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Abstract. We study the phase behaviour and structure of model colloid–polymer mixtures. By

integrating out the degrees of freedom of the non-adsorbing ideal polymer coils, we derive a

formal expression for the effective one-component Hamiltonian of the colloids. Using the two-

body (Asakura–Oosawa pair potential) approximation to this effective Hamiltonian in computer

simulations, we determine the phase behaviour for size ratios q = σp/σc = 0.1, 0.4, 0.6, and

0.8, where σc and σp denote the diameters of the colloids and the polymer coils, respectively. For

large q, we find both a fluid–solid and a stable fluid–fluid transition. However, the latter becomes

metastable with respect to a broad fluid–solid transition for q 6 0.4. For q = 0.1 there is a

metastable isostructural solid–solid transition which is likely to become stable for smaller values of

q. We compare the phase diagrams obtained from simulation with those of perturbation theory using

the same effective one-component Hamiltonian and with the results of the free-volume approach.

Although both theories capture the main features of the topologies of the phase diagrams, neither

provides an accurate description of the simulation results. Using simulation and the Percus–Yevick

approximation we determine the radial distribution function g(r) and the structure factor S(k) of

the effective one-component system along the fluid–solid and fluid–fluid phase boundaries. At

state-points on the fluid–solid boundary corresponding to high colloid packing fractions (packing

fractions equal to or larger than that at the triple point), the value of S(k) at its first maximum is

close to the value 2.85 given by the Hansen–Verlet freezing criterion. However, at lower colloid

packing fractions freezing occurs when the maximum value is much lower than 2.85. Close to the

critical point of the fluid–fluid transition we find Ornstein–Zernike behaviour and at very dilute

colloid concentrations S(k) exhibits pronounced small-angle scattering which reflects the growth

of clusters of the colloids. We compare the phase behaviour of this model with that found in studies

of additive binary hard-sphere mixtures.

(Some figures in this article appear in colour in the electronic version; see www.iop.org)

1. Introduction

In 1954, Asakura and Oosawa showed that when two large (colloidal) bodies are immersed in

a solvent consisting of smaller macromolecules, an effective attractive interaction is induced

between the two bodies due to an unbalanced osmotic pressure arising from depletion of the

macromolecules in the region between the bodies [1]. The range of this effective interaction is

equal to the size of the macromolecules and the strength of the attraction is proportional to the

osmotic pressure of these [1]. Independently, and more than twenty years later, Vrij showed

that attractive interactions are induced between the colloids in colloid–polymer mixtures due

to the presence of the non-adsorbing polymers [2]. Moreover, he demonstrated the existence of
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a spinodal instability in what is now termed the Asakura–Oosawa model. In this simple model

for the colloid–polymer mixture, the colloids are modelled as hard spheres with diameter σc,

whereas the polymer coils are treated as interpenetrating, non-interacting particles as regards

their mutual interactions. However, the polymers are excluded by a centre-of-mass distance

of (σc + σp)/2 from the colloids where σp, the diameter of the polymer coil, is given by

σp = 2Rg with Rg the radius of gyration of the polymer. In the same paper, Vrij also

presented experimental evidence for fluid–fluid separation in a mixture of silica particles and

polystyrene [2]. A few years later, Gast et al [3] employed an effective-pairwise-potential

model based on the Asakura–Oosawa depletion potential to calculate the phase equilibria for

colloid–polymer mixtures. Using a standard liquid-state perturbation theory with the hard-

sphere system as a reference, they found that the addition of polymer broadens the fluid–solid

coexistence region enormously when the size of the polymer coils is small compared to that of

the colloids. In addition, for sufficiently large size ratios q = σp/σc a stable fluid–fluid and a

three-phase coexistence of a colloidal gas, liquid, and solid were found. Phase diagrams with

similar topologies as functions of q were found by Lekkerkerker et al using the so-called free-

volume approach [4]. The key quantity in this approach is the statistically averaged volume

that is available for the polymers at a given polymer fugacity. Using a low-density expansion

for the polymers and employing scaled-particle expressions for the volume that is available

in the hard-sphere system, the free energy is then obtained directly, since the polymers are

assumed ideal. Experimental studies of colloid–polymer mixtures corroborated the existence

of a stable fluid–fluid (gas–liquid) phase separation and also showed that this has a sensitive

dependence on the size ratio [5,6]. While it is now well accepted that the topology of the phase

diagram of colloid–polymer mixtures depends critically on the size of the polymer coils, or

equivalently on the range and strength of the effective attractive interactions induced by the

presence of the polymers, a full understanding of the systematics is still lacking.

There is less information on the structure of these mixtures. As most theoretical

approaches are based on perturbation theories, taking the hard-sphere system as a reference,

little detailed structural information has been obtained. However, more experimental data are

becoming available on the structure of these mixtures. Static colloid–colloid structure factors

S(k) were measured recently in the colloidal liquid phase at triple coexistence, for different

size ratios, using a novel application of two-colour dynamic light scattering [7]. There are

also recent neutron scattering determinations of S(k) for a series of size ratios and polymer

concentrations [8]. The new experimental results [7] motivated Louis et al [9] to calculate

the three partial structure factors for the Asakura–Oosawa model using the Percus–Yevick

approximation. Although the authors claim that their theoretical results compare reasonably

well with those of the experiments, direct comparisons between the two sets of data are difficult

to make since the phase behaviour was not determined within the integral equation theory,

i.e. one does not know whether the theoretical results for S(k) correspond to state-points that

are close to the solid–fluid phase boundaries or, indeed, to three-phase coexistence†.

In this paper, we attempt a systematic investigation of the phase equilibria and the structure

of the Asakura–Oosawa model of colloid–polymer mixtures using computer simulation. Our

aims are to assess the reliability of the existing theories for the phase behaviour of this

model system and to examine the predictions for the colloid–colloid pairwise correlation

functions.

† Note that the state-point (ηc = 0.404, ηr
p = 0.6) for size ratio q = 0.37 in figure 4 of reference [9] for the Asakura–

Oosawa pair potential is well inside the fluid–solid coexistence region obtained in our simulation (see figure 1(b),

later). If we compare the state-point (ηc = 0.404, ηp = 0.15) for the binary Asakura–Oosawa model considered in

the same figure with the phase diagram calculated from the free-volume approach [4], we find that this also lies well

inside the fluid–solid region.
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It is well known that direct simulation of the Asakura–Oosawa model, which is a highly

asymmetric non-additive binary mixture, is prohibited by slow equilibration, as huge numbers

of polymers are needed per colloid particle at the state-points of interest. Previous simulation

studies [10] represented the polymers by ideal particles on a lattice or by lattice chains. Another

way to circumvent this problem is to take advantage of the large size asymmetry by mapping

the binary mixture onto an effective one-component system. Recently, it was shown that an

effective one-component Hamiltonian for the large spheres can be derived for a binary hard-

sphere mixture by formally integrating out the degrees of freedom of the smaller spheres [11].

This effective Hamiltonian consists of zero-body, one-body, two-body, and higher-body terms.

The phase behaviour and pair correlation functions of the large spheres are then determined

by Monte Carlo simulations of an approximation to the effective Hamiltonian [11]. A similar

approach is applied here to the Asakura–Oosawa model. The zero- and one-body terms are

much simpler in this case and the two-body (pairwise-additive) term is precisely that given

by the Asakura–Oosawa pair potential. Moreover, for size ratios q < 0.154, three-body and

higher-body terms are identically zero, so the mapping to the two-body approximation to

this effective Hamiltonian is exact in this regime. We perform Monte Carlo simulations for

the effective Hamiltonian truncated at the pairwise term, i.e. using the Asakura–Oosawa pair

potential, and we determine the phase behaviour and structure of the effective one-component

system for size ratios q = 0.1, 0.4, 0.6, and 0.8.

The paper is organized as follows. In section 2, we describe the model and derive an

explicit expression for the effective one-component Hamiltonian by integrating out the degrees

of freedom of the polymer coils. In section 3, we present results of computer simulations

based on the approximate effective Hamiltonian. Phase diagrams and the pairwise correlation

functions are shown for each size ratio. In section 4 the phase diagrams are compared with

those from the perturbation theory treatment of this effective Hamiltonian and with those

from the free-volume approach. In section 5, we compare the phase diagrams calculated in

perturbation theory for the Asakura–Oosawa pair potential model, i.e. for the binary non-

additive hard-sphere mixture, with the corresponding ones for the additive binary hard-sphere

mixture. Although these share some common features there are significant differences in the

variation of the phase equilibria with size ratio. We conclude, in section 6, with a summary

and discussion of our results.

