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Phase diagram of charge-stabilized colloidal suspensions:
van der Waals instability without attractive forces
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A careful analysis of the classic Derjaguin-Landau-Verwey-Overbeek theory of the interaction energy in a
suspension of charge-stabilized, spherical colloidal partigde/ions in the presence of salt shows that in
addition to the usual screened-Coulomb effective pair interaction between polyions, there exists a structure-
independent but state-dependent contributitee “volume” term), which has almost invariably been over-
looked. A variational procedure based on the Gibbs-Bogoliubov inequality is used to calculate the contribution
of the polyion pair interactions to the free energy of the suspension. The latter is then combined with the
“volume” term to derive the phase diagram of the colloidal suspension. Although the effective pair interaction
between polyions is purely repulsive, it is shown that the volume term may drive a van der Waals—like
instability in highly deionized suspensiofsalt concentrations less than aM) for experimentally relevant
choices of the polyion radius and charge. If the latter are sufficiently large, the fluid-fluid phase separation is
preempted by the fluid-solid freezing transition which broadens considerably. Reentrant behavior is predicted
on the solid side of the phase diagram. The predicted phase diagrams may provide an explanation of some
surprising recent experimental results. They also show that the observation of a fluid-fluid phase separation in
a charge-stabilized colloidal dispersion does not necessarily imply the existence of an attractive component in
the effective pair interaction between highly charged polyi¢84063-651X99)04002-7

PACS numbe(s): 82.70.Dd, 64.10th, 83.20.Di, 64.60.Cn

I. INTRODUCTION rameter is not the temperature but the concentration of the
third component. It is worth noting that the solvent is not
Phase separation of an initially homogeneous fluid intadirectly involved in the phase separation mechanism, and
dense(or concentratedand dilute fluid phases is a very com- plays the role of a passive “spectator” phase.
mon phenomenon in molecular systems. In one-component In the case of sterically stabilized colloidal particles, free
systems, involving a single molecular species, the separatigpolymer coils induce a depletion interaction between colloids
into liquid and gas phases observed below the critical temwhich is predominantly attractive and of a range of the order
peratureT, is attributed, since van der Waals, to intermo- of Ry beyond the colloid particle diamet¢®,3]. There is
lecular attractions which balance the loss of configurationahmple experimental and theoretical evideifide 6] that the
entropy upon condensation. In mixtures of two or more comdepletion attraction can induce a liquid-gas separation of the
ponents, the mechanism for demixing into phases of differensuspension into a high colloid concentratigiiquid” )
concentrations of the various species is less clear-cut. In thghase and a dilut€‘gas”) phase, at least if the polymer
case of molecules of comparable size, the role of attractiveoils are assumed to be ide@onadditive. This gas-liquid
interactions is again believed to be preeminghf since transition is thus reminiscent of the van der Waals phase
purely repulsive interactions do not appear to lead to phastansition in ordinary molecular fluids. Recent results indi-
separation, as long as they are additive. The situation is mor@ate, however, that additivity of the pair interactigeach as
complicated for colloidal suspensions, which are essentialljn an asymmetric binary hard-sphere mixjurends to drive
multicomponent in nature and involve large size-the gas-liquid transition metastable with respect to freezing
asymmetries between the individual species. Such suspef#].
sions consist of mesoscopic colloidal particles, a molecular In the present paper, we focus on charge-stabilized colloi-
solvent, and most frequently at least one third componengjal suspensions, made up of highly charged, spherical poly-
such as polymer coils or microscopic ions, which introduceions and microscopic coions and counterions dissolved in
an intermediate length scaléhe radius of gyratiorR, for ~ water. The microions form electric double layers around the
polymers or the Debye screening lengtp for iong). This  charged surface of the polyions, and it is generally accepted
third component plays a crucial role, since it induedfec- that, at least in the bulk, the effective interactions between
tive interactions between the colloidal particles, which are ofelectric double layers surrounding different polyions are
largely entropic origin. Effective interactions result quite purely repulsive. Direct measuremeii8d, as well as first-
naturally from a formal contraction of the initial multicom- principles computer simulatior}8], point to the quantitative
ponent system into an effective one-component descriptiomalidity of the Derjaguin-Landau-Verwey-Overbe@kl VO)
involving only the colloidal particles. An important differ- [10] potential between charge-stabilized colloidal particles,
ence with simple molecular systems is that the control paprovided an adequate choice is made for the effective charge
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of the polyions, which is generally significantly less than theume is denoted by. All microions are assumed to be point

structural charge related to the number of ionizable surfacearticles, which cannot penetrate the interior of the spherical

radicals. We shall not consider here the case of confinegolyions. The total numbers of microscopic cations and an-

colloids, where the presence of charged walls has beeions in the suspension ai, =N;+Ng andN_=N;. The

shown to induce an attractive component to the effectiveeorresponding meatfmacroscopig number density will be

interaction between like-charged polyiofisl —13. denoted byn.=N./V, the total microion density byn
According to the classical van der Waals picture, the ab=n_+n_, and the polyion density bgi,=N,/V.

sence of attractive interactions between polyions in bulk The above model is characterized by the total Hamil-

seems to preclude any phase separation into dilute and cotenian

centratedfluid or solid) colloid phases. This picture seems,

however, to be contradicted by some experimental results. H=H,+Hn+Hpp, D)
The relevant experiments are invariably performed at ex-
tremely low salt concentration, of the order of a @,  whereH, andH,, are the Hamiltonians associated with the

such that the influence of attractive van der Waa'S—LOﬂdOfp)myions and microionsl an&lmp is the microion_po|yi0n

dispersion forces may be safely ruled out. In one experimenipteraction term. For later reference we write the polyion

the measured lattice spacings in crystalline phases of sughamiltonian explicitly as a sum of kinetic and potential en-
quasideionized suspensions were found to be smaller thaggy,

expected on the basis of a space-filling structure of the

known colloid concentratiofl4]. A natural explanation of Np 7202
this observation WQU|d bg that the dense crystalline phase is Ho=K,+ Vp({Rij}):Kp+z vo(Rij) + = 2
not pure, but coexists with a much more dilute gas phase. <] ERj

More evidence of phase coexistence has been provided by

the observation of extremely dilute voi@s gas phasen the ~ whereK, is the kinetic energy andl, the pairwise potential
bulk of an apparently homogeneous deionized suspertaion energy consisting of a hard-sphere contributigR;;) and

liquid [15] or a solid[12]). In fact, even a fully equilibrated a Coulombic contribution. Her&;=|R;—R;| denotes the
gas-liquid coexistence has been repoffted], although this  separation between polyidrandj, R; ; being their position
observation aroused some controveisy. vectors, respectively.

There thus appears to be a contradiction between the ob- Several remarks are in order concerning the model Hamil-
servation of the coexistence of dilute and concentratedionian (1). (&) It contains exclusively short-range excluded
phases and the generally accepted view of a purely repulsiweolume and long-range Coulombic interactions. Long-range
effective interaction between like-charged polyions. In thisdispersion interactions are omitted. This turns out to be jus-
paper we carefully reexamine the traditional DLVO theory.tified, since the low salt concentration regime to be consid-
We recover an effective screened-CoulofobYukawa pair  ered later gives rise to weakly screened Coulomb interac-
interaction, as expected, but in addition the total effectivetions that completely mask the dispersion interactions. The
potential energy for any given configuration of the polyionsstrong screeninghigh salt concentratiorregime was explic-
turns out to contain a structure-independent but stateitly considered in Ref[20], where it was shown that the van
dependent volume term, the existence of which had alreadgter Waals—London-Hamaker attraction between the polyions
been pointed out by Silbert and Grims¢h8]. It will be  may indeed lead to a van der Waals phase separdtipn.
shown that this volume term contributes significantly to theStability of the system against classical Coulomb collapse
free energy of the polyions, and varies sufficiently rapidly atrequires, strictly speaking, all ions to have finite hard cores.
very low salt concentrations to have a very marked effect oddowever, the mean-field density-functional formalism
the phase diagram. Under experimentally achievable condadopted later on allows microions to be point ions without
tions it leads to complex fluid-fluid-solid phase diagramscausing any divergence&) The total Hamiltonian(1) ad-
when the colloid and salt concentrations are varied. In parmits a proper thermodynamic limit, despite the infinite range
ticular, a van der Waals—like phase separation between dilutef the Coulomb interactions, because the colloidal system is
and concentrated fluid phases is predicted, despite the puregyobally charge-neutral. This is no longer true when manipu-
repulsive nature of the effective pair potential. We believelating each of the three terms separately because the polyion
that the calculation to be presented provides a plausible exand microion components are not separately charge-neutral.
planation of experimental observations. The present workhis difficulty may be overcome by adding compensating
supplements and corrects a preliminary version publishedniform backgrounds of opposite charge density, as is done
elsewherd 19]. in the theory of liquid metals, considered as two-component

ion-electron fluidg21]. An alternative, but equivalent, pro-
cedure which will be adopted implicitly throughout this pa-
Il. THE MODEL per is to replace the bare Coulomb interactifter by a

