase diagra
particularly at low salt concentrations.

Due to the charge-neutrality constraints, the polyion-s
system behaves as a binary mixture characterized by t
intensive variables, the temperatureT, the polyion densitynp
@or, equivalently, the packing fractionh as defined in Eq.
~34!#, and the salt~i.e., anion-cation pair! concentrationns .
To make contact with experimental conditions, all phase d
grams presented below were calculated at room tempera
(T5300 K!, and for a solvent dielectric constante578. This
amounts to a Bjerrum lengthl 5e2/ekBT57.2 Å. For a
given polyion diameterD52R and valenceZ, the phase dia-
grams are represented in the (h,ns) plane. At any given
temperatureT, the conditions of coexistence of two phase
labeled by 1 and 2, are the equalities of the chemical po
tials of polyions (mp) and salt (ms), and of the osmotic
pressuresp,

mp~np
~1! ,ns

~1!!5mp~np
~2! ,ns

~2!!,

ms~np
~1! ,ns

~1!!5ms~np
~2! ,ns

~2!!, ~67!

p~np
~1! ,ns

~1!!5p~np
~2! ,ns

~2!!.

The chemical potentials and pressures may be calcul
from the free energy per unit volume,f5F/V, as obtained
in the preceding section, by the usual thermodynamic r
tions

mp5S ]f~np ,ns!

]np
D

ns

,

ms5S ]f~np ,ns!

]ns
D

np

, ~68!

p5npmp1nsms2f.

In practice, phase coexistence is determined by fixing the
concentration in one phase~e.g.,ns

(1)), and solving the set o
-
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three coupled equations~67! for the three remaining concen
trations numerically. A practical problem of the numeric
root-finding procedure involved is its poor convergence
the initial guess is far from the actual solution. The choice
a good initial guess is greatly facilitated by considering t
Legendre transform to a ‘‘semigrand potential’’v5f
2nsms , which describes the colloidal species canonica
~fixed h) and the added salt grand-canonically~fixed ms).
From curvesv(h,ms) as a function ofh at fixed ms , ex-
amples of which are shown in Fig. 2, common tangent c
structions can be performed that are equivalent to solv
Eqs. ~68!. We used a combination of these two numeric
schemes to map out the full phase diagram in the (h,ns)
plane for various values ofZ andD.

In the strong screening~high salt-concentration! limit,
such thatkR@1, the two negative van der Waals–like co
tributions to the volume term~61! are nearly constant, o
small, or linear innp , so that they are not expected to affe
the phase diagram very much. This expectation is borne
by explicit calculations which show that for polyion diam
etersD of the order of a few hundred nanometers and
lencesZ of the order of a few thousand, the effect of th
volume termF0 is insignificant whenns>20 mM . For such
sufficiently highns , our calculations predict a simple fluid
fcc solid phase coexistence similar to that observed when
volume term is omitted altogether@28#. The situation
changes dramatically, however, at salt concentrationsns
<20 mM , i.e., under highly deionized conditions typical o
recent experimental data@8,11,12,14–16#. This is illustrated
in Fig. 2, where the Legendre transformv5f2nsms dis-
cussed above is shown versus packing fraction at sev

FIG. 2. Thermodynamic potentialv5f2msns in the fluid
phase of colloids with chargeZ53650 and diameter 2R5462 nm
as a function of colloid packing fractionh at several fixed chemica
potentialsms of the salt. The corresponding reservoirs are char
terized by salt concentrationsns

r of ~1! 46.4mM , ~2! 21.5 mM , ~3!
10.0 mM , ~4! 4.64 mM , ~5! 2.15 mM , and ~6! 1.00 mM . The
high-salt curve~1! is convex, and thus describes a stable homo
neous fluid phase; the lower salt curves exhibit concave parts f
which common tangent constructions can be performed to yield
h ’s of the coexisting gas and liquid phases. Combination of s
fluid curves with similar curves for the solid phase~not shown! can
be used in the determination of fluid-solid coexistence.
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fixed values ofms . These curves, which correspond to t
fluid phase of a system with particle diameterD5461 nm
andZ53650, are seen to develop a concave region at s
ciently low reservoir salt concentrationns

r ~corresponding
with ms), signaling a van der Waals–like instability whic
results in the separations into low- and high-density fl
phases of the colloidal particles.