2. Model

We consider a suspension of sterically stabilized colloidal particles immersed together with

non-adsorbing polymers in an organic solvent. As the differences in length scales and time

scales between the solvent molecules and the colloids and polymers are huge, we can assume

the solvent to be an inert continuum, thereby ignoring the degrees of freedom of the individual

solvent molecules. Within this framework, effective potentials between the colloidal particles

and the polymers can be envisaged, and these are often assumed to be pairwise additive. The

interaction between two sterically stabilized colloidal particles in an organic solvent is close

to that between hard spheres, whereas dilute solutions of polymers in a theta-solvent can be

represented by non-interacting or ideal polymers. A simple idealized model for such a colloid–

polymer mixture is the so-called Asakura–Oosawa model. This is an extreme non-additive

binary hard-sphere model in which the colloids are treated as hard spheres with diameter σc

and the interpenetrable, non-interacting polymer coils are treated as point particles but which

are excluded from the colloids to a centre-of-mass distance of (σc + σp)/2. The diameter of

the polymer coil is σp = 2Rg with Rg the radius of gyration of the polymer. The pairwise
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potentials in this simple model are given by

φcc(Rij ) =

{

∞ for |Rij | < σc

0 otherwise

φcp(Ri − rj ) =

{

∞ for |Ri − rj | < 1
2
(σc + σp)

0 otherwise

φpp(rij ) = 0.

(1)

Here Ri and rj are the positions of the centres of the colloids and the polymer coils, respectively,

while Rij = Ri −Rj and rij = ri −rj . Most theoretical studies of colloid–polymer mixtures

are based on this Asakura–Oosawa model. However, even within the context of the model it

has been necessary to make approximations or assumptions in order to arrive at quantitative

predictions for the phase behaviour, and the calculated phase behaviour and structure appear

to be very sensitive to the precise details of the assumptions. In this paper, we take advantage

of the large size asymmetry, and integrate out the degrees of freedom of the (small) polymer

coils to obtain an effective Hamiltonian for the (large) colloids. Below, we describe briefly

how we map the binary mixture of colloids and polymers with interaction Hamiltonian H

onto an effective one-component system with Hamiltonian H eff . Our derivation follows that

in reference [11].

Thus, we consider Nc colloids and Np ideal polymer coils with size ratio q in a macro-

scopic volume V at temperature T . The total Hamiltonian consists of (trivial) kinetic energy

contributions and a sum of interaction terms:

H = Hcc + Hcp + Hpp

where

Hcc =

Nc
∑

i<j

φcc(Rij )

Hcp =

Nc
∑

i=1

Np
∑

j=1

φcp(Ri − rj ) (2)

Hpp =

Np
∑

i<j

φpp(rij ) = 0.

It is convenient to consider the system in the (Nc, V , zp, T ) ensemble, in which the fugacity

zp = 3−3
p exp(βµp)

of the polymer coils is fixed. Here µp denotes the chemical potential of the reservoir of

polymer coils and β = 1/kBT . The thermodynamic potential F(Nc, V , zp) of this system can

be written as

exp[−βF ] =

∞
∑

Np=0

z
Np

p

Nc!3
3Nc
c Np!

∫

V

dR
Nc

∫

V

dr
Np exp[−β(Hcc + Hcp)]

=
1

Nc!3
3Nc
c

∫

V

dR
Nc exp[−βH eff ] (3)

where H eff = Hcc + � is the effective Hamiltonian of the colloids, and 3ν is the thermal

wavelength of species ν. Here � is the grand potential of the fluid of ideal polymer coils in the



Structure of model colloid–polymer mixtures 10083

external field of a fixed configuration of Nc colloids with coordinates {Ri}; i = 1, 2, . . . , Nc:

exp[−β�] =

∞
∑

Np=0

z
Np

p

Np!

∫

V

dr
Np exp[−βHcp]

=

∞
∑

Np=0

z
Np

p

Np!

(

∫

V

drj exp

[

−

Nc
∑

i=1

βφcp(Ri − rj )

]

)Np

= exp

[

zp

∫

V

drj exp

[

−

Nc
∑

i=1

βφcp(Ri − rj )

]]

. (4)

Once �, and thus H eff , are known for all values of zp, the thermodynamics and the phase

behaviour of the mixture can be determined. To this end, we expand � in terms of the Mayer

function

fij ≡ f (Ri, rj ) = exp[−βφcp(Ri − rj )] − 1

and find

−β� = zp

∫

V

drj

Nc
∏

i=1

(1 + fij )

= zp

∫

V

drj +
Nc
∑

i=1

zp

∫

V

drj fij +
∑

Nc
∑

i<k

zp

∫

V

drj fijfkj

+
∑

Nc
∑

i<k<l

∑

zp

∫

V

drj fijfkjflj + · · · . (5)

Using standard diagrammatic techniques [11, 12], we can rewrite −β� in terms of diagrams:

−β� = s + g s + g s

g

@@ + g s

g

@@

g

+ · · · (6)

where (i) each black circle represents a factor zp and an integral of rj over the volume V , and

(ii) each open big circle connected with a black circle represents an f -bond and a summation

over all different colloids at positions Ri for i = 1, . . . , Nc. The grand potential � can then be

classified according to the number n = 0, 1, 2, . . . , Nc of colloids that interact simultaneously

with the ‘sea’ of ideal polymer, so

β� =

Nc
∑

n=0

β�n.

We give explicit expressions for β�n for n = 0, 1, and 2. Since the polymers are assumed to

be non-interacting, the expansion (6) is, of course, much simpler than the corresponding result

for binary hard-sphere mixtures [11] where extra classes of diagrams, containing small–small

Mayer bonds, appear.

The first diagram, −β�0, is equal to zpV and is the grand potential of a pure system

of ideal polymer at fugacity zp in a volume V . For an ideal polymer, zp can be replaced

by βpr(zp) or by ρr
p(zp), where pr(zp) is the pressure and ρr

p(zp) is the density of the ideal

polymer in the corresponding reservoir. It follows directly from equation (5) that the second

diagram, −β�1, can be interpreted as −zpNc times the volume that is excluded for a polymer

coil by a single colloid. Thus, we find

−β�1 = −zpηc(1 + q)3V (7)
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where ηc = (π/6)σ 3
c Nc/V is the colloid packing fraction. �2 can be written as a sum of pair

potentials:

�2 =

Nc
∑

i<j

φAO(Rij )

where we can show that βz−1
p φAO(Rij ) is the difference in free volume of the polymers when

two colloids are separated by a finite distance Rij ≡ |Ri − Rj | and when they are separated

by infinite distance. The exact expression for the potential was derived by Asakura and

Oosawa [1]:

βφAO(Rij ) =































−
πσ 3

pzp

6

(1 + q)3

q3

×

[

1 −
3Rij

2(1 + q)σc

+
R3

ij

2(1 + q)3σ 3
c

]

for σc < Rij < σc + σp

0 for Rij > σc + σp.

(8)

This Asakura–Oosawa pair potential describes an attractive potential well close to the surface

of the colloid, whose depth increases linearly with increasing zp. The range of the potential is

given by σp.