The colloidal dispersion under consideration is assumedcréened Coulomb interaction
to contain(i) N, identical spherical polyions of radiiand )
charge— Ze (uniformly distributed over the particle surface & e 3)
(i) Ne=ZN, identical counterions of charge e; and (i) er er
N, fully dissociated pairs of monovalent salt ions of charge
+e. The solvent(watel is assumed to be a continuum of and going to the limit\—0 at the end of the calculation,

dielectric constant (“primitive model”), and the total vol- after the thermodynamic limit has been taken.
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At fixed inverse temperatur@=1/kgT, the Helmholtz F=Fig+ Fexrt Feourt Feorr- (1D
free energyF of the colloidal suspension may be formally
expressed as The ideal gas contributions can be written down explicitly as

exd — BF1=Tr,Tryexd — BH]=Trpexg — BH Eﬁ], (4)

where the traces Jrand Tr, denote canonical phase-space
integrals over the polyion and microion degrees of freedomynere A _ is the thermal wavelength of microion species

Fa=ksT 2 | drpP(nin(eP(nAd-1], (12

The effective polyion Hamiltoniati;" is defined as ==+. The external field contribution may be cast into the
HE"=H,+F =K, + VS(R}), 5 orm
whereF' is given by For= Z+ f drp(r)U(r), (13)
ex — BF'1=Trex — B(Hm+Hmp) 1 ©®) o

where the external potentidls,(r), due to the polyions, are
Clearly,F' may be interpreted as the Helmholtz free energymulticentered sums
of aninhomogeneoufiuid of microions in theexternalfield

of polyions at fixed position&;. Consequently, it depends U
parametrically on the polyion positions, and the potential en- Ut(r):jzl u.(r—Ry) (14
ergy of the effective one-component system of polyions, al-
ready introduced in E(5), is given by over the polyion-microion pair interactions. (r), given by
VE({RH=V,({RH+F ' ({R}). (7 ze 1
F——=, >R
The above reduction of the initial polyion-microion system €er
to an effective one-component polyion system shows that the u(r)= 5. (15
latter interact via an effective potential energy that consists — Z_e 1+ys r<R
of a contributionV,, given by Eq.(2) as a sum of pair e R’ '

interactions, and the microion-induced contributid,

which is state-dependent and natpriori, pairwise additive. 1heS€ polyion-microion pair interactions are thus purely
Coulombic beyond the polyion core radiBs and chosen to

be constant inside the core region. Within exactdensity
functional 7, the most relevant choice for the constamts
A. Formulation would be the hard-core limiy..—c0, ensuring that the mi-

The inhomogeneous distribution of microscopic cationsCroions are excluded from the polyion cores. However,
and anions in the external field of the polyions is characterWithin the framework of thepproximatefunctional adopted

: . ; : ; below, which allows an analytic solution of the stationarity
ized by equilibrium density profiles, (r) andp_(r), which o L . .
are the fundamental quantities in density-functional theory?onditions(8), the excluded volume condition will be satis-

(DFT) [22]. This theoretical framework is based on the ex-fied for finite values ofy, andy_ to be determined later on.
istence of a free-energy functionéT[p(f),p(})] of varia- The choice ofu.(r) for r<R is reminiscent of ion-electron

tional density profilesp'®(r). The equilibrium profiles pseudopotentials™ widely used in the theory of metpld]

. . . . A polyion-microion pseudopotential has also been used in a
p=(r) must satisfy the Euler-Lagrange or stationarity Cor'd"first—principles simulation of charge-stabilized colloip8],

I1l. DENSITY-FUNCTIONAL THEORY

tion but for different technical reasons.
SF[pY ,pH] The mean-field contribution to the microion-microion
(#) = (8)  Coulomb interaction term in the free-energy functional is of
1 e .
Sp=(r) o D0)=p. () the familiar Hartree form
2
where, within the canonical formulation, the Lagrange mul- FCO”':S_f er dr'[pP(r)—pM(r)]
tipliers u. must be chosen such as to satisfy the normaliza- €
tion conditions
— L) =pr). (16
[ arpam=n.. © Ir=rl
v

To conclude the specification of the functiotfgl the follow-
The corresponding equilibrium value of the Helmholtz freeing two approximations are made) The correlation contri-
energyF’ is then given by bution to the interaction term is neglected, i.e.,

F/:]'—[P+ :P—]- (10) fcorrzo- (17)

It is customary to split the functionaf into ideal gas, exter- This mean-field approximation corresponds to a multicen-
nal field, Coulomb interaction, and correlation terfag], tered Poisson-Boltzmann theory for the density profiles
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p=(r) which can only be handled numericallp) In order In Egs.(22) and(23), ;and;are the macroscopic spatial
to obtain an analytically tractable theory, the ideal gas conaverages of the variational fields
tributions (12) are expanded to quadratic order in the local

inhomogeneities, p=n.—n_=7Zny, (29
ApP(=pP(r)—n.. (18 — 2n,n_  2n,n_
= = , (25)
n,+n_ n

In view of the constraintg9), this leads to the following
approximate expression for the ideal gas contribution to the e U(r) andW(r) are the following linear combinations

functional: of the external fieldg14):
Fam S [ Favi T + 2L [ dr(ap®(ny? nU.(nN-n-U.(_&
0= 2 | PV, Tne)+ 5 Pa , u(r)= . Ejzl u(r—R;),
1 =
where Fid(V,T,na)=VkBTna[In(naAi)—1] is the homoge- W =U.(N+U_(r)= | W(r—R:
neous ideal gas contribution from ionic species =*. (N=U.n+U-(r) ,Zl ( i)
B. Diagonalization This multicentered character &f(r) andW(r) follows di-

. o i rectly from Eq.(14), and the functional form ofi(r) and
'!'he free-energy functional to be used in thls_ paper is NOWy ()" from the appropriate linear combinations of Ed5),
defined by Eqgs(11), (13), (16), (17), and (19); it is qua-  \ynich yields with Eq.(26)
dratic in the density profile$>(il)(r). This suggests diagonal-

izing the functionalF by changing from the variational fields Ze? 1 R
pB(r) to their linear combinations T e r=
u(r)= 2
pM(r)=pP(r)—pP(r), S8 71—y @
(20) — T _R , r<R,
W) n_p(r+n.p(r)
g = .
n,+n_ 0, r>R
w(r)= Wy, I<R, (28)

Clearly, p®)(r) is the local microion charge density in units
of e. In the limit of high salt concentratiofsuch thatn,
=n_),c)(r) reduces to one-half of the local total microion
number density. At lower salt concentrations, however, th
physical meaning ot-(*)(r) is less obvious; it vanishes if
ns=0. The quadratic functionaf is diagonal in the new
fields defined in Eq(20), and can be written as

where the yet undetermined parametgrandw, are given
by y=(n,y,—n_y_)/n andwy=Z€*(y, +y_)/eR. Note
§hat both external field®) (r) andW(r) are constant within
the cores of the colloidal particlekl(r) is Coulombic out-
side the cores, whilaV(r) vanishes there. Thanks to the
diagonalization of the quadratic free-energy functioril
the Euler-Lagrange equatio8) reduce to a set of two un-
coupled equations faii(r) ando(r), or equivalently for the

+ Tl p P+ Fd V], (21)  local deviations

]:[p(l),a'(l)]: Fig(V,T,n ) +F4(V,T,n_)

where the “electrostatic” functional is of the form Ap(r)=p(r)—p, (29

kT

B Ao(r)=a(r)—o. (30)
2(ng+n_)

Ful o= | arton -

We study these two uncoupled equations separately below.