Figures 3–6 show the evolution of the topology of t
phase diagram with particle size and valence, assuming
Z;R2 ~i.e., the total polyion charge is proportional to th
particle surface!. The case of the largest particles (Z57300
and D5652 nm! is plotted in Fig. 3. The fluid-solid phas

FIG. 3. Room-temperature phase diagram of aqueous collo
suspension~chargeZ57300 and diameterD5652 nm! as a func-
tion of colloid packing fractionh and salt concentrationns (mM).
The narrow fluid~F! to fcc-solid transition atns.20 mM broadens
and narrows again at lower salt concentrations. The~thinner! tie
lines connect coexisting state points on the~thicker! phase bound-
aries.

FIG. 4. As in Fig. 3, but withZ53650 andD5461 nm. The
dotted curve denotes a metastable gas-liquid binodal with the c
cal point indicated by3.
fi-

at

transition, which forns>20 mM is very ‘‘narrow’’ ~i.e.,
shows only a small jump in colloid packing fraction!, sud-
denly broadens enormously at lowerns , signaling the coex-
istence of the fcc solid with a very low-density fluid. In fac
the fluid phase packing fraction is so low (h,1024) that the
fluid side of the coexistence curve appears to coincide w
the ns axis on the scale of the figure. Note that asns is
lowered below 20mM , the packing fraction of the coexist
ing solid first increases, before decreasing at still lower s
concentrations~reentrant behavior!. At the very lowest salt
concentrationsns,1 mM , the dissociation of water be
comes significant. Assuming a pH of 7, the concentrations

al

ti-

FIG. 5. As in Fig. 3, but withZ52086 andD5349 nm. There
is now stable coexistence of a gas~G! and liquid~L! phase between
a critical point (3) and triple points (D). Above the critical point
the homogeneous fluid~F! phase is stable at lowh and freezes into
the fcc solid at higherh. Below the triple point, there isG-fcc
coexistence.

FIG. 6. As in Fig. 3, but withZ51217 andD5266 nm. Here
the van der Waals–like instability only persists at such lowh that it
is decoupled from the freezing transition. TheG-L coexistence ex-
hibits two critical points (3) while the freezing transition does no
show any broadening at lowns .
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H1 and OH2 ions have been added to the counterion a
coion concentrations in all calculations; this does not h
any significant effect as long asns.1 mM . The salt con-
centration in the coexisting phases may be read from
intersections of the inclined tie lines and the coexiste
curves in Figs. 3–6.

The scenario changes continuously asZ decreases. In Fig
4 (Z53650,D5461 nm! the reentrant character on the so
side is less pronounced than forZ57300, while a metastable
fluid-fluid phase transition is barely preempted by the flu
solid transition. For still lower charge~e.g., the caseZ
52086 andD5349 nm is shown in Fig. 5! the fluid-fluid
transition becomes stable with a ‘‘gas-liquid’’ critical poin
at a salt concentrationns above that of a gas-liquid-solid
triple point. This phase diagram roughly resembles that o
simple molecular system, where the temperatureT plays the
role of the salt concentrationns in the colloidal dispersion. A
difference is, of course, that the temperature in two coex
ing phases is the same, while the salt concentrations nee
necessarily be identical; the tie lines are therefore not h
zontal in Figs. 3–6. At still lower charge the phase topolo
changes again, as illustrated in Fig. 6 forZ51217 andD
5266 nm. A reentrant ‘‘gas-liquid’’ coexistence curve, e
hibiting an upper and a lower critical point, is now com
pletely separated from the fluid-solid coexistence cur
Therefore there is no longer a triple point in this case. T
fluid-solid-coexistence is now hardly affected by the volum
term F0 in the free energy. For particles and charges a f
percent smaller than those of Fig. 6, the region of the flu
fluid instability shrinks further and finally disappears com
pletely, leading to a stable homogeneous fluid phase
packing fractions below the freezing line.