The higher-order �n correspond to n-body potentials. For size ratios q < 0.154, three

or more non-overlapping colloids cannot simultaneously overlap with a small one [3], and

diagrams consisting of three or more open big circles are identically zero in equation (6). For

these small size ratios, the mapping of the two-component Asakura–Oosawa model onto the

effective one-component Hamiltonian based on pairwise additive Asakura–Oosawa potentials

is exact. More precisely, the effective one-component Hamiltonian

H eff = H0 +
Nc
∑

i<j

φeff(Rij ) (9)

with effective pair potential

φeff(Rij ) = φcc(Rij ) + φAO(Rij )

and

βH0 ≡ β(�0 + �1) = −zp(1 − ηc(1 + q)3)V

should generate thermodynamic properties and (equilibrium) correlation functions which are

identical to those from the original Asakura–Oosawa model of the binary fluid. Note that

since H0 is independent of the coordinates {Ri} of the colloids, this term does not influence

the colloid–colloid correlation functions; these are determined for a given polymer fugacity,

size ratio, and colloid density by the pair potential φeff . Moreover, since H0/V is linear in the

colloid density, this term does not affect the phase equilibria, although it does contribute to the

pressure of the colloid–polymer mixture. This scenario is equivalent to that for the additive

hard-sphere mixture [11]. However, it is important to recognize that in the additive case the

corresponding pairwise effective Hamiltonian is not exact, as higher-body potentials, arising

from non-vanishing small–small interactions, persist even for q 6 0.154.

When the size ratio q > 0.154, three-body and certain higher-body terms will be non-zero.

More precisely, we expect an increasing number of higher-body terms to become non-zero

when q increases. This can be made plausible by geometric arguments, since the number

of non-overlapping colloidal spheres that can simultaneously overlap with a polymer coil

increases when q increases. In what follows we shall set �n = 0 for n > 3 and employ the
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effective Hamiltonian (9) for all values of q. This is then equivalent to the approach adopted in

the pioneering study by Gast et al [3]. Their effective Hamiltonian is simply postulated to be

the second (pairwise) contribution in (9). As they did not perform a systematic integrating out

of the polymer degrees of freedom they do not obtain H0 or the higher-n (>2)-body potentials.

As q increases higher-body terms should play an increasingly important role.

3. Results of simulations using the effective Hamiltonian

3.1. Phase diagram

In order to determine the phase diagram of the effective one-component system, we first

calculate the thermodynamic potential F , defined in equation (3) with Heff given by (9), as

a function of Nc, V , and zp. For convenience we usually replace the dependence on zp by

that on the reservoir packing fraction ηr
p. As the free energy cannot be measured directly in

a Monte Carlo simulation, we use thermodynamic integration to relate the free energy of the

effective system to that of a reference hard-sphere system at the same colloid packing fraction

ηc. To this end we introduce the auxiliary effective Hamiltonian

H eff
λ =

Nc
∑

i<j

(φcc(Rij ) + λφAO(Rij )) (10)

where 0 6 λ 6 1 is a dimensionless coupling parameter: at λ = 0 the auxiliary Hamiltonian

is that of the pure system of Nc hard spheres, while at λ = 1 it is the effective Hamiltonian of

interest (for fixed zp and V ). It is a standard result [13–15] that

F(Nc, V , zp) = F(Nc, V , zp = 0) +

∫ 1

0

dλ

〈

Nc
∑

i<j

φAO(Rij )

〉

Nc,V ,zp,λ

(11)

where F(Nc, V , zp = 0) is the free energy of the pure reference system of hard spheres (λ = 0),

for which we use the Carnahan–Starling expression [16] for the fluid, and the analytic form for

the equation of state proposed by Hall [17] for the solid phase. In the latter case an integration

constant is determined such that the simulation results for fluid–solid coexistence of the pure

hard-sphere system are recovered [18]. The angular brackets 〈· · ·〉Nc,V ,zp,λ denote a canonical

average over the system of Nc colloids interacting via the auxiliary Hamiltonian H eff
λ . The

integrand in equation (11) can, for a fixed λ, be measured in a standard MC calculation; for

the numerical λ-integration we use a ten-point Gauss–Legendre quadrature [19].

In order to map out the phase diagram the free-energy density f = F/V must be

determined from λ-integrations for many state-points (ηc, zp). We chose therefore to simulate

relatively small systems, with Nc = 108. We employ common-tangent constructions at fixed

zp to obtain the coexisting phases, i.e. we fitted polynomials to f and computed the pressure

and chemical potential at each ηc. The densities of the coexisting phases can then be determined

by equating the pressures and chemical potentials in both phases. For more details we refer

the reader to reference [11].

The above procedure has been carried out to determine the phase diagrams for size ratios

q = 0.1, 0.4, 0.6, and 0.8. In figure 1, we show the resulting phase diagrams in the (ηc, η
r
p)

plane. This representation, which is the natural one given our approach, implies that the tie

lines connecting coexisting state-points are horizontal. At ηr
p = 0 our procedure ensures that

we recover the known freezing transition of the pure hard-sphere system for all q. We have not

calculated the actual polymer packing fraction ηp in each of the coexisting phases of the binary

mixture so we have not determined the tie lines in the (ηc, ηp) plane. ηp can be obtained from

simulations of the effective Hamiltonian and we shall discuss this topic in a future publication.
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Figure 1. Phase diagrams of model colloid–polymer mixtures with size ratios (a) q = σp/σc = 0.1,

(b) q = 0.4, (c) q = 0.6, and (d) q = 0.8 as functions of the colloid packing fraction ηc and the

ideal polymer coil reservoir packing fraction ηr
p as obtained from simulations of the effective one-

component Hamiltonian. F and S denote the stable fluid and solid (fcc) phase. F + S, F + F, and

S + S denote, respectively, the stable fluid–solid, the (meta)stable fluid–fluid, and the metastable

solid–solid coexistence region. The asterisks denote state-points at which pairwise correlation

functions were calculated.

For q 6 0.4, an enormous widening of the fluid–solid transition is observed when

ηr
p increases sufficiently. This implies that the coexisting fluid and solid phase become

progressively more dilute and dense, respectively, upon increasing ηr
p. This widening is

consistent with earlier findings by Gast et al [3] in perturbation theory studies of the same

pair potential model (see section 4.1). It has also been observed in experiments on colloid–

polymer mixtures [5, 6] and in simulations of hard spheres and lattice polymers [10]. The

shape of the coexistence curves implies that for small values of q the fluid phase only persists

to very low values of ηc when ηr
p is sufficiently high. The calculations also reveal the existence

of a fluid–fluid transition. However, for q = 0.1 and 0.4 we find this fluid–fluid coexistence

is metastable with respect to the broad fluid–solid transition. For q > 0.6 the fluid–fluid

coexistence becomes stable. Assuming a linear dependence on q of the difference between the

polymer reservoir packing fraction at the triple point and at the critical point, we can estimate

that the liquid phase becomes metastable for size ratios q 6 0.45. This value of the size ratio
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is equal to the corresponding crossover value estimated from direct simulations of a lattice

version of the Asakura–Oosawa model, in which the polymer spheres are restricted to a cubic

lattice [10], but which make no other approximation. Thus the crossover value, where the

liquid state becomes ‘marginal’, appears not to be sensitive to the neglect of three-body and

higher-body terms. However, if we compare our phase diagrams with those of reference [10],

we find that for a given q our critical point and triple point are both located at lower polymer

reservoir packing fractions and that the difference between the polymer reservoir packing

fractions at the critical point and at the triple point is severely underestimated.

For q = 0.1, the phase diagram exhibits an isostructural solid–solid transition, i.e.

coexistence between two face-centred-cubic (fcc) colloidal crystal phases. This solid–solid

coexistence region is found to be metastable with respect to the solid–fluid transition, although

the critical point of the solid–solid binodal is very close to the stable fluid–solid phase boundary.

Note that for small reservoir packing fractions ηr
p, the effective pairwise (depletion) potential

of additive binary hard-sphere mixtures reduces to the Asakura–Oosawa pair potential. Thus

one expects very similar phase equilibria for the two types of mixture at small values of the

reservoir packing fraction. Since the phase boundaries of the additive hard-sphere mixture

shift to small reservoir packing fractions for small values of q [11], the phase boundaries

for very asymmetric additive hard-sphere mixtures should resemble those of very asymmetric

non-additive colloid–polymer mixtures. Indeed, the location of the solid–solid transition in

our model colloid–polymer mixture for q = 0.1 is very close to its location in the phase

diagram of the additive hard-sphere mixture at the same size ratio [11]. For more extreme size

ratios the phase boundaries of the present effective one-component Hamiltonian should lie

even closer to those obtained from the effective Hamiltonian description of the additive binary

hard-sphere mixture. Thus for q = 0.05 and 0.033, the cases considered in reference [11],

the phase boundaries of the present model resemble closely those computed in [11]. As the

latter results show that the solid–solid coexistence becomes stable for q 6 0.05, it follows that

solid–solid coexistence should also be stable in the same range of q for the present effective

Hamiltonian. This conclusion takes on more significance when we recall that for q < 0.154

the mapping to the effective one-component Hamiltonian (9) is exact. We may infer that the

full Asakura–Oosawa model of the colloid–polymer mixture will exhibit a stable solid–solid

transition for q 6 0.05.