+J drp®M(r)u(r)

C. Minimization of Fy

e2 p (1) pD(r1 The “hard-core” part of the functional21) satisfies the
+ —f er dr'————, (22 stationarity condition
2e Ir—r’|
. . SFnd o]
while the “hard-core” functional reads BT =y, (32
sa'M(r) (D(p)=
alD(r)y=o(r)
kel 1 1 (1) 2 o . .
Fod o ]=—- E+ || drle"(n)—o] which is easily solved with the result

n.n_

+f dra®(rw(r). (23 A(r(r)=(w)[,ug—W(r)]. (32
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The Lagrange multiplieg,, follows from the normalization
condition and reads Bp=

m[p“)])
sp(r)

p (1) =p(r)

Me= MW, (33) kBT _ e2 ;+ Ap(l")
= TAp(r)+U+AU(r)+ ?f dr'———

where we defined the colloid packing fraction [r=r’|
(39
47R3 _ _
7=—3"Np- (34  where U denotes the volume average dfi(r)=U

+AU(r), and whereu,, is a Lagrange multiplier. Care must
) ) _ be exercised in_handling Eq39) in the thermodynamic

The constan, will now be adjusted to satisfy the hard-core |imit, since bothU and the Coulomb integral involve diver-
cpndmon of zero density within the core and constant OUt'gent volume integrals of the Coulomb potential. The two
side. It follows from Eqs(25) and(32) that divergences cancel, but a proper evaluation of the remaining

finite constant is most easily achieved by the use of the

screened Coulomb potentiéd) and the subsequent limiting
, (39  procedurex—0. Substitution of the screened for the bare

Coulomb potential transforms E@9) into

Np

1
U(r)=;{1+ m( nwo—;l w(r—R;))

which reduces to a multicentered sum of Heaviside ste kgT
P == Ap(n)+UN(n)

functions® (x), Mo
— N eZJ exp(—\|r—r']) —
K& +— | dr'—————[p+Ap(r")], (40
o(n)=7—— 2, O(r-R|-R), (36) € Ir—r'| pTap
7i=1
where
provided we set N
UMy =2 uM(r—Ry) (41)
2 j=1
,BWozl_ . (37 ) ) N . o
Y is a multicentered sum over the modified polyion-microion
pseudopotential
The resulting hard-core contributidfy,. to the colloid free
energy follows from evaluation af;,{ o] and reads _ ﬁ exp(—Ar) (>R
€ r '
DA AL P utin= Z€& exp(—\R) 2
he= ke T 2= 5 BWo(1—7) | nWo A (1—y). r<R.
€ R
Vo . .
:kBT1 (389  We now introduce the Fourier transform
-n

Note that the equilibrium profile given in E¢36) does he= fvdrf(r)exq|k-r) (43)

not, strictly speaking, satisfy the hard-core condition, in the

sense that the spherically symmetric profile centered abowtf an arbitrary functiorf(r) defined in a finite volume with
polyioni gives rise to a nonvanishing density within the coreperiodic boundary conditions. Fourier transforming k)
of another polyionj+i. This problem is inherently con- Yyields

nected to the expansion of the functional to quadratic order 1

in the profiles: the resulting stationarity equations give a lin- 3 _ - o)

ear relation between the profile and the multicentered exter- Prp(2m) 5(k)_n Apict BU

nal field, which is unphysical for hard-core interactions. The

specific choice fow given in Eq.(37) is, in that sense, the 4l g

best one within a quadratic functional or a linearized +(k2+)\2)[(277) po(k)+Apy],
Poisson-Boltzmann theory. A similar problem will be en-

countered in the minimization of,,. (44)

wherel = Be?/ ¢ is the Bjerrum length, and with the Dirat
D. Minimization of Fy

The Euler-Lagrange equation associated with the electro- (k)= !
static part(22) of the functionalF reduces to (2m)3

fdrexp(ik-r). (45
\%



PRE 59

Now u, is determined by the normalizatid®), which in-
volves thek=0 Fourier component

APk:OZO- (46)
If we use that (2r)38(k=0)=V, Eq. (46) implies
4’7T|;

The explicit solution of the stationarity conditidd4) now
reads

kZ+\? N (2m)38(k) A? .
2 2Pt n— BUZ,,
k“+ k3 Ky

(48)

Apk: —nNn

where we defined the Debye screening parametemgl
given by
k?>=4mxIn (49

and its modified counterpam?=«?+\2. Clearly, «, re-
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with the spherically symmetric “orbitals”
(n=— fw e ikr)
rN=——- exp(—ik-r)——
Po (2m)3 K%+ k?
kR)+(1 sin(kR)
X|ycoskR)+(1-y)— &
Z-K? eXF(—KI’), FSR
4 r
= _ (54
Z_«? sinh(kr) <R
4 r
The effective charge&. andZ_ are defined by
Z.=7 R)+(1 Sinh(<R)
~=Z| y cosh{kR)+( V)T :
(55)
7 72| ZP RN Rt
<=Z| — o |l1-¥(«R+1)].

duces tox when the limith — 0 is taken at the end of the FOr anyy,«, andR, these profiles satisfy the normalization

calculation. It is essential to substitute the solut{d8) into

Jdrpo(r)=Z. To complete the specification Qiy(r), a

the Coulombic part of the functional to calculate the contri-choice must be made for the yet undetermined parameter

bution to the equilibrium free energy before taking the
—0 limit (cf. the following section and Appendix)AHow-

in the pseudopotentidR7). According to Egs(54) and(55)
the polyion-microion excluded volume condition is satisfied

ever, the form of the charge-density profile in that limit canProvided that

be directly obtained by Fourier transforming the solution
(48) at A =0. This can be seen if one realizes that the multi-

centered character &™) (r), given in Eq.(41), leads to
Np
u<kx>:u<kh>j§l explik-R)), (50)

with u(™ the Fourier transform ofi™)(r) defined in Eq.
(42),

exp(—AR)
ﬁu(k}\):_47T|ZW
sin(kR) sin(kR
X ycos{kR)+(1—y)r|E—R+(?\R) r:ER )
sin(kR) —kRcogkR)
R)2(1— 51
+(AR)X(1-7) R (51)

It is thus easily checked that for any wave vedtor

sin(kR)
kR |
(52)

lim (K2+ X2 BuM = — 4712
A—0

v CogkR)+(1— 1)

The inverse Fourier transformation of E@8) leads, upon
inserting Eqs{(50) anE(SZ) in the limit A\—0, to the equi-
librium profile p(r)=p+Ap(r) of the form

Np
pm=;pw—&x (53

1
Y"1+ kR

(56)

Substitution of Eq(56) into Eq. (55) leads then directly to
the DLVO value of the effective polyion valen¢&0],

eXp(KR)>
1+«R J°

=

(57)

The final expression for the microion-charge distribution, or
double layer, around a polyion is thus

0, r<r
po(r)=1 Zk? exp(kR) exp(— «r) SR (58
47 1+ kR r ' .

The coion and counterion density profiles(r) are obtained
from Eq. (20) by taking the appropriate linear combination
of o(r) andp(r).