Figure 7 shows how the correspondence between
freezing transition in the colloidal suspension and that of
underlying HS transition is completely lost as soon as
contribution of the volume term becomes significant. T

FIG. 7. The reference packing fractionh ref ~minimizing the
Gibbs-Bogoliubov inequality! of the fluid phase that coexists wit
the fcc solid phase as a function of the reservoir salt concentra
ns

r for Z57300 andD5652 nm. The sharp drop ofh ref below ns
r

'25 mM indicates that the rule-of-thumb freezing criterion
heff'0.5 fails when the volume termF0 affects freezing.
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packing fractionh ref of the HS reference fluid that minimize
the free energy of the fluid phase in the Gibbs-Bogoliub
inequality~65! is plotted as a function ofns

r along the freez-
ing line. Herens

r is the salt concentration in a reservoir
chemical potentialms . As long as ns

r exceeds abou
25 mM ,h ref is nearly constant, and reasonably close to
value;0.5 corresponding to a hard-sphere fluid at freezi
Below that salt concentration,h ref decreases sharply to
value near zero, indicative of a very dilute gas phase~a
‘‘void’’? ! coexisting with the crystal.

The reentrant nature of the melting line is clearly illu
trated in Fig. 8, which shows the variation of the Lindema
parameteru in the coexisting solid with the reservoir sa
concentrationns

r . The Lindemann parameter is defined
the ratio of the root mean square of the displacement o
colloidal particle~from its equilibrium lattice position! and
the lattice spacing~i.e., the nearest-neighbor distance!. It is
easily calculated from the Einstein solid that minimizes t
free energy of the fcc colloidal crystal in the Gibb
Bogoliubov inequality. While at the higher salt concentr
tions u turns out to be fairly constant and close to the ge
erally accepted ‘‘universal’’ valueu.0.15, it drops sharply
at lowerns

r , goes through a minimum, and then rises again
very low salt concentration. This behavior correlates w
with the melting line of Fig. 3.

The Donnan effect is the reduction of salt concentration
a colloidal dispersion, compared to that of a reservoir at
same chemical potentialms , as the colloid packing fraction
increases. This effect is illustrated in Fig. 9, which show
family of ns-h curves for 10 values of the chemical potent
ms ; the salt concentration in the reservoir corresponds to
ns value ath50. The figure shows that the Donnan effe
becomes more pronounced as the reservoir concentrations

r

decreases.

VII. DISCUSSION AND CONCLUSION

The present analysis shows that complex phase beha
may be expected in highly de-ionized charge-stabilized c

n

FIG. 8. Lindemann parameteru of the fcc solid along the melt-
ing line as a function of the reservoir salt concentrationns

r for the
same system parameters as in Fig. 7. The melting criterion ou
'0.15 does hold at highns

r but fails belowns
r,25 mM .
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loidal dispersions. While long-range van der Waals attr
tions might induce fluid-fluid phase separation, and even
ally irreversible flocculation, at high salt concentrations@20#,
the behavior predicted by the present analysis at very
salt concentrations is of purely electrostatic origin. The k
finding is that charge-stabilized colloidal particles may u
dergo a fluid-fluid~or gas-liquid! phase separation for suffi
ciently low ionic strengths, although they interact via
purely repulsive effective pair potential. In other words, t
experimental observations of a fluid-fluid phase transition
not necessarily imply the existence of attractive forces
tween the charged colloidal particles or polyions. This see
ingly surprising result is a direct consequence of the red
tion of the initial multicomponent problem, involving
mesoscopic polyions and microscopic coions and coun
ons, to a one-component system of dressed polyions inte
ing via effective screened forces; the effective interactio
are pairwise additive only within the framework of the a
proximate, quadratic functional introduced in Sec. III. T
price to pay for this reduction is the appearance of the st
dependent volume termF0 in the free energy, which has
profound effect on the phase behavior of the colloidal d
persion. The reduction also leads to a decoupling betw
density fluctuations, characterized by the measurable pol
structure factorS(k), and the observed thermodynamic b
havior. In a genuine one-component system, fluid-fluid ph
separation is signaled by enhanced density fluctuations
the critical point, resulting in a sharp increase of the struct
factor at smallk ~long wavelengths!. In the effective one-
component system of dressed colloidal particles,S(k) is un-
affected by the vicinity of the critical point of the fluid-fluid
phase transition, since it is determined by the purely rep
sive effective pair potential~60!, which can only lead to
regular behavior in thek→0 limit.

It is worth noting that a volume term similar toF0 also
occurs naturally in the theory of simple metals, where
full ion-electron system is mapped onto a system of pseud
toms interacting via an effective state-dependent pair po
tial @21#. However, in the metal case this volume term do

FIG. 9. Donnan effect forZ57300 andD5652 nm. For each
curve the salt chemical potentialms is fixed; the corresponding
reservoir salt concentrationns

r equals the value ofns at h50.
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not have a significant incidence on phase behavior beca
of the restricted range of electron densities and ionic char
In the colloid case the parameter space is much wider du
the large range of variation ofnp , R, andZ, and due to the
existence of an additional salt component, which has no a
log in metals.