3.2. Colloid–colloid structure

In this subsection we turn our attention to the structure of the model colloid–polymer mixtures.

Given that we determined the phase diagrams in subsection 3.1, we can now calculate the

colloid–colloid radial distribution function g(r) and the structure factor S(k) in the fluid phase

but close to the phase boundaries. We performed simulations with Nc = 1000 colloids,

interacting with the same effective pair potential that we used to calculate the phase diagrams.

The structure factor S(k) was calculated directly, using

S(k) = N−1
c 〈ρ(k)ρ(−k)〉 where ρ(k) =

Nc
∑

i=1

exp(ik · Ri).

In figures 2–8, we show g(r) and S(k) for four size ratios at the state-points denoted by the

asterisks in figure 1. The packing fractions of the state-points are given in table 1.

We also calculated the structure factor and radial distribution function for the effective

one-component system using the Percus–Yevick (PY) closure, which is expected to be accurate

for short-ranged pair potentials of the type that we consider here [12]. These results are plotted

in the same figures as the simulation results. The overall level of agreement between the PY
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Figure 2. The radial distribution function g(r/σc) and the structure factor S(kσc) for the effective

one-component system, based on the Asakura–Oosawa pair potential (8), with size ratio q = 0.4 at

the two different state-points A and B, denoted by the asterisks in figure 1(b) and given in table 1.

The solid lines are the PY results and the open circles are those obtained from simulations.

results and those of simulation is remarkably good. The only significant differences are at the

first maximum of S(k) (near 2π/σc), where PY approximation appears to underestimate the

height slightly for certain state-points.

For each value of q the state-point A is at ηc ' 0.48 and ηr
p = 0.20. In each case the

effective pair potential is relatively shallow and its range is not very short. Thus we expect

to find g(r) and S(k) which are similar to those of the hard-sphere fluid close to freezing and

this is what is observed. The attraction has little effect at this large colloid packing fraction.

State-point B corresponds to the triple point for q = 0.6 and 0.8. ηc remains large but the

polymer reservoir packing fraction ηr
p is also large, so the effect of attraction is greater than at

points A. This leads to somewhat larger values of g(σc) and to substantially larger values of

S(k) at small k than for hard spheres. Point B for q = 0.4 is not a triple point. We shall return

to the results for state-points B in section 6 when we make comparison with experiments.

State-point C is close to the fluid–fluid critical point for q = 0.6 and 0.8 and lies slightly below

the metastable critical point for q = 0.4. In all three cases S(k) exhibits a steep rise as k → 0,

characteristic of Ornstein–Zernike behaviour. The small-angle scattering appears to be just

as pronounced for q = 0.4, for which the point C is separated from the metastable critical
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Figure 3. The radial distribution function g(r/σc) and the structure factor S(kσc) for the effective

one-component system, based on the Asakura–Oosawa pair potential (8), with size ratio q = 0.4 at

the two different state-points C and D, denoted by the asterisks in figure 1(b) and given in table 1.

The solid lines are the PY results and the open circles are those obtained from simulations.

point by the solid–fluid boundary, as for q = 0.6 and 0.8, where the critical points are stable.

The situation is very different for q = 0.1. Here state-point C lies close to the solid–fluid

boundary but is far removed from the metastable critical point. Figure 8 shows that there is no

increase in S(k) at small k for this state. It is important to note that the PY results capture the

Ornstein–Zernike behaviour, when it occurs, as well as all the other features in S(k) and g(r).

This suggests that the PY approximation should yield critical points in the neighbourhood of

those found in simulation.

State-points D correspond to very dilute colloid packing, i.e. ηc = 0.02. They lie on the

‘gas’ side of the fluid–fluid coexistence curve for q = 0.6 and 0.8, and, for q = 0.4, point D

is very close to the fluid–solid phase boundary. The pair potential is strongly attractive since

ηr
p is 0.6 or 0.5. As the colloid density is very low the maxima in S(k) are much reduced

in comparison to other state-points. The pronounced increase in S(k) at small k is found for

similar low-density states of the rare-gas fluids Ar, Kr etc [20]. It reflects the fact that the

compressibility is large, due to the influence of attractive interactions, giving rise to S(0) > 1.

The contact values g(σc) are also large, and they increase with decreasing size ratio. This

trend can be attributed to the fact that the well depth −φAO(σc) increases as q decreases and
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Figure 4. The radial distribution function g(r/σc) and the structure factor S(kσc) for the effective

one-component system, based on the Asakura–Oosawa pair potential (8), with size ratio q = 0.6 at

the two different state-points A and B, denoted by the asterisks in figure 1(c) and given in table 1.

The solid lines are the PY results and the open circles are those obtained from simulations.

that g(r) ∼ exp(−βφeff(r)) for these low densities. Note that g(r) decays to a value close to

unity over the range (σp) of φeff(r), i.e. the clustering of the colloids is confined to this range.

The structure factors for q = 0.4 reinforce the observation made in earlier work [11]

that the Hansen–Verlet [13] freezing criterion is not universally applicable. Points D and C

lie close to the fluid–solid phase boundary but the heights of the first maximum S(km) are

1.06 and 1.6, respectively. These values are far below the value 2.85 required by the one-

phase freezing criterion. The latter is somewhat more reliable for points B and A. But there

the colloid packing fraction ηc > 0.43, so one expects to have fairly large values of S(km).

For q = 0.6 and 0.8 freezing occurs for high values of ηc and the criterion appears to be

obeyed.

Recently Vliegenthart et al [21] have performed computer simulations of the phase

behaviour and structure factor of models with Lennard-Jones 2n − n pairwise potentials.

For n > 11 the potential is sufficiently short ranged that the fluid–fluid coexistence becomes

metastable with respect to fluid–solid, i.e. the critical temperature lies below the fluid–solid

phase boundary. Several of the features that they find in their structure factors are similar to

those that we obtain here.
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Figure 5. The radial distribution function g(r/σc) and the structure factor S(kσc) for the eff-

ective one-component system, based on the Asakura–Oosawa pair potential (8), with size ratio

q = 0.6 at the two different state-points C and D, denoted by the asterisks in figure 1(c) and

given in table 1. The solid lines are the PY results and the open circles are those obtained from

simulations.

4. Results of approximate theories

In this section we focus on approximate theories of the phase equilibria of colloid–polymer

mixtures. Given that we adopted the effective one-component Hamiltonian (9) we can employ

standard techniques, e.g. integral equation or perturbative methods. We have already seen from

section 3.2 that the PY integral equation theory yields a very good account of the colloid–colloid

correlations. However, such theories do not lend themselves so readily to investigations of the

phase equilibria; issues of thermodynamic self-consistency become important.

Here we consider first a simpler approach—namely thermodynamic perturbation theory,

pioneered by Gast et al [3] for the present model.

The second approach is the free-volume theory of Lekkerkerker et al [4].

As the performance of these theories had not been fully assessed, either in relation to

each other or to the results of simulation, we calculate the phase behaviour predicted by both

theories for size ratios q = 0.1, 0.4, 0.6, and 0.8 and compare with the results of the previous

section.



10092 M Dijkstra et al

0 1 2 3 4 5
r/σc

0

1

2

3

4

5

6

g(r/σc)

(A)

0 10 20 30
kσc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S(kσc)

(A)

0 1 2 3 4 5
r/σc

0

1

2

3

4

5

6

7

g(r/σc)

(B)

0 10 20 30
kσc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S(kσc)

(B)

Figure 6. The radial distribution function g(r/σc) and the structure factor S(kσc) for the effective

one-component system, based on the Asakura–Oosawa pair potential (8), with size ratio q = 0.8 at

the two different state-points A and B, denoted by the asterisks in figure 1(d) and given in table 1.

The solid lines are the PY results and the open circles are those obtained from simulations.