We finally note that even the choice for given in Eq.
(56) and the resulting profile of Eq$53) and (58) do not
take a truly proper account of the hard-core conditions. The
reason is the same as encountered above for the equilibrium
profiles of the hard-core functiond.: the profile around
polyion i actually penetrates the core of any other polyion
j#i. This shortcoming is, as already discussed, due to the
linear relation between the inhomogeneity of the profile and
the external potential of the polyions in the stationarity con-
dition. Thus, although the key result summarized by Egs.
(53) and (59) is in itself not new(see, e.g.[9,10), the
present derivation shows that it is, in fact, the best charge-
density profile within the framework of linearized Poisson-
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Boltzmann theory(corresponding to the quadratic free- the initial multicomponent systerpolyions and microions
energy functional Other choices of the pseudopotential into an effective one-component system of “dressed” poly-
parametery are possible. In particulary=0 leads back to ions. The third term on the right-hand side of E§1) may

the effective polyion valenc&. =Zsinh(xR)/«xR advocated be interpreted as the “self-energy” of thé, electric double

by Sogami and Is€23]. Clearly, however, this choice leads layers associated with the individual polyions, or as the en-
to microion orbitals that penetrate “their own” polyion ergy due to the potential well in which the colloidal particles
cores, and is for that reason less favorable than the DLV@eside because of the surrounding oppositely charged distri-

choice of Eq.(56). bution of microions. The fourth term accounts for additional
excluded volume for the microions due to the hard core of
IV. EFFECTIVE POLYION INTERACTION ENERGY the polyions; it vanishes for polyion radil®&=0 since then

7n=0. It also vanishes in the salt-free case, i.e., when only
The microion-induced contributiofr’ to the effective  polyions and counterions are left. The physical interpretation
polyion interaction energy is obtained by substituting the soof the last terms of Eq61) is less transparent, however. It
lutions o(r) andp(r) of the Euler-Lagrange equations into resembles, but is in generabt identical to, the negative of
the free-energy functional. This has already been achieveghe polyion-polyion mean-field contributioﬁ,,;“f, to the to-

for the hard-core part, resulting in E¢38). As already 5] Helmholtz free energy, which with E¢0) can be evalu-
stressed earlier, the explicit calculation of the minimBy)  ated as

of Fg is somewhat trickier, due to nontrivial cancellations

between Coulomb divergences. This requires a detour via the mf )

auxiliary screened Coulomb potentigd), followed by the p :Ean’»szr Ver(r)

limit A—0 onceF/, has been evaluated for any finite value

of N\. The different steps of this procedure are detailed in 1 47e 1+2«R

Appendix A. =55 (Zn V| ——— | (62)
Gathering results from Eq$7), (21), (38), and(A11), we €K (1+«R)

arrive at the final result fo.r thg potential energy in the effec-.l_he difference betweeR™ and the last term of Eq61) is,
tive one-component Hamiltonian, p

apart from the minus sign, the bracketed factor in &%).
Np This factor is unity only for point polyiondR=0. We there-
VIR =0+ 2 ver(Ry)), (59) fore suggest that the final term of E@1) is a reminder of
<] the fact that the free energy of a purely Coulombic system is
. . . . only due to correlations and fluctuations, and does not con-
where vei(R) is the usual DLVO effective pair potential (5in mean-field contributions because of the charge-
between polyions, neutrality condition. Since such a constraint does not hold
for hard-core contributions, the cancellation Fd,ff and the

wz’ r<2R final term of Eq.(61) is not perfect for finite radiuR of the
Ver(F) = Z2e? exp(— k) F>9R (60) polyion, due to the coupling of the Coulomb and hard-core
€ r ' ' contributions. Remarks along these lines have also been

made by Warren in the appendix of RE24].
and whered, is a state-dependent term. This so-called vol- In any given thermodynamic state, the volume term will
ume term isstructure-independente., it does not depend on have no influence on the equilibriustructure of the poly-
the coordinategR;} of the polyions, and is given explicitly ions which is entirely determined by the effective pair poten-

by tial (60). ®, does, however, contribute to all equilibrium
thermodynami@roperties of the system, including the poly-
Do(V,T,ny,ng) =Fig(V,T,n ) +Fig(V,T,n_) ion free energy, and is hence expected to have an influence
2 2 on the phase diagram of the colloidal suspension. This will
_ Z°e” NpkR be examined in the next two sections.
2eR 1+ kR
— 2 V. FREE ENERGY OF THE COLLOIDAL SUSPENSION
no 1 4me ’
+kBT1_ ,7V_§ ex2 (Znp)?V, Given the effective polyion interaction enerdy9), the

next task is to calculate the total free energy of the suspen-
(61)  sion, for fixed temperatur€ and volumeV, as a function of
o the polyion and salt concentrations, or equivalently as a
whereo, 7, and « are defined in Eq925), (34), and(49).  function of the colloid packing fractiom and the salt con-
The last two terms on the right-hand side of EG1) were  centrationn,.
erroneously omitted in our earlier analy$i9]. The impor- Substituting Eq(59) into expression(4) for the total free
tance of these terms, and more particularly of the latter, ignergy we find that the latter naturally splits into three terms:
well illustrated by the significant quantitative differences be- ,
tween the phase diagrams to be discussed later and those F=do+F\P+FE9, (63)
obtained in Ref[19]. _
The existence of a volume term in the total polyion inter-where®, is given explicitly by Eq.(61), ng) is the trivial
action energy is a consequence of the redudtisapping of  ideal free energy of a system of noninteracting polyions, and
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Fifxc) is the excess part of the free energy of polyions inter-

acting via the effective pair potentig0), 80 - ﬁi‘,i'i‘:,‘;?:Lhonon @ ]
O Fluid (sim)
v FCC (sim) -
dRVe Np 5 BCC (sim) 2
P 9= —kgTln f expl —B ven(Ry) | | A
VNp i<i 4

(64)
f (exc)
. .. Y
This excess free energy may be calculated variationally, us:
ing the Gibbs-Bogoliubov inequality

FE)eXC)g FE:;“»—‘,— <AV> refs (65)

whereF &9 is the excess free energy of a reference system

under the same thermodynamic conditions but with pair po-

tentialsv (R;;). The second term on the right-hand side of 0.00 0.01 002 0.03 004 0.05
Eq. (65) is the ensemble average over the reference systerr n
denoted - - - )., Of the potential-energy difference
variational (b) b
Np 30 - - -~ harmonic phornon 7
AV=2, [ven(Rij) ~vred Rij)]. (66) 0 Fta tim) (4
=) o BCC (sim)
/9/

The right-hand side of Eq65) may be minimized with re- 20 | ’

spect to one or several variational parameters characterizin_ .,
the reference pair potentiale(r). This minimum, then, is v
the best estimate for the required quangt§™® .

To calculate the variational free energy of the fluid phase,
a hard-spheréHS) reference system was adopted, and the
right-hand side of Eq65) was minimized with respect to the
reference hard-sphere diametkror equivalently the refer- ’
ence packing fractiomref=(7r/6)npd3. The very accurate
Carnahan-Starling equation of state was used ﬁéﬁfxc), / . . . .
while (AV),. was estimated using the Verlet-Weis improve- 0.00 001 2 a 0.04 005
ment of the Percus-Yevick pair distribution function of the
reference HS fluid25]. The resulting upper bound estimates  FIG. 1. Excess Helmholtz free energ{?® (see texx of a one-
of the excess free energy of the Yukawa syste‘rﬁfc) component system with pairwise hard-core-Yukawa interactions
ZEFEJQXO/NP, have been tested against “exact” Monte (60) for chargeZ= 7300 and diametdd =652 nm, as a function of
Carlo evaluations of this quantity. In these Monte CarloPacking fractions, for salt concentration&) ns=1 M and(b)
simulations ofN,= 256 polyions we employ thermodynamic ns=2 uM. The variational c‘?lculat’!on{;full curves are in all
integration: for a given thermodynamic state point we gradu_cases a_bove the results frqm exact Mont_e Carlo simulation. The
ally switch on the full pair interactiom .(r) starting from harmonic phonon calgulano.ns for the solid free ene(gySheQ.