The wealth of possible phase diagrams, induced by
structure-independent contributionF0 to the free energy, is
illustrated in Figs. 3–6, which summarize the most rema
able scenarios. For large, highly charged polyions, the flu
fcc solid freezing transition dramatically widens below a s
concentration of about 20mM ; the packing fraction of the
coexisting fluid drops to extremely small values while that
the coexisting fcc crystalline phase exhibits a reentrant f
ture upon loweringns . The sudden broadening of the fluid
solid density gap is attributed to an underlying metasta
fluid-fluid phase separation. This is shown explicitly by t
results for smaller polyions in Figs. 4 and 5: the initial
metastable fluid-fluid transition~Fig. 4! becomes stable a
the polyion size and charge decreases, with the emergen
a fluid-fluid critical point above a fluid-fluid-solid triple
point. This scenario is vaguely reminiscent of the phase d
grams observed in sterically stabilized colloidal suspensi
in the presence of free polymer coils@4,6#. However, in this
case the change in topology of the phase diagram is indu
by a change in the range of the effective depletion inter
tion, which is essentially attractive, while a volume ter
similar toF0 has no incidence on the phase diagram. Fina
for yet smaller polyions~Fig. 6!, the triple point disappears
and the fluid-fluid part of the phase diagram complet
separates from the fluid-solid coexistence line, with the
pearance of a lower fluid-fluid critical point. Note that
both Figs. 5 and 6 the packing fractions of the low-dens
‘‘gas’’ phase are always very small@except very close to the
critical point~s!#, which may provide an explanation for th
observed ‘‘voids’’ reported in Ref.@15#. For diameters and
charges a few percent smaller than those of Fig. 6, the fl
fluid instability shrinks to a smallerh-ns region, and finally
disappears completely.

The possibility of a fluid-fluid phase separation of suspe
sions or solutions of like-charged polyions was already s
gested by Langmuir@29#, who referred to it as ‘‘unipolar
coarcervation.’’ His argument was only qualitative, a
based on the behavior of the osmotic pressure, evalu
within Debye-Hückel theory for simple electrolytes. A simi
lar, more careful argument was put forward in the thesis
Voorn @30#, with specific applications to linear polyelectro
lytes. He pointed out that the addition of salt decreases
tendency for phase separation, in qualitative agreement
the predictions of the present work. However, neither La
muir’s nor Voorn’s considerations are directly applicable
the case of highly charged colloidal particles conside
here. More recent studies of effective interactions betw
charged colloidal particles in suspension have revealed in
esting mechanisms for pairwise attraction. Some of these
quire multivalent salt ions, and originate from correlatio
and fluctuations in the double layers@31,32#. The resulting
attractions are, however, very short-ranged, and can there
probably not drive a fluid-fluid transition. Moreover, it wa
shown in Ref.@33# that a spherical geometry of the particle
suppresses attractions compared to a plate geometry. In
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@34# another mechanism for attraction is put forward. T
attraction there originates from the Coulomb-depletion eff
caused by an intricate interplay between Coulombic a
steric interactions. It would be interesting to study its effe
together with the volume term introduced here, on the ph
diagrams.

The main conclusion of this paper, namely the possibi
of a fluid-fluid phase separation due to Coulombic and
cluded volume interactions alone, is reminiscent of a sim
phase separation predicted for very dilute symmetric elec
lytes, modeled by the ‘‘restricted primitive model’’@35# of
oppositely charged hard spheres. Both in this symme
model and in the extremely asymmetric case investiga
here, the phase separation is driven by a delicate bala
between like-charge repulsion and opposite-charge att
tion. The polyion-microion asymmetry and the presence
salt appear, however, to add further complexity to the ph
diagrams.
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APPENDIX A

In this appendix we calculate the minimum valueFel8 of
the functionalFel defined in Eq.~22! by inserting the mini-
mizing profile~53!. It proves essential to use the regulariz
Coulomb potential~3! throughout, and take the limitl→0 at
late stages of the calculation. It proves convenient to use
Fourier representation throughout. In this representation
functional reads

bFel5
1

2n

1

~2p!3E dk
k21kl

2

k21l2
Dr2k

~1!Drk
~1!