4.1. Perturbation theory

The simplest form of perturbation theory is the so-called high-temperature expansion, which

to first order in β gives the Helmholtz free energy of the perturbed system as [12]

βF

N
=

βF0

N
+

1

2
βρ

∫

dr g0(r)w(r) (12)

where F0 and g0(r) are the free energy and radial distribution function of the reference

system, ρ ≡ N/V , and w(r) is the perturbing potential. The second-order terms in the high-

temperature expansion involve three- and four-body distribution functions of the reference

system, which are in general unknown. However, Barker and Henderson [22] have derived an

alternative formulation of the second-order term which involves only two-body correlations

and which is much more convenient for practical calculations. When the Barker–Henderson

second-order term is included, the free energy is given by

βF

N
=

βF0

N
+

1

2
βρ

∫

dr g0(r)w(r) −

(

∂ρ

∂p

)

0

1

4
βρ

∫

dr g0(r)w
2(r). (13)
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Figure 7. The radial distribution function g(r/σc) and the structure factor S(kσc) for the effective

one-component system, based on the Asakura–Oosawa pair potential (8), with size ratio q = 0.8 at

the two different state-points C and D, denoted by the asterisks in figure 1(d) and given in table 1.

The solid lines are the PY results and the open circles are those obtained from simulations.

The second-order term is proportional to the compressibility of the reference system and this

result is often referred to as the macroscopic compressibility approximation.

The most natural way to calculate the thermodynamic properties of the present system with

pairwise potential φeff is to treat φAO as a perturbation and take hard spheres as the reference

system. The first such study was due to Gast et al [3] who calculated phase diagrams for a

selection of size ratios using the second-order expression (13). In order to gain a more complete

picture we adopt the same approach and map out the phase diagrams for q = 0.1, 0.4, 0.6,

and 0.8. In each case the free energy is calculated from (13) and the coexisting densities are

determined by the common-tangent construction.

The reference hard-sphere free energies for the fluid and solid phases were provided by

the Carnahan–Starling [16] and Hall [17] expressions, respectively and the reference system

radial distribution functions used were those of Verlet and Weis [23] for the fluid phase and

Kincaid and Weis [24] for the solid. The calculated phase diagrams are given in figure 9 and

comparison with the simulation results of figure 1 shows that this perturbation theory gives

good overall predictions for the fluid–solid transition, but gives a poor account of the fluid–fluid

transition for small q. For q = 0.6 and q = 0.8, where the effective pair potential is relatively
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Figure 8. The radial distribution function g(r/σc) and the structure factor S(kσc) for the effective

one-component system, based on the Asakura–Oosawa pair potential (8), with size ratio q = 0.1

at state-point C denoted by the asterisk in figure 1(a) and given in table 1. The solid lines are the

PY results and the open circles are those obtained from simulations.

Table 1. The state-points at which the colloid–colloid structure factors and radial distribution

functions were determined in terms of the packing fraction ηc of the colloids and the packing

fraction ηr
p of polymer coils in the reservoir. These state-points are denoted by asterisks in figure 1.

State-point ηc ηr
p

q = 0.1

C 0.250 0.160

q = 0.4

A 0.475 0.200

B 0.425 0.400

C 0.240 0.440

D 0.02 0.500

q = 0.6

A 0.480 0.200

B 0.440 0.600

C 0.230 0.490

D 0.02 0.600

q = 0.8

A 0.480 0.200

B 0.470 0.730

C 0.210 0.485

D 0.02 0.600

long ranged, the phase diagram resembles that of a simple (e.g. Lennard-Jones) liquid, with ηr
s

playing the role of an inverse temperature. In both cases the triple points are in good agreement

with those of simulation, and the critical points are at the correct values of ηc but are too low

in ηr
p. For q = 0.4 the triple and critical points lie close to one another, but the fluid–fluid

transition remains stable for this size ratio. In contrast to the simulation results, which show
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Figure 9. Phase diagrams of model colloid–polymer mixtures as obtained from perturbation theory

of the effective one-component Hamiltonian with size ratios (a) q = σp/σc = 0.1, (b) q = 0.4,

(c) q = 0.6, and (d) q = 0.8 as functions of the colloid packing fraction ηc and the ideal polymer

coil reservoir packing fraction ηr
p . F and S denote the stable fluid and solid (fcc) phase. F + S,

F + F, and S + S denote, respectively, the stable fluid–solid, the (meta)stable fluid–fluid, and the

metastable solid–solid coexistence region.

that the fluid–fluid transition becomes metastable for q 6 0.45, the perturbation theory yields

a crossover value of q ∼ 0.31. For q = 0.1 the fluid–solid phase boundary becomes more

structured and the melting line flattens for ηr
p ∼ 0.08. An isostructural (FCC–FCC) solid–solid

transition is obtained, and, in agreement with the simulation results, this is weakly metastable

with respect to the fluid–solid transition. It should be noted that this solid–solid transition was

not identified in the original work of Gast et al [3]. Perturbation theory gives a good account

of the solid–fluid phase boundaries for q = 0.1. The only difference lies in the slope of the

freezing line at low ηr
p; perturbation theory gives a positive slope whereas simulation yields a

negative slope. On the other hand, the perturbation theory fails to predict a realistic fluid–fluid

transition for q = 0.1. In particular, the critical point is shifted to unphysically high values of

ηc, a defect which is found to become even worse as q becomes smaller.

In order to determine the sensitivity of the results to details of the perturbation theory,

the effect of using different expressions for the hard sphere g0(r) was investigated. The two



10096 M Dijkstra et al

expressions used were the Percus–Yevick result and the more accurate empirical result of Verlet

and Weis. We find that while the fluid–solid transition is largely unaffected by the choice of

g0(r), the fluid–fluid phase boundary is quite sensitive. Using the Verlet–Weis expression

moves the critical point to lower ηr
p-values, an effect which becomes more pronounced

at smaller q-values. The main difference between the Percus–Yevick and the Verlet–Weis

expressions is that the Percus–Yevick one underestimates the contact value g0(σc). As φAO

is deepest at contact, any variation in g0(σc) is heavily weighted in the perturbation integrals

and so affects the phase behaviour accordingly. We also investigated the effect of omitting the

Barker–Henderson second-order term. We find that this alters the value of the free energy by

typically less than five per cent. The effect on the phase boundaries is found to be negligible for

the fluid–solid and small for the fluid–fluid transition. In other words, first-order perturbation

theory leads to essentially the same results as the second-order results given in figure 9.

4.2. Free-volume theory

A second, alternative approach to calculating the phase behaviour of colloid–polymer mixtures

was proposed by Lekkerkerker et al [4]. While this can be viewed as a type of perturbation

expansion, its basis is very different from the approach described above. It does not work from

the outset with the effective Hamiltonian (9), i.e. the Asakura–Oosawa pair potential does not

appear explicitly. Rather than following the original presentation of the theory [4] we give

an alternative treatment which clarifies the status of the various approximations. Consider the

thermodynamic identity

βF(Nc, V , zp) = βF(Nc, V , zp = 0) +

∫ zp

0

dz′
p

(

∂βF(Nc, V , z′
p)

∂z′
p

)

(14)

where zp is, as usual, the polymer fugacity. The integrand can now be Taylor expanded about

zp = 0:

βF(Nc, V , zp) = βF(Nc, V , zp = 0) + zp

(

∂βF(Nc, V , zp)

∂zp

)

zp=0

+ O(z2
p). (15)

The partial derivative can be obtained from equations (3) and (5) and is given by

−

(

∂βF(Nc, V , zp)

∂zp

)

zp=0

= Trc

(

exp[−βHcc]

∫

drj

Nc
∏

i=1

(1 + fij )

)

/

Trc exp[−βHcc]

(16)

where Trc is short for the integral
∫

V
dR

Nc over the coordinates of the colloidal particles. Due

to the form of the Mayer function fij for the colloid–polymer interaction, equation (16) can be

interpreted as the average free volume available to a polymer coil in a system of Nc colloids

when zp = 0. Equation (15) can be rewritten as

βF(Nc, V , zp) = βF(Nc, V , zp = 0) − zp〈Vfree〉zp=0 + O(z2
p). (17)