- . . . curve reproduce the simulations perfectly, except at low densities,

the hard-core fluid26]. Typical results are reported in Fig. here it diction of €9 is patholoaicallv low. The inset i
1: the variational estimates are seen to lie very close to thgere Its predicion oy~ 1S pathologically low. The inse ite)
. » . . . . Shows the fluid free energy in more detail.
exact” results, as will be discussed in more detail below.

The excess free energy in the solid phase was calculated
using an Einstein solid as a reference system. In this case tiseirprisingly accurate in view of the great simplicity of the
variational parameter is the single Einstein phonon frequencgalculation, as illustrated in Fig. 1.
wg which determines all thermodynamic properties of the As expected, the variational free energiisdl curves of
reference system, as well as the mean-square displacementlsfth the fluid and the solid phase are slightly above their
the particles around their lattice sites. The variational calcusimulated valuegsymbolg. The differences are small, how-
lations were carried out for fcc and bcc lattices. Under allever. The phonon model gives extremely accurate free ener-
thermodynamic conditions which were explored, the free engies in the solid phase, as follows from a comparison with
ergy of the fcc lattice turned out to be slightly lower than thatthe simulations in Fig. 1. Unfortunately, the model shows
of the bcc crystal, but the differences are extremely smallunphysical characteristics in the low-density regime, where it
The accuracy of the variational estimates was checkegiredicts pathologically low free energies for the solid phase.
against MC calculations of the free energy based on thé&or that reason we merely used it as a test for the accuracy of
Frenkel-Ladd integration scheni27], and against the pre- the variational calculations, which prove to be reliable in-
dictions of a more realistic phonon model, described in Ap-deed. Consequently, the variatiorlFaEfXC) was used through-
pendix B. The latter reproduce the MC data remarkably wellout in the construction of the phase diagrams to be reported
while the variational free energies turn out to be once morén the following section. We are thus in a position to com-

10
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pute the total free energi3) of the colloidal suspension 30 ' ' ' '
systematically and efficiently for any set of thermodynamic
conditions, as well as all relevant thermodynamic deriva-
tives.

VI. PHASE DIAGRAMS

The phase diagram of a system of particles interacting viage
a screened CoulombYukawa potential of the form(60) E o!
(with R=0) is well known, thanks to the extensive simula-
tion work of Robbinset al. [28]. As expected from the
purely repulsive nature of the pair potential, the phase dia- -10
gram exhibits a single high-temperature fluid phase, with a
freezing line towards a low-temperature crystal phase, which
is of fcc structure for large, and of bcc symmetry at small
x, with a bee-fec-fluid triple point arounden, **=4.9. 000 s s o m s
These calculations do not take into account the state- n
dependence of the effective pair potenti@dd), embodied in ] . ) .
the variations ofc andZ-. with polyion and salt concentra-  F!G. 2. Thermodynamic potentiab=¢—uns in the fluid
tion. Neither do they include the state-dependent volum&Pase of colloids with chargé=3650 and diameterR=462 nm
term (61). In this section we show that these factors have %cs)tzr::glcstlon;ft%(:)ell(;Iffltpe"rchkemgofrrrzcst;)?nZgnsge\;zgzlr\f/léﬁg (:r':rz;f;'ac

i i Ms . -

B;?Iﬁ:t?grl;nggfgvies;? ct(;]r?c;%?fa{ggr{s?f the phase dlagramterized by salt concentratiomg of (1) 46.4uM, (2) 21.5 uM, (3)

: . . 0.0 uM, (4) 4.64 uM, (5) 2.15 uM, and(6) 1.00 uM. The
Due to the charge-neutrality constraints, the polyion-sal igh-salt curve(l) is convex, and thus describes a stable homoge-

.SyStem behqves as a binary mixure Charzl;\cterlzed. by thrqﬁéous fluid phase; the lower salt curves exhibit concave parts from
intensive variables, the temperatdrethe polyion densityl,  \hich common tangent constructions can be performed to yield the
[or, equivalently, the packing fraction as defined in Eq. s of the coexisting gas and liquid phases. Combination of such

(34)], and the salti.e., anion-cation palirconcentratioms.  fiid curves with similar curves for the solid phagmt shown can
To make contact with experimental conditions, all phase diape used in the determination of fluid-solid coexistence.

grams presented below were calculated at room temperature

(T=300 K), and for a solvent d|elegtr|c constaat 78. This  three coupled equatiori§?) for the three remaining concen-
amounts to a Bjerrum length=e“/ekgT=7.2 A. For a  trations numerically. A practical problem of the numerical
given polyion diameteD = 2R and valenc&, the phase dia- yoot-finding procedure involved is its poor convergence if
grams are represented in the,Qs) plane. At any given tnhe initial guess is far from the actual solution. The choice of
temperatureT, the conditions of coexistence of two phases,5 good initial guess is greatly facilitated by considering the
labeled by 1 and 2, are the equalities of the chemical poteN-egendre transform to a “semigrand potentiaks= ¢
tials of polyions ;) and salt fus), and of the osmotic _p_,  which describes the colloidal species canonically
pressured, (fixed %) and the added salt grand-canonicaffixed u.).
Mp(nél),nél))ZMp(néz) ,ng2>), err?m curvesQ(n,us) as a fgncti_on ofy at fixed ug, ex-
ples of which are shown in Fig. 2, common tangent con-
1) (1 2 (2 structions can be performeql th_at are equivalent to sol_ving
ms(Np ) = ps(Np™ ,ng™), (67  Egs.(69). We used a combination of these two numerical
schemes to map out the full phase diagram in then()
p(ng? ) =p(ni? ,n{). plane for various values & andD.
_ ] In the strong screeninghigh salt-concentrationlimit,
The chemical potentials aqd pressures may be cglculateéjbch thateR>1, the two negative van der Waals—like con-
from the free energy per unit volume,=F/V, as obtained ihytions to the volume terni61) are nearly constant, or
in the preceding section, by the usual thermodynamic relagmgjl, or linear i}, so that they are not expected to affect

-20 -

tions the phase diagram very much. This expectation is borne out
by explicit calculations which show that for polyion diam-

u :(M) etersD of the order of a few hundred nanometers and va-
P ang 0 lencesZ of the order of a few thousand, the effect of the

volume termd is insignificant whems=20 M. For such
Ip(ny.ng) sufficiently highng, our calculations predict a simple fluid-
,usz( ) , (68) fce solid phase coexistence similar to that observed when the
n volume term is omitted altogethef28]. The situation
changes dramatically, however, at salt concentratings
P=nNpupt Neits— . <20 uM, i.e., under highly deionized conditions typical of
recent experimental daf&,11,12,14-1% This is illustrated
In practice, phase coexistence is determined by fixing the sait Fig. 2, where the Legendre transfora= ¢—ngu dis-
concentration in one phaﬁe.g.,n(sl)), and solving the set of cussed above is shown versus packing fraction at several

ang
p
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FIG. 3. Room-temperature phase diagram of aqueous colloidal FIG. 5. As in Fig. 3, but withz=2086 andD =349 nm. There
suspensiorichargeZ=7300 and diameteld =652 nm as a func-  is now stable coexistence of a g&) and liquid(L) phase between
tion of colloid packing fractiony and salt concentrations (uM). a critical point () and triple points ). Above the critical point
The narrow fluid(F) to fcc-solid transition ah>20 uM broadens the homogeneous fluidF) phase is stable at low and freezes into
and narrows again at lower salt concentrations. Tthene) tie the fcc solid at higherp. Below the triple point, there i-fcc
lines connect coexisting state points on fifdcken phase bound- coexistence.
aries.

transition, which forng=20 uM is very “narrow” (i.e.,

fixed values ofus. These curves, which correspond to the Shows only a small jump in colloid pa(.:king.fractborsud-
fluid phase of a system with particle diame®r=461 nm 9Ny brofa%enfs enolrrgousr!y at '0""%’ sollgnalmg‘lthoel CO?X'