1
1

~2p!3E dkbU2k
~l!Drk

~1!1 r̄bUk50
~l! 1

1

2

4p l

l2
r̄2V,

~A1!

with Uk
(l) defined in Eqs.~50! and~51!, k andkl in Eq. ~49!,

n5n11n2 the total microion number density, andl
5e2/ekBT the Bjerrum length. Inserting the equilibrium pro
file of Eq. ~48! into the functional~A1! gives its minimum
value
t
d
,
se
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bFel8 52
n

2

1

~2p!3E dk
k21l2

k21kl
2

bU2k
~l!bUk

~l!

1
n

2V

l2

kl
2 ~bUk50

~l! !21 r̄bUk50
~l! 1

1

2

4p l

l2
r̄2V.

~A2!

We first focus on the evaluation of the second line of~A2!,
and then treat the first line.

It follows directly from Eq.~50! thatUk50
(l) 5Npuk50

(l) , and
hence from Eq.~51! that

r̄bUk50
~l! 524p l r̄ZnpS 1

l2
2

R2~112g!

6 D V1O~lR!,

~A3!

where theO(lR) are irrelevant in the limit of interestl
→0. A similar expansion reveals

n

2V

l2

kl
2 ~bUk50

~l! !254p l ~Znp!2S 1

2l2
1

R2~112g!

6
2

1

k2D V

1O~lR,l2/k2!. ~A4!

Using the results of Eqs.~A3! and ~A4! in the evaluation of
the second line of Eq.~A2! yields, neglecting the
O(lR,l2/k2) terms,

n

2V

l2

kl
2 ~bUk50

~l! !21 r̄Uk50
~l! 1

1

2

4p l

l2
r̄2V

5
1

2

4p l

l2
~Znp2 r̄ !2V2

1

2

4p l

k2
~Znp!2V

52
1

2

4p l

k2
~Znp!2V, ~A5!

where we used the electroneutrality conditionr̄5Znp . The
g-dependent contributions cancel identically. The remain
term of Eq.~A5! is independent ofl, and therefore consti-
tutes thel→0 limit of the second line of Eq.~A2!.

We now calculate the first line of Eq.~A2!, which can be
rewritten with Eq.~50! as

2
n

2

1

~2p!3E dk
k21l2

k21kl
2

bu2k
~l!buk

~l!(
i 51

Np

(
j 51

Np

exp~ ik•Ri j !

52
n

2

4p

~2p!3(i 51

Np

(
j 51

Np E
0

`

dk
sin~kRi j !

kRi j

3
k2~k21l2!

k21kl
2

bu2k
~l!buk

~l! , ~A6!

where we performed the angular integrals explicitly. It fo
lows from Eq.~51! and a straightforwardl expansion that
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k2~k21l2!

k21kl
2

bu2k
~l!buk

~l!

5
~4p lZ !2

k21k2 S g cos~kR!1~12g!
sin~kR!

kR D 2

1O~lR,l2/k2!, ~A7!

which upon insertion into Eq.~A6! leads to integrals that ca
be performed easily with contour integration techniques. T
terms in the double sum in Eq.~A6! must then be distin-
guished between those withi 5 j ~for which Ri j 50) and
those withiÞ j ~for which Ri j .2R because of the hard-cor
repulsion between the polyions!. The termsiÞ j give rise to
the integral

2
n

4

4p

~2p!3E2`

`

dk
sin~kRi j !

kRi j

3
~4p lZ !2

k21k2 S g cos~kR!1~12g!
sin~kR!

kR D 2

5
Z2l

2 S g cosh~kR!1~12g!
sinh~kR!

kR D 2

3
exp~2kRi j !

Ri j
2

Z2l

2

1

Ri j

5
Z.

2 l

2

exp~2kRi j !

Ri j
2

Z2l

2

1

Ri j
, ~A8!

where we used the definition of the effective chargeZ. of
Eq. ~55!. The factors 1/2 in Eq.~A8! correct for double
counting of iÞ j terms in the double sum in Eq.~A6!. The
termsi 5 j in Eq. ~A6! give rise toNp identical integrals

2
n

4

4p

~2p!3E2`

`

dk
~4p lZ !2

k21k2 S g cos~kR!1~12g!
sin~kR!

kR D 2

52
Z2l

2
kh~g,kR!, ~A9!

where the dimensionless functionh(g,x) is given by

h~g,x!5~12g!2
exp~22x!2112x

2x2

12g~12g!
12exp~22x!