This derivation follows that of [11] where an identical expression is derived for the additive

binary hard-sphere mixture. As the polymer is ideal, zp can be replaced by βpr(zp), where

pr(zp) is the pressure of the reservoir. In contrast to the binary hard-sphere case [11], this

replacement is exact. The free-volume theory [4] retains only the first-order term, neglecting

terms O(z2
p) and higher. With this assumption, equation (17) can be written as the sum of two

terms:

F(Nc, V , zp) = F0(Nc, V ) − pr(zp)αV (18)
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where α ≡ 〈Vfree〉zp=0/V is the free-volume fraction of a test polymer in the colloidal system

with packing fraction ηc. The first term is the Helmholtz free energy F0 of a pure hard-

sphere fluid at the given ηc, while the second can be interpreted as the grand potential of ideal

polymers free to occupy a volume αV . All information about the interactions between colloid

and polymer is now contained in the variation of α with ηc. As previously, the Carnahan–

Starling or Hall expressions are used for F0 in the fluid and solid phases, respectively. An

approximate expression for α can be obtained by use of scaled-particle results (see [4]) which

give

α = (1 − ηc) exp(−Aγ − Bγ 2 − Cγ 3) (19)

where γ = (ηc)/(1 − ηc), A = 3q + 3q2 + q3, B = 9q2/2 + 3q3, and C = 3q3. The chemical

potential µc and total osmotic pressure 5 can now be found by differentiation:

µc =

(

∂F

∂Nc

)

V,zp

= µ0(ηc) − pr(zp)

(

dα

dηc

)

πσ 3
c /6 (20)

5 = −

(

∂F

∂V

)

Nc,zp

= p0(ηc) + pr(zp)

(

α − ηc

(

dα

dηc

))

(21)

where µ0 and p0 are the chemical potential and pressure of the hard-sphere fluid. The volume

fractions of the colloidal particles in each of the coexisting phases, η1
c and η2

c , are obtained by

equating µc and 5 at fixed ηr
p.

In order to assess the performance of the free-volume theory, phase diagrams were calc-

ulated for the same size ratios q = 0.1, 0.4, 0.6, and 0.8 as in our previous calculations. The

results are shown in figure 10. For q = 0.4 the value of ηc at the critical point is in rather good

agreement with the previous perturbation theory result but the free-volume theory predicts the

fluid–fluid transition to be more strongly stable. Nevertheless we find that for q 6 0.32 the

fluid–fluid transition becomes metastable with respect to a broad fluid–solid transition. It is

surprising that the two theories should give similar results for the q-value at which metastability

first occurs, as they follow quite independent routes. However, neither theory agrees with the

simulation prediction of metastability at q 6 0.45. The solid–fluid ‘chimney’ for q = 0.4

does not exhibit the rapid broadening with increasing ηr
p that is seen in the simulation and

perturbation theory results. For q = 0.1, the melting line does not flatten out as much as in

perturbation theory or simulation. On the other hand, the slope of the freezing line for small ηr
p

is given correctly by the free-volume approach. In contrast with simulation and perturbation

theory, no solid–solid transition was found in the free-volume approach. However, we do

find a spinodal instability in the solid phase, but this instability is very broad and disappears

in the fluid phase. We were therefore not able to find a metastable solid–solid coexistence

using the common-tangent construction. The fluid–fluid transition again shifts to unphysically

high ηc but in an even more extreme way than in perturbation theory, with a critical point at

ηc ∼ 0.55. The comparisons for q = 0.1 have special importance as this is an example of a

mixture, with q 6 0.154, where the mapping to the effective one-component Hamiltonian is

exact. Thus our simulations should determine, to within statistical accuracy, the ‘exact’ phase

equilibria of the binary mixture. It is significant, therefore, that the free-volume theory fails to

capture quantitatively some of the features of the simulation results, i.e. the shape of the melting

line and the development of the solid–solid transition. For q = 0.6 the free-volume theory

yields a fluid–fluid critical point quite close to that of simulation and perturbation theory. The

solid–fluid ‘chimney’ remains unbroadened, however, leading to a triple point at ηr
p ∼ 1.37

whereas the simulation value is at about 0.60. This trend is maintained for q = 0.8 where

the free-volume estimate of ηr
p at the triple-point increases to ∼3.21, while our simulation
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Figure 10. Phase diagrams of model colloid–polymer mixtures as obtained from the free-volume

approach with size ratios (a) q = σp/σc = 0.1, (b) q = 0.4, (c) q = 0.6, and (d) q = 0.8 as

functions of the colloid packing fraction ηc and the ideal polymer coil reservoir packing fraction

ηr
p . F and S denote the stable fluid and solid (fcc) phase. F + S and F + F denote, respectively, the

stable fluid–solid and the (meta)stable fluid–fluid coexistence region. Note the difference in scale

of ηr
p for q = 0.6 and 0.8.

gives the value 0.73. Note that since the polymer is assumed ideal there is no constraint on

the values of ηr
p within the model. It is, of course, more difficult to assess the accuracy of the

free-volume theory for large values of q. In this regime three-body and higher-body potentials

will certainly play a role and these are not incorporated in the present simulations or in the

perturbation theory. Some many-body effects are incorporated into the free-volume approach

as the free volume, given by (16), does include the effects of higher-order interactions.

Returning to the failings of free-volume theory for q 6 0.154, we see that these must be

attributed to the neglect of O(z2
p) and higher-order terms. We can rewrite the exact expression

(14) as

βF(Nc, V , zp) = βF(Nc, V , zp = 0) − V

∫ zp

0

dz′
p α(z′

p, ηc) (22)

where α(zp, ηc) ≡ ηp(zp, ηc)/η
r
p is the ratio of densities of the polymers in the binary mixture

to that in the reservoir, for given fugacity zp and packing fraction ηc of the colloids. More
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precisely, ηp(zp, ηc) = 〈Np〉zp
πσ 3

p/6V where 〈Np〉zp
denotes the average number of polymers

in the (Nc, V , zp) ensemble. If α(zp, ηc) is replaced by its low-density limit α(0, ηc) ≡ α,

we recover (18). In reality, however, the free-volume fraction is not independent of zp; there

is no reason to expect the polymer packing fraction ηp to increase linearly with the reservoir

fraction ηr
p at fixed ηc. In the case of additive binary hard-sphere mixtures, simulation studies

showed [11] that significant deviations from linearity do occur for q = 0.10, even at small

values of the reservoir packing fraction, when the packing fraction of the big spheres becomes

substantial. Small changes in α(zp, ηc) can have a dramatic effect on the phase equilibria since

derivatives of this fraction with respect to ηc determine the conditions for coexistence. It is

not obvious how to improve systematically upon the basic approximation which sets α(zp, ηc)

equal to its value at zp = 0.

5. Connection with additive binary hard-sphere mixtures

In this section we shift our attention to the additive binary hard-sphere mixture, which is

closely related to the Asakura–Oosawa model considered previously. Once more we adopt an

effective one-component Hamiltonian and calculate the phase equilibria using thermodynamic

perturbation theory as in section 4.1. The motivation for this investigation is firstly to determine

the accuracy of the perturbation theory by comparing the results with those of recent computer

simulations of the binary mixture [11] for q = 0.1 and q = 0.2, and secondly to compare

the evolution of the phase diagram as q is reduced with that of the Asakura–Oosawa model in

order to identify any common trends or significant differences.