- ; istence of the fcc solid with a very low-density fluid. In fact,
andZ=3650, are seen to develop a concave region at suffi.> "0 2 7° B8 00 - BT S isyso " (103[4) that tha
ciently low reservoir salt concentration] (corresponding > fluid p P '9 N L .
with ), signaling a van der Waals—like instability which fluid side of the coexistence curve appears to coincide with

: . . ; ; . the ng axis on the scale of the figure. Note that masis
results in the separations into low- and high-density fluid s . . i
phases of the colloidal particles. lowered below 20uM, the packing fraction of the coexist-

Figures 3—6 show the evolution of the topology of theing solid first increases, before decreasing at still lower salt
phase diagram with particle size and valence, assuming thgpncen';ra?ons{reinltranlt/lbetr;]av%{ At thet_very flowetst S‘glt
Z~R? (i.e., the total polyion charge is proportional to the concentrationsns pM, Ihe dissociation of water be-
particle surface The case of the largest particlez= 7300 comes significant. Assuming a pH of 7, the concentrations of
and D=652 nnj is plotted in Fig. 3. The fluid-solid phase

25 T

30

20 -
_____________________ 15 |
o0 b . s
=
=3 Sl
=
[Z]
c
10 E 5
FCC o .
0.00 0.05 0.10
0 ] 1 1 n
0.00 0.05 0.10 0.15 0.20 N .
n FIG. 6. As in Fig. 3, but withz=1217 andD =266 nm. Here

the van der Waals—like instability only persists at such lpthat it
FIG. 4. As in Fig. 3, but withz=3650 andD =461 nm. The is decoupled from the freezing transition. TGeL coexistence ex-
dotted curve denotes a metastable gas-liquid binodal with the critihibits two critical points (<) while the freezing transition does not
cal point indicated byx . show any broadening at low.
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FIG. 8. Lindemann parametérof the fcc solid along the melt-

'bi)lG. 7. ;_rhs re_ferenC(le_ pafcl:]ingﬂ f_rSCti;]mfef (Lninimizir_lg the_ h ing line as a function of the reservoir salt concentratrfor the
?" fS'BO?%'UhOV |nequa;:|tyo.t € fukln phase t, . ﬁoeX'StS wit . same system parameters as in Fig. 7. The melting criteriof of
the fcc solid phase as a function of the reservoir salt concentration. j 15 joes hold at high”, but fails belown<25 wM.

ng for Z=7300 andD =652 nm. The sharp drop af below ng
~25 uM indicates that the rule-of-thumb freezing criterion of packing fractions, of the HS reference fluid that minimizes
7e~0.5 fails when the volume terr, affects freezing. the free energy of the fluid phase in the Gibbs-Bogoliubov
inequality (65) is plotted as a function afi; along the freez-
H™ and OH' ions have been added to the counterion andng line. Herenl, is the salt concentration in a reservoir at
coion concentrations in all calculations; this does not havgnemical potential us. As long asn. exceeds about

any significant effect as long ag>1 uM. The salt con- 55 ;M 5 s nearly constant, and reasonably close to the

centration in the coexisting phases may be read from thg, e 0.5 corresponding to a hard-sphere fluid at freezing.

intersections of the inclined tie lines and the coexistencgg|ow that salt concentrationy,; decreases sharply to a
re

curves in Figs. 3-6. _ _value near zero, indicative of a very dilute gas phéase
The scenario changes continuouslyZagecreases. In Fig. “void"? ) coexisting with the crystal.

4 (Z=3650,D =461 nm) the reentrant character on the solid e reentrant nature of the melting line is clearly illus-
side is less pronounced than #7300, while a metastable 5164 in Fig. 8, which shows the variation of the Lindemann
fluid-fluid phase transition is barely preempted by the fluid-yarameterg in the coexisting solid with the reservoir salt

solid transition. For_ stil I0\r/1ver charg_eée.g.,h thﬂe 'caﬂsqz concentrationnf,. The Lindemann parameter is defined as
_2085 ant;jD—349 nmb:s S .c;]wn ‘!n F'Ql].' )5_td”e yl'd—lwd' the ratio of the root mean square of the displacement of a
transition becomes stable with a “gas-liquid™ critical point ;55| particle(from its equilibrium lattice positionand

at a salt concentrations above that of a gas-liquid-solid e |attice spacingi.e., the nearest-neighbor distanct is
triple point. This phase diagram roughly resembles that of &,y calculated from the Einstein solid that minimizes the
simple molecular system, where the temperaluiays the o0 “energy of the fcc colloidal crystal in the Gibbs-
role of the salt concentratiam, in the colloidal dispersion. A Bogoliubov inequality. While at the higher salt concentra-

difference is, of course, that the temperature in two COeXislgjong g tyrns out to be fairly constant and close to the gen-
ing phases is the same, while the salt concentrations need n&tally accepted “universal” valug=0.15, it drops sharply
necessarily be identical; the tie lines are therefore not hori !

- ' . : .
zontal in Figs. 3—6. At still lower charge the phase topologyat lowerns, goes through a minimum, and then rises again at

changes again, as illustrated in Fig. 6 Br 1217 andD very low salt concentration. This behavior correlates well

=266 nm. A reentrant “gas-liquid” coexistence curve, ex- with the melting line of Fig. 3.
e ) 9 quid o ' The Donnan effect is the reduction of salt concentration in
hibiting an upper and a lower critical point, is how com-

R . lloidal dispersion, compar hat of a reservoir at th
pletely separated from the fluid-solid coexistence curvea colloidal dispersion, compared to that of a reservoir at the

Therefore there is no longer a triple point in this case. Th same chemical potentigls, as the colloid packing fraction

fluid-solid-coexistence is now hardly affected by the Volumgi'ncreases. This effect is illustrated in Fig. 9, which shows a
y y family of ng-7 curves for 10 values of the chemical potential

term @, in the free energy. For particles and charges a few S .
percen(t) smaller than thogs)(la of Fiz. 6, the region ofgthe fluig s’ the salt concentration in the reservoir corresponds to the

fluid 1 . ; X ; ng value atn=0. The figure shows that the Donnan effect
uid instability shrinks further and finally disappears com- ; .
pletely, leading to a stable homogeneous fluid phase fopecomes more pronounced as the reservoir concentnagion
packing fractions below the freezing line. decreases.

Figure 7 shows how the correspondence between the
freezing transition in the colloidal suspension and that of an
underlying HS transition is completely lost as soon as the The present analysis shows that complex phase behavior
contribution of the volume term becomes significant. Themay be expected in highly de-ionized charge-stabilized col-

0 ,
ng [uM]

VIl. DISCUSSION AND CONCLUSION
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not have a significant incidence on phase behavior because
of the restricted range of electron densities and ionic charges.

In the colloid case the parameter space is much wider due to
T the large range of variation of,, R, andZ, and due to the