2x
1g2

exp~22x!11

2
.

~A10!

Gathering the results of this appendix reducesFel8 from
Eq. ~A2! to
e

Fel8 5(
i , j

Np S Z.
2 e2

e

exp~2kRi j !

Ri j
2

Z2e2

e

1

Ri j
D

2
1

2

4pe2

ek2
~Znp!2V2

Z2e2

2e
kh~g,kR!Np .

~A11!

The first line in Eq.~A8! is recognized as the differenc
between screened and bare Coulomb interactions of all p
of polyions at separationsRi j , with the effective charge
numberZ. determining the strength of the pairwise screen
repulsions. The bare Coulomb interactions cancel, in the
culation of the effective polyion potentialVp

(eff) , the bare
polyion-polyion contribution fromHp of Eq. ~3!. The second
line of Eq. ~A11! is independent of the coordinatesRi of the
polyions. Its first term, which was missed in the analysis
Ref. @19#, appears after carefully taking the limitl→0. Its
physical interpretation is discussed in the main text.

It is easily checked thath„(11x)21,x…5(11x)21, and
hence the second term in the second line of Eq.~A11! equals,
for each of theNp polyions,2(Ze)2/@2e(k211R)# for our
choiceg5(11kR)21. This is of the order of the Coulombic
energy of charges2Ze and 1Ze separated by a distanc
k211R in a medium of dielectric constante. It thus repre-
sents the self-energy of anNp dressed polyion, i.e., bar
polyions of charge2Ze with double layers of thicknessk21

and net charge1Ze. It can also be interpreted as the pote
tial energy of theNp polyions due to the potential well cre
ated by the double layers. For the Sogami-Ise choiceg50, it
is easily checked fromh(0,x)5@exp(22x)2112x#/(2x2) that
the second term in the second line of Eq.~A11! gives rise to
a free-energy contribution (Ze)2/(4eR)@exp(2kR)21
12kR#/(kR) per colloidal particle. This contribution is iden
tical to the one in Eq.~44! of Ref. @23#. Although it has the
same characteristics as the one we obtained fromg51/(1
1kR), it was not considered as a driving term for pha
separation in Ref.@23#. Instead, the focus there has been
the ~controversial! transformation from the Helmholtz to
Gibbs effective pair interaction@36#.

APPENDIX B

We calculate the free energyFD of a system ofN5nV
independent three-dimensional harmonic oscillators of m
m fixed onN sites in a volume V. Throughout we assume
Debye spectrum

vs~k!5csuku ~B1!

for the longitudinal (s51) and transversal (s52,3) modes.
Later on we adjust the sound velocitiescs(s51,2,3) to be
consistent with the screened Coulomb pair potentials gi
in Eq. ~60!, such thatFD1F0 is an estimate for the free
energyF of the solid phase of a colloidal crystal. Withi
classical statistical mechanics, each mode contributes
amount kBTln@\vs(k)/kBT# to the total free energyFD ,
while the ground-state energy, or Madelung energy, cont
utes an amountum per particle. Hence we have formally
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FD5Num1kBTVE dvg~v!ln@\v/kBT#, ~B2!

where we introduced the total phonon densityg(v)
5(s51

3 gs(v). The phonon densitygs(v) of the branchess
51,2,3 is defined by

gs~v![
1

~2p!3E dkd@v2vs~k!#

5H v2/~2p2cs
3!, v<vs,D

0, v.vs,D ,
~B3!

where we used Eq.~B1! and introduced the Debye frequenc
vs,D[cskD . The Debye wave numberkD is a cutoff such
that the normalization condition*0

`dvg(v)53n is satisfied,
i.e., kD5(6p2n)1/3. Inserting Eq.~B3! into Eq. ~B2! and
performing the elementary integrals yields

FD

NkBT
5um /kBT1 ln~nL3!21

1 ln@3Ap/2#1
1

2 (
s51

3

ln@mcs
2/kBT#, ~B4!

with thermal wavelengthL5\/A2pmkBT. The first line of
Eq. ~B4! is the Madelung and ideal gas contribution, t
second line is the excess part in terms of the sound veloc
cs , to be calculated below.