5.1. Phase diagrams obtained from the depletion potential

The binary hard-sphere model consists of a mixture of large and small hard spheres with

diameters σ1 and σ2, respectively, and with size ratio q = σ2/σ1. For the additive case the pair

potential between species 1 and 2 is described by a diameter σ12 = (σ1 + σ2)/2. Theoretical

studies of the phase equilibria for small q have been largely inconclusive, particularly with

regard to the existence of a fluid–fluid demixing transition. However, recent simulations [11]

have resolved this issue and shown that although a fluid–fluid transition does occur for small

q, this remains metastable with respect to a broad fluid–solid transition. The simulation

study also found stable solid–solid transitions at very small size ratios [11]. Here we adopt

the same strategy as in section 2 and in reference [11], i.e. we take advantage of the size

asymmetry of the problem and integrate out the degrees of freedom of the small spheres. The

resulting effective Hamiltonian consists of zero-body, one-body, two-body, and many-body

terms. As in reference [11] we retain only the two-body contribution and neglect all higher-

body interactions. The pair potential can, once again, be identified with the depletion potential

between two large spheres in a sea of small particles. In the present case the depletion potential

is more complicated than that for ideal small particles, where it is simply the Asakura–Oosawa

potential (8), and there are no exact results available for arbitrary q and ηr
2. We use an

approximation given by Götzelmann et al, which provides an excellent fit to simulation results

for the depletion potential for two hard spheres in a sea of small hard spheres for q = 0.1 and

reservoir packing fractions ηr
2 as large as 0.34 [25]. The same potential was employed in [11]

as it has a simple (polynomial) form:

βφdep(Rij ) = −
1 + q

2q
(3x2ηr

2 + (9x + 12x2)(ηr
2)

2

+ (36x + 30x2)(ηr
2)

3) for − 1 < x < 0 (23)
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where

x = Rij/σ2 − 1/q − 1.

Contact corresponds to Rij = σ1 or x = −1. The total effective pair potential is

φeff = φ11 + φdep, where φ11 is the hard-sphere potential between two large spheres. Examples

of φdep and comparisons with φAO are given in figures 11 and 12. For simplicity we set

φdep = 0 for Rij > σ1 + σ2, i.e. it has the same range as φAO. In reality the (hard-sphere)

depletion potential exhibits exponentially damped oscillations as Rij → ∞ [26] but these

should not be important for the phase behaviour. The key difference between φdep and φAO is

the development in the former of a repulsive barrier, whose height increases with increasing

ηr
2. Note that to first order in ηr

2, equation (23) reduces to the Asakura–Oosawa potential

(8) evaluated in the so-called Derjaguin approximation (valid for q → 0) [25]. It should
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Figure 11. Phase diagrams of additive binary hard-sphere mixtures with size ratios (a) q =

σ2/σ1 = 0.1, and (b) q = 0.2, as functions of the large-sphere packing fraction η1 and the

small-sphere reservoir packing fraction ηr
2 as obtained from the perturbation theory of the effective

one-component Hamiltonian. F and S denote the stable fluid and solid (fcc) phase. F +S, F +F, and

S + S denote, respectively, the stable fluid–solid, the (meta)stable fluid–fluid, and the metastable

solid–solid coexistence region. The effective pair potentials for the additive binary hard-sphere

mixture (dashed lines) and the Asakura–Oosawa pair potential (solid lines) for the colloid–polymer

mixture are shown together on the right-hand side for ηr
2 = 0.1 (faint) and 0.3 (bold).
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Figure 12. Phase diagrams of additive binary hard-sphere mixtures with size ratios (a) q =

σ2/σ1 = 0.4, and (b) q = 0.6, as functions of the large-sphere packing fraction η1 and the

small-sphere reservoir packing fraction ηr
2 as obtained from the perturbation theory of the effective

one-component Hamiltonian. F and S denote the stable fluid and solid (fcc) phase. F + S and

F + F denote, respectively, the stable fluid–solid and the metastable fluid–fluid coexistence region.

The effective pair potentials for the additive binary hard-sphere mixture (dashed lines) and the

Asakura–Oosawa pair potential (solid lines) for the colloid–polymer mixture are shown together

on the right-hand side for ηr
2 = 0.2 (faint) and 0.4 (bold).

be emphasized once more that in this additive case there is no exact mapping between the

partition functions of the full binary system and the effective one-component system, even

for q 6 0.154, because the interactions between the small spheres can still mediate many-

body forces. Nevertheless, comparison with the results of direct simulations of the true binary

hard-sphere mixture showed that the effective (two-body) Hamiltonian provides an accurate

description of the fluid–solid phase boundary for size ratios q = 0.2, 0.1, and 0.05 and of

the solid–solid boundary for q = 0.1 and 0.05 [11]. This implies that the higher-body terms,

omitted in the effective-pairwise-depletion approximation, do not play an important role for

the additive hard-sphere case.

In order to calculate the phase behaviour we adopt the second-order perturbation theory

used in section 4, treating the pair potential (23) as the perturbation with hard spheres as the

reference. The calculated phase diagrams are shown in figures 11 and 12 as functions of the
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large-sphere packing fraction η1 and the small-sphere reservoir packing fraction ηr
2†. Our

results for q = 0.1 and q = 0.2 can be compared directly with the simulation results of

reference [11]. We find that the perturbation theory provides a good overall account of the

solid–fluid transition. As was the case for the Asakura–Oosawa potential, the only noticeable

difference lies in the slope of the freezing line at low ηr
2; whereas perturbation theory indicates

that this is positive, the simulations suggest that it is negative. Perturbation theory yields a

metastable solid–solid transition for q = 0.1 similar to that found in simulation. The critical

point of this transition continues to lie very close to the fluid–solid phase boundary as q is

reduced to below 0.1, and the transition may even become stable for sufficiently small q-values,

again in agreement with the simulation [11]. As was the case for the model colloid–polymer

mixture, perturbation theory gives a very poor account of the (metastable) fluid–fluid transition.

For q = 0.1 this occurs at unphysically large values of η1; the critical point is near η1 = 0.6,

whereas simulation gives η1 ∼ 0.25 [11]. When q increases to 0.2 the metastable fluid–

fluid critical point shifts to a slightly lower value η1 ' 0.56 and a reservoir packing fraction

ηr
2 ' 0.31. In simulation, however, there is no indication of the fluid–fluid transition for this

particular size ratio; it has shifted to very high (unphysical) values of ηr
2 [11]. Simulation

results are not available for q = 0.4 and 0.6 but we note that for q = 1 there is no fluid–

fluid transition. As q is increased, the fluid–fluid critical point moves to lower η1 but to only

slightly higher ηr
2. Indeed the fluid–fluid transition is predicted to be only weakly metastable

for q = 0.6 but we believe that this is an artifact of the perturbation theory. In reality the

transition should have already disappeared at q = 0.2.

5.2. Comparison with results of the Asakura–Oosawa model

The phase diagrams shown in figures 11 and 12 can be compared with those from simulation

(figure 1) and from perturbation theory (figure 9) for the Asakura–Oosawa effective pair

potential. Comparison with the latter is more straightforward as both sets of results are

obtained from the same theoretical framework. For each value of q the phase diagrams in

figures 11 and 12 are accompanied by a plot of the corresponding Götzelmann and Asakura–

Oosawa effective pair potentials, each given at two different values of ηr
2. For small values

of ηr
2 the two potentials are very similar, but as ηr

2 increases the repulsive barrier develops

in the Götzelmann potential and the well depth is deeper than that of the Asakura–Oosawa

potential. The phase diagrams for q = 0.1 show striking similarities. The fluid–solid and

solid–solid phase boundaries of the two models are very close. As mentioned in section 3, the

main reason for this is that for q = 0.1 most of the interesting phase behaviour occurs at low

values of ηr
2 and in this region the two depletion potentials are quite similar. The solid–solid

critical point lies slightly lower in ηr
2 for the Götzelmann potential which is a result of the

less attractive tail, as the solid phase g0(r) gives more weight to the tail of the potential in the

perturbation integrals. The broadening of the fluid–solid transition occurs marginally faster

with increasing ηr
2 for the Götzelmann potential than for the Asakura–Oosawa potential. This

reflects the greater well depth of the Götzelmann potential, as the fluid phase g0(r) gives the

contact value of the potential more weight in the perturbation integrals and so initiates the

broadening at lower ηr
2 than for the Asakura–Oosawa potential.