existence of an additional salt component, which has no ana-

\ log in metals.
107 \ The wealth of possible phase diagrams, induced by the

structure-independent contributiaby, to the free energy, is
illustrated in Figs. 3—6, which summarize the most remark-
able scenarios. For large, highly charged polyions, the fluid-
fce solid freezing transition dramatically widens below a salt
concentration of about 2QuM; the packing fraction of the
0T ] coexisting fluid drops to extremely small values while that of
the coexisting fcc crystalline phase exhibits a reentrant fea-
ture upon loweringng. The sudden broadening of the fluid-
0.0 0.1 0.2 solid density gap is attributed to an underlying metastable
n fluid-fluid phase separation. This is shown explicitly by the
results for smaller polyions in Figs. 4 and 5: the initially
metastable fluid-fluid transitiofFig. 4 becomes stable as
the polyion size and charge decreases, with the emergence of
a fluid-fluid critical point above a fluid-fluid-solid triple
point. This scenario is vaguely reminiscent of the phase dia-
loidal dispersions. While long-range van der Waals attracgrams observed in sterically stabilized colloidal suspensions
tions might induce fluid-fluid phase separation, and eventuin the presence of free polymer cofl,6]. However, in this
ally irreversible flocculation, at high salt concentratip®8],  case the change in topology of the phase diagram is induced
the behavior predicted by the present analysis at very lowy a change in the range of the effective depletion interac-
salt concentrations is of purely electrostatic origin. The keytion, which is essentially attractive, while a volume term
finding is that charge-stabilized colloidal particles may un-similar to® has no incidence on the phase diagram. Finally,
dergo a fluid-fluid(or gas-liquid phase separation for suffi- for yet smaller polyiongFig. 6), the triple point disappears,
ciently low ionic strengths, although they interact via aand the fluid-fluid part of the phase diagram completely
purely repulsive effective pair potential. In other words, theseparates from the fluid-solid coexistence line, with the ap-
experimental observations of a fluid-fluid phase transition dpearance of a lower fluid-fluid critical point. Note that in
not necessarily imply the existence of attractive forces beboth Figs. 5 and 6 the packing fractions of the low-density
tween the charged colloidal particles or polyions. This seem“gas” phase are always very smakxcept very close to the
ingly surprising result is a direct consequence of the reduceritical poin{s)], which may provide an explanation for the
tion of the initial multicomponent problem, involving observed “voids” reported in Refl15]. For diameters and
mesoscopic polyions and microscopic coions and counterieharges a few percent smaller than those of Fig. 6, the fluid-
ons, to a one-component system of dressed polyions interadiuid instability shrinks to a smallep-ng region, and finally
ing via effective screened forces; the effective interactionslisappears completely.
are pairwise additive only within the framework of the ap-  The possibility of a fluid-fluid phase separation of suspen-
proximate, quadratic functional introduced in Sec. Ill. Thesions or solutions of like-charged polyions was already sug-
price to pay for this reduction is the appearance of the stateyested by Langmuif29], who referred to it as “unipolar
dependent volume teri, in the free energy, which has a coarcervation.” His argument was only qualitative, and
profound effect on the phase behavior of the colloidal disbased on the behavior of the osmotic pressure, evaluated
persion. The reduction also leads to a decoupling betweewithin Debye-Hickel theory for simple electrolytes. A simi-
density fluctuations, characterized by the measurable polyiorar, more careful argument was put forward in the thesis of
structure factorS(k), and the observed thermodynamic be-Voorn [30], with specific applications to linear polyelectro-
havior. In a genuine one-component system, fluid-fluid phas#sites. He pointed out that the addition of salt decreases the
separation is signaled by enhanced density fluctuations ne@ndency for phase separation, in qualitative agreement with
the critical point, resulting in a sharp increase of the structurghe predictions of the present work. However, neither Lang-
factor at smallk (long wavelengths In the effective one- muir's nor Voorn’s considerations are directly applicable to
component system of dressed colloidal particl{) is un-  the case of highly charged colloidal particles considered
affected by the vicinity of the critical point of the fluid-fluid here. More recent studies of effective interactions between
phase transition, since it is determined by the purely repuleharged colloidal particles in suspension have revealed inter-
sive effective pair potentia{60), which can only lead to esting mechanisms for pairwise attraction. Some of these re-
regular behavior in th&—0 limit. quire multivalent salt ions, and originate from correlations
It is worth noting that a volume term similar ®, also  and fluctuations in the double laye31,32. The resulting
occurs naturally in the theory of simple metals, where theattractions are, however, very short-ranged, and can therefore
full ion-electron system is mapped onto a system of pseudogrobably not drive a fluid-fluid transition. Moreover, it was
toms interacting via an effective state-dependent pair potershown in Ref[33] that a spherical geometry of the particles
tial [21]. However, in the metal case this volume term doessuppresses attractions compared to a plate geometry. In Ref.

n, [mol/]

pry
<
L

FIG. 9. Donnan effect foZz=7300 andD =652 nm. For each
curve the salt chemical potentialg is fixed; the corresponding
reservoir salt concentratian], equals the value afig at »=0.
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[34] another mechanism for attraction is put forward. The K2+ \2

attraction there originates from the Coulomb-depletion effect ~ gFy=—3 :J k——— BUNBULY

caused by an intricate interplay between Coulombic and (27) LSRN

steric interactions. It would be interesting to study its effect, 02 1 4m]

together with the volume term introduced here, on the phase - M2, 7o) L =TT

diggrams. p +2V Kf (BULZ9) +pBU o+ 2 )2 peV.
The main conclusion of this paper, namely the possibility

of a fluid-fluid phase separation due to Coulombic and ex- (A2)

cluded volume interactions alone, is reminiscent of a similar ' _ .

phase separation predicted for very dilute symmetric electro?V® first focus on the e\(aluat|on of the second lineA®),

lytes, modeled by the “restricted primitive mode[35] of ~ and then treat the first line. o o

oppositely charged hard spheres. Both in this symmetric It follows directly from Eq.(50) thatUyZ=Nyuy=,, and

model and in the extremely asymmetric case investigatefence from Eq(51) that

here, the phase separation is driven by a delicate balance

between like-charge repulsion and opposite-charge attrac- — ™) — 1 R%1+2y)
tion. The polyion-microion asymmetry and the presence of pBUi=o=—4mlpZn, N2 6 V+O(\R),
salt appear, however, to add further complexity to the phase (A3)
diagrams.

where theO(AR) are irrelevant in the limit of interesk

—0. A similar expansion reveals
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APPENDIX A 2 52 “Memp) Vo3 2 (Z1p)7V
In this appendix we calculate the minimum valg of 1 47l
the functionalF, defined in Eq.(22) by inserting the mini- =—3 —Z(an)zv, (A5)
K

mizing profile(53). It proves essential to use the regularized
Coulomb potentia(3) throughout, and take the limit— 0 at o
late stages of the calculation. It proves convenient to use th@here we used the electroneutrality condities Zn,. The
Fourier representation throughout. In this representation the-dependent contributions cancel identically. The remaining
functional reads term of Eq.(A5) is independent ok, and therefore consti-
tutes thex — 0 limit of the second line of EqA2).

We now calculate the first line of E¢A2), which can be
rewritten with Eq.(50) as

1 1 k24 K2
BFe J dk )\ZAP(-I&AP(#)

2n (27)° K2+ — f K2 )2 N Np Np
- = dk BU Buy explik-R;;)
f L | dkBUNA P+ pBUN 4 = 22y 2 (2m*) i EIE ’
(2my® SN 4 B e in(kR;)
n T © Sl
(A1) =—3 > :

with U™ defined in Eqs(50) and(51), « andx, in Eq.(49),
n=n,+n_ the total microion number density, ant k?+ Kf
=e?/ekgT the Bjerrum length. Inserting the equilibrium pro-

file of Eg. (48) into the functional(Al) gives its minimum  where we performed the angular integrals explicitly. It fol-
value lows from Eq.(51) and a straightforward expansion that

Buipu, (A6)
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T e
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,_%g: Z2e? exp—«kR;j) Z%? 1
el_i<]‘ € R” € R”
1477622 2y Z%e? X BIN
2 6K2( o) 2¢ © (7, < RINp.
(A11)

The first line in Eqg.(A8) is recognized as the difference

which upon insertion into EA6) leads to integrals that can petween screened and bare Coulomb interactions of all pairs

be performed easily with contour integration techniques. The;f polyions at separation®

terms in the double sum in EqA6) must then be distin-
guished between those witih=]j (for which R;;=0) and
those withi # j (for which R;;>2R because of the hard-core
repulsion between the polyionsThe terms # give rise to
the integral

n 4w fw Sln(kR”)
4 (217-)3 — kR”

(471Z)? sin(kR) | 2
XI(ZTKZ vCcogkR)+(1— 1) kR
Z2l sinh(«R) 2

:7 ’)/COS“KR)'F(]._’}/)K—R
XeXF(_KRij)_Z_ZIi
Rij 2 Rij

_ZZlexp—«Ry) Z% 1

2 Ri; 2 R

2 Ry’ (A8)

where we used the definition of the effective charye of

Eqg. (55). The factors 1/2 in Eq(A8) correct for double
counting ofi#j terms in the double sum in EGA6). The

termsi=j in Eq. (A6) give rise toN,, identical integrals

n 4 ©  (4712)? sin(kR)\ 2
_Z(ngfwdk(k:-;c)z (VCOS“‘R””_” &
Z2
:—TKh(’y,KR), (A9)

where the dimensionless functitiy,x) is given by

exp—2x)—1+2x

h(y,x)=(1-1y)?