We now introduce the even momentsm2 j of the phonon
distribution,

m2 j5E dvg~v!v2 j ~ j 51,2,3, . . . !. ~B5!

It is easily checked from Eq.~B3! that the Debye spectrum
gives rise to

mm2

kBT
5

3nkD
2

5 (
s51

3 mcs
2

kBT
,

m2m4

~kBT!2
5

3kD
4 n

7 (
s51

3 S mcs
2

kBT D 2

. ~B6!

If we realize thatc1[ci and c25c3[c' , then Eq.~B6!
constitutes two equations for the two unknown longitudin
(ci) and transversal (c') sound velocities, in terms of the ye
unknown momentsm2 andm4 . We now calculate these mo
ments independently in terms of the pair potentialv(r ) be-
tween the particles that constitute the harmonic solid;
sound velocitiesci andc' can then uniquely be determine
from Eq. ~B6!, and the free energy from Eq.~B4!.

First we use that the spectrum~B1! is actually defined
such thatmvs

2(k) for s51,2,3 are the eigenvalues of the
33 dynamical matrix

Dk5(
R

D~R!exp~ ik•R!, ~B7!

where the sum is over a Bravais lattice, and where
es

l

e

D~R2R8!52~“¹v !~R2R8!1dR,R8(
R9

~“¹v !~R2R9!

~B8!

is a 333 matrix involving tensor combinations of the grad
ent operator“. Sincemvs(k)2 for s51,2,3 are eigenvalue
of Dk , it follows that for anyj 51,2, . . . ,

Tr ~Dk! j5(
s51

3

„mvs
2~k!…j , ~B9!

where Tr is the trace over a 333 matrix. Hence we have
for the even moments

m2 j5
1

~2p!3Ek,kD

dk(
s51

3

vs
2 j~k!

5
n

mj
TrS (

R
D~R!

3sin~kDR!23kDRcos~kDR!

~kDR!3 D j

'
n

mj
Tr„D~R50!…j , ~B10!

where we usedn5kD
3 /6p2 and the oscillating character an

rapid decay of the fraction between the large parenthese
the second line. We are interested in a spherically symme
potentialv(r ), with radial derivativesv8(r )5dv(r )/dr and
v9(r )5d2v(r )/dr2, and hence

“v~r !5v8~r ! r̂,

“¹v~r !5
v8~r !

r
I1S v9~r !2

v8~r !

r D r̂ r̂, ~B11!

with the 333 unit matrix I and radial unit vectorr̂5r /r .
Using that TrI53, Tr r̂ r̂85 r̂• r̂8, and Tr“¹5D, the La-
placian, we can write from Eqs.~B8! and ~B10! that

mm2

kBT
5

n

kBT(
RÞ0

Dv~R!,

m2m4

~kBT!2
5

n

~kBT!2S (
RÞ0

$@v9~R!#212@v8~R!/R#2% D
1

n

~kBT!2
Tr S (

RÞ0
~“¹v !~R! D 2

. ~B12!

The numerical evaluation of the final term in Eq.~B12! is
greatly facilitated by the fact that the matrix

M[ (
RÞ0

~“¹v !~R! ~B13!

is diagonal in the basis of the principal crystallographic
rectionsx̂,ŷ,ẑ due to the inversion symmetry of the lattic
Moreover, due to isotropy all three eigenvalues are ident
and hence from Eq.~B11! we have
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M5I (
RÞ0

Fv8~R!

R
1S v9~R!2

v8~R!

R D ~R̂• ẑ!2G . ~B14!

Using Eq.~B14! it is straightforward to evaluate the lattic
sums in Eq.~B12! for a given pair potentialv(r ); the lattice
constanta ~along a principal axis! is fixed by the number
density and the symmetry of the lattice. For fcc we havea
5(4/n)1/3, for bcca5(2/n)1/3. The resulting numerical val
ues form2 andm4 then provide the left-hand side of Eq.~B6!
explicitly, from which numerical values for the dimensio
ec
ek

v

ce

.

r,

.

J.

e

v.
less sound velocitiesmci
2/kBT and mc'

2 /kBT follow. These
can, subsequently, be used to evaluate the second line o
~B4!. The full evaluation ofFD also requires the Madelun
energyuM , given by the lattice sum

um5 (
RÞ0

v~R!, ~B15!

which can also be evaluated directly numerically for a giv
v(r ).
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