The fluid–fluid transition is very different in the two models as the depletion potentials

differ considerably for the relevant (high) values of ηr
2. As q is increased the phase diagrams

† We note that E Velasco, G Navascués and L Mederos (private communication) have investigated the phase behaviour

of additive binary hard-sphere mixtures for small q using the same Götzelmann et al effective pair potential. While

their perturbation theory approach differs from the present one in the treatment of the hard-sphere reference g0(r) in

the solid, all of their phase boundaries are very close to those that we calculate for q = 0.1 and 0.2.
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from the two models take on very different appearances. For the Asakura–Oosawa case the

fluid–fluid transition becomes stable whereas for the additive binary hard-sphere mixture this

is not the case. Given the vast differences in shape between the two types of depletion potential

for large ηr
2, it is not surprising that the two models exhibit very different trends in their phase

behaviour as a function of q. The Asakura–Oosawa pair potential is attractive and becomes

longer ranged as q increases and this can stabilize the fluid–fluid transition. By contrast the

depletion potential for the hard-sphere mixture has only a short-ranged attractive contribution

before the repulsive barrier takes over, and such potentials are not conducive to a fluid–fluid

transition. That the latter occur at all, albeit as metastable transitions, is, as we mentioned

above, an artifact of the perturbation theory.

6. Discussion

In this paper we study both the phase behaviour and the pair correlation functions for the

Asakura–Oosawa model of colloid–polymer mixtures. As direct simulation of the Asakura–

Oosawa model is prohibited by slow equilibration we derived an explicit effective one-

component Hamiltonian by integrating out the degrees of freedom of the polymer coils.

Using the two-body, i.e. the Asakura–Oosawa pair potential, approximation to this effective

Hamiltonian in computer simulations, we determined the phase behaviour for size ratios

q = 0.1, 0.4, 0.6, and 0.8. For q > 0.6, we find a stable fluid–solid and a stable fluid–

fluid transition. The latter becomes metastable with respect to a broad fluid–solid transition

for q 6 0.4. For q = 0.1, we find an isostructural solid–solid transition, which is also

metastable with respect to the fluid–solid transition, but which is very likely to become stable

for smaller values of q. To the best of our knowledge this is the first time such a solid–solid

transition has been reported for this model system.

We compare the phase diagrams obtained from simulation with those from a perturbation

theory treatment of the same one-component Hamiltonian. The topologies of the phase

diagrams as functions of q are similar and the perturbation theory gives a reasonably good

overall account of the fluid–solid transition and the solid–solid transition. However, it gives

a poor account of the fluid–fluid transition for small q. This failure of perturbation theory

to describe the fluid phase accurately at small q warrants further investigation. It is clear

that the high-temperature approximation (13) underestimates the magnitude of the attractive

contribution to the free energy F for strongly attractive short-ranged perturbations of the type

encountered here. What is not so obvious is how to make improvements. In addition, the

crossover value where the liquid state becomes ‘marginal’ is estimated to be at q ∼ 0.45 in

the simulations, whereas the perturbation theory yields a crossover value of q ∼ 0.31.

We also calculate the phase behaviour of the Asakura–Oosawa model within the free-

volume approach [4]. This approach incorporates some many-body effects but our simulations

are based on a two-body approximation to the effective Hamiltonian, so it is difficult to make

direct comparisons. However, we showed that for q 6 0.154 the mapping of the binary

Asakura–Oosawa model onto the effective one-component Hamiltonian based on pairwise

additive Asakura–Oosawa potentials is exact and thus we can compare the phase diagrams

for q = 0.1. For this size ratio we find that the metastable fluid–fluid transition is shifted to

unphysically high colloid packing fractions in the free-volume approach and that the fluid–

solid transition is described slightly less well than in perturbation theory. Moreover, the

free-volume theory does not yield the solid–solid transition, although it does give a spinodal

instability in the solid phase. In order to assess the validity of the free-volume results at high q,

direct simulations of the binary Asakura–Oosawa model should be performed. However, this

will require new simulation techniques. This issue will be addressed in future work. Finally
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we made comparisons between the phase diagrams calculated for the Asakura–Oosawa pair

potential and those from the equivalent depletion potential treatment of the additive binary

hard-sphere mixture. For q = 0.1 the fluid–solid and solid–solid phase boundaries are very

similar in both models, reflecting the similarity between the two effective potentials at low

values of ηr
2. At higher values of q the interesting features of the phase behaviour occur at

large values of ηr
2 where the two effective potentials are very different, and this leads to the

absence of a fluid–fluid transition for the additive binary hard-sphere case.

We turn now to the possible relevance of our results for real mixtures. In experiments on

sterically stabilized polymethylmethacrylate (PMMA) particles and non-adsorbing polystyrene

in decalin, similar trends of the phase diagrams as functions of q were found to those of the

present simulations [6]. However, the three-phase coexistence disappears, i.e. the liquid phase

becomes ‘marginal’, at a size ratio of q 6 0.25 in these experiments [6]. A possible reason for

the discrepancy in the crossover value of q might be the neglect of three-body and higher-body

terms in the simulations and in the perturbation theory. Note, however, that the free-volume

approach, which incorporates some many-body effects, predicts a crossover value of q ∼ 0.32,

while direct simulations of a lattice model version of the Asakura–Oosawa model, which

restricts the polymer spheres to a cubic lattice, estimate the crossover at q ∼ 0.45 [10]. Another

possible reason for the discrepancy with experiments is the non-ideality or deformability of

the polymers. Direct simulations of colloids and ideal lattice polymers, which incorporate the

flexibility of the polymer coils, estimate the crossover at q 6 0.43, which is only slightly lower

than the value cited above for the Asakura–Oosawa model with polymer spheres restricted

to a cubic lattice [10]. Recently, depletion potentials have been calculated which include

effects of the anisotropy of ideal polymer chains [27]. These provide a better account of the

experimentally measured depletion potentials [27]. The polydispersity of the colloids and

polymers might also be relevant, and the effect of polydispersity on the depletion forces was

investigated in references [28] and [29]. How such modifications of the depletion potentials

might affect phase behaviour remains a subject for investigation.

The colloid–colloid radial distribution function g(r) and the structure factor S(k) were

calculated for the fluid phase, but close to the phase boundaries, for the pairwise-additive

approximation to the effective Hamiltonian using both simulation and the PY integral equation

theory. We found very good agreement between the PY results and those of simulations.

Static colloid–colloid structure factors were measured recently for three colloidal liquids at

their triple points. The system was PMMA and polystyrene in decalin and the three size ratios

were q = 0.57, 0.37, and 0.24 [7]. As the liquid becomes more marginal (lower q), the height

of the main peak of S(k) changes very little, i.e. S(km) ∼ 2.5 ± 0.2. This result is surprising

when we recognize that the colloid packing fraction for the liquid phase at the triple point

decreases significantly upon decreasing q; ηc = 0.333 for q = 0.24, which is the marginal

case. We might expect a lower value of S(km) for a liquid with this value of ηc. In addition, a

substantial increase of S(k) at low k was found upon decreasing q. In figure 13, we plot S(k)

obtained from simulations for the liquid phase near the triple point (state-points B) for three

values of q. Note that for q = 0.4 the liquid phase is not at the triple point. We find that S(km),

the height of the first peak of S(k), is slightly larger for q = 0.6 than for q = 0.8, which is

a little surprising given that ηc is 6 or 7% higher for the latter. However, this feature is not

found in the PY results—see figures 2, 4, and 6. For q = 0.4 we find that S(km) is reduced

by about 0.4, or so, below the peak height for q = 0.8 and that S(0) is increased above the

values for q = 0.6 and 0.8. Such observations are consistent with the reduction in colloid

packing fraction; ηc = 0.42 for state-point B at q = 0.4. Thus, the trends that we find in the

simulation study are not as pronounced as those found in the experiments [7]. In particular, it

is difficult to see how a pair potential of the Asakura–Oosawa type could yield S(km) ∼ 2.25
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Figure 13. The structure factor S(kσc) for the effective one-component system, based on the

Asakura–Oosawa pair potential (8), with size ratios q = 0.8, 0.6, and 0.4. Each result refers to the

liquid phase near the triple point (state-points B given in table 1 and in figure 1).

for ηc = 0.333. Whether the full binary Asakura–Oosawa model would produce significantly

different colloid–colloid structure factors from those given here remains to be seen and this

topic will be addressed in future work.
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[26] Götzelmann B, Roth R, Dietrich S, Dijkstra M and Evans R 1999 Europhys. Lett. 47 398

[27] Triantafillou M and Kamien R D 1999 Phys. Rev. E 59 5621

[28] Walz J Y 1996 J. Colloid Interface Sci. 178 505

[29] Chu X L, Nikolov A D and Wasan D T 1996 Langmuir 12 5004