2x2
1—exp—2x) exp—2x)+1
+2y(1-y) — v > :
(A10)

Gathering the results of this appendix redué€s from
Eq. (A2) to

ij» with the effective charge
numberZ.. determining the strength of the pairwise screened
repulsions. The bare Coulomb interactions cancel, in the cal-
culation of the effective polyion potentia\}’éeﬁ), the bare
polyion-polyion contribution fronH , of Eq. (3). The second
line of Eq.(A11) is independent of the coordinatBs of the
polyions. Its first term, which was missed in the analysis of
Ref. [19], appears after carefully taking the limit—0. Its
physical interpretation is discussed in the main text.

It is easily checked that((1+x) 1,x)=(1+x)"%, and
hence the second term in the second line of(B41) equals,
for each of theN, polyions, — (Ze)?/[2e(x 1+ R)] for our
choicey=(1+ «R) 1. This is of the order of the Coulombic
energy of charges-Ze and +Ze separated by a distance
«k~1+R in a medium of dielectric constart It thus repre-
sents the self-energy of aN, dressed polyion, i.e., bare
polyions of charge- Ze with double layers of thickness™*
and net charge-Ze. It can also be interpreted as the poten-
tial energy of theN, polyions due to the potential well cre-
ated by the double layers. For the Sogami-Ise cheied, it
is easily checked frorh(0,x) =[ exp(—2x)—1+2x]/(2x?) that
the second term in the second line of E411) gives rise to
a free-energy contribution Z@€)%/(4€R)[exp(—«R)—1
+2«R]/(«R) per colloidal particle. This contribution is iden-
tical to the one in Eq(44) of Ref.[23]. Although it has the
same characteristics as the one we obtained fieal/(1
+«R), it was not considered as a driving term for phase
separation in Ref23]. Instead, the focus there has been on
the (controversial transformation from the Helmholtz to
Gibbs effective pair interactiof36].

APPENDIX B

We calculate the free enerdyp of a system ofN=nV
independent three-dimensional harmonic oscillators of mass
m fixed onN sites in a volume V. Throughout we assume a
Debye spectrum

wg(k)=CglK| (B1)

for the longitudinal 6=1) and transversals& 2,3) modes.
Later on we adjust the sound velocitiegs=1,2,3) to be
consistent with the screened Coulomb pair potentials given
in Eq. (60), such thatFp+®, is an estimate for the free
energy F of the solid phase of a colloidal crystal. Within
classical statistical mechanics, each mode contributes an
amount kgTIn[AwyK)/kgT] to the total free energyp,
while the ground-state energy, or Madelung energy, contrib-
utes an amount,, per particle. Hence we have formally



2024 van ROIJ, DIJKSTRA, AND HANSEN PRE 59

FD=Num+kBTVJdwg(w)ln[ﬁw/kBT], (B2) D(R-R')=—(VVy)(R-R')+dzr > (VVu)(R-R")
RH

B
where we introduced the total phonon densigyfw) (B9

=32_,94(w). The phonon densitgy(w) of the branches s a 3x 3 matrix involving tensor combinations of the gradi-

=1,2,3 is defined by ent operatolV. Sincemawg(k)? for s=1,2,3 are eigenvalues
. of Dy, it follows that for anyj=1,2, ...,
gu(0)= (ZW)J dkol w—ws(k)] B |
Tr(D'= 2, (Mwi(k)), (B9)
w?(27%cY), o< wsp st
_{O, ®>wgp, B3 where Tr is the trace over aX33 matrix. Hence we have

for the even moments
where we used EdB1) and introduced the Debye frequency

wsp=CcKp. The Debye wave numbds, is a cutoff such 1 3 ,
that the normalization conditiofi;dwg(w)=3n is satisfied, K= 3f de w3 (k)
i.e., kp=(67?n)3. Inserting Eq.(B3) into Eq. (B2) and (2m)*k<kop  s=1
performing the elementary integrals yields n 3sinkeR) — 3k-Rcog k-R) |
"1l bR nkpR) —3kpRcogkpR)
D JkeT+In(nA%—1 moAR (koR)®
NkgT _ Um/KeT+In(
n .
~—Tr(D(R=0)), (B10)
mJ

3
+|n[3\/77_/2]+% Zl In[mc2/kgT], (B4)

where we usea=k3/672 and the oscillating character and
with thermal wavelengtih =7/y27mkgT. The first line of  rapid decay of the fraction between the large parentheses in
Eq. (B4) is the Madelung and ideal gas contribution, thethe second line. We are interested in a spherically symmetric
second line is the excess part in terms of the sound velocitigotentialv (r), with radial derivatives’(r)=dv(r)/dr and

Cs, to be calculated below. v"(r)=d?(r)/dr?, and hence
We now introduce the even momenis; of the phonon
distribution, Vo(r)=v'(nr,
MZJZJ dwg(w)(l)ZJ (J =123...). (B5) VVU(r): v :r)|+ U”(r)_ v :r))ﬁ:, (Bll)
It is easily checked from EqB3) that the Debye spectrum R
gives rise to with the 3x 3 unit matrix| and radial unit vector=r/r.
, 3 Using that Td=3, Trrr’=r-r’, and TrVV=A, the La-
Mua 3nkp ﬁ placian, we can write from Eq$B8) and (B10) that
keT 5 &5 keT’
mMZ n
Mg 3K (mcg)z y T ~ keTio A0 (R
(kgT)? 7 &1\ kgT (B6)
m2,u4 n ” 2 ’ 2
If we realize thatc;=c; and c,=cs=c, , then Eg.(B6) K = (T2 Fgo {[v"(R)]*+2[v"(R)/R]%}
constitutes two equations for the two unknown longitudinal B B
(cy) and transversald( ) sound velocities, in terms of the yet n 2
unknown momentg., andu,. We now calculate these mo- + > Tr( > (VVv)(R)) . (B12)
ments independently in terms of the pair potentiél) be- (kgT) R#0

tween the particles that constitute the harmonic solid; the , . ) ) )
sound velocities; andc, can then uniquely be determined The numerical evaluation of the final term in B®12) is
from Eq.(B6), and the free energy from E¢B4). greatly facilitated by the fact that the matrix

First we use that the spectrufBl) is actually defined
such thatmw?(k) for s=1,2,3 are the eigenvalues of the 3 M=, (VVv)(R) (B13)
X 3 dynamical matrix R#0

is diagonal in the basis of the principal crystallographic di-
rectionsx,y,z due to the inversion symmetry of the lattice.
Moreover, due to isotropy all three eigenvalues are identical
where the sum is over a Bravais lattice, and where and hence from EqB11) we have

Dk=§R‘, D(R)exp(ik-R), (B7)
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v'(R)
R

V'R

. less sound velocitiemcf/ksT andmc’/kgT follow. These
| v"(R) - —5— (R-2)?

M :ngo . (B14)  can, subsequently, be used to evaluate the second line of Eq.
(B4). The full evaluation ofF also requires the Madelung

Using Eq.(B14) it is straightforward to evaluate the lattice €nergyuy, given by the lattice sum

sums in Eq(B12) for a given pair potentiab(r); the lattice

constanta (along a principal axisis fixed by the number _

density and the symmetry of the lattice. For fcc we have tm Fge:o v(R). (B19)

= (4/n)*3, for bcca=(2/n)*. The resulting numerical val-

ues foru, andw, then provide the left-hand side of E@6)  which can also be evaluated directly numerically for a given
explicitly, from which numerical values for the dimension- v(r).
